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Abstract: In this paper, we fixate on the stability of varying-time delayed memristive quaternionic
neural networks (MQNNs). With the help of the closure of the convex hull of a set the theory of
differential inclusion, MQNN are transformed into variable coefficient continuous quaternionic
neural networks (QNNs). The existence and uniqueness of the equilibrium solution (ES) for MQNN
are concluded by exploiting the fixed-point theorem. Then a derivative formula of the quaternionic
function’s norm is received. By utilizing the formula, the M-matrix theory, and the inequality
techniques, some algebraic standards are gained to affirm the global exponential stability (GES) of
the ES for the MQNN. Notably, compared to the existing work on QNN, our direct quaternionic
method operates QNN as a whole and markedly reduces computing complexity and the gained
results are more apt to be verified. The two numerical simulation instances are provided to evidence
the merits of the theoretical results.

Keywords: memristive quaternionic neural networks (MQNN); global exponential stability (GES);
time-varying delay; M-matrix

1. Introduction

Research in the past decades have shown that neural networks (NNs) have a wide
range of applications in many fields as detection and analysis of the biological signal,
image processing, system control, and so on. The NN research has attracted the attention
of many researchers [1,2].

Different from circuit components such as resistors, capacitors, and inductors, memris-
tors have the memory characteristics of neurons in the human brain. Research has confirmed
its multiple potential applications. Therefore, it is of great significance to introduce memris-
tors into neural network design and to study memristive neural networks [3–7].

Undoubtedly, due to the switching speed of the amplifier and the transmission delay
during communication between neurons, it is necessary to introduce time delays when
designing neural networks. The existence of the time delay will cause the neural network
to become unstable or oscillate. It is widely known that stability is a prerequisite for the
good application of a system. Therefore, it is important to study the stability of neural
network systems with time delays [1–3].

When processing color images, it is more partial to design systems with high storage
capacity. Therefore, quaternion (regarded as the extension of a complex number) is led
into NN and quaternionic neural networks (QNNs) are coined. The research shows that
compared with RVNN and CVNN, QNN has better aptness and more effective information
processing capacity. So the QNN has become the focus of many scholars [8–10].

Different from the multiplication of real numbers and complex ones, quaternionic
multiplication is non-commutative. The usual ways of studying the stability of RVNN and
CVNN cannot be directly applied to research the same issues of QNN. To overcome the
challenge, decomposition approaches are proposed, which splits the considered QVNN
into equivalent four RVNNs or two CVNNs [11–18]. However, the decomposition methods
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have observable limitations: (i) they require the activation functions to be decomposable;
yet, not all quaternion functions are decomposable; (ii) the decomposition methods often
induce a bulky computing cost.

Given the foregoing discussion, this paper focuses on developing a new direct quater-
nionic method to research the GES of a class of multiple time-varying delayed MQNN.
We establish a newly derivative formula of the quaternionic function. Then, based on the
formula, and utilizing the inequality, the M-matrix theory, some novel stability outcomes
for the considered MQNN are acquired. In this way, a new direct quaternionic approach
for the analyzing stability of the MQNN is proposed. The main contributions of this paper
are the following three aspects:

(1) Memristors, time-varying delays, and quaternions are considered simultaneously
in the neural network model, which extends some neural network models in previous pa-
pers.

(2) It is vital to estimate the norms of the quaternionic state variable through the given
QNN for acquiring its stability. However, a quaternionic variable is a vector, while its
norm is a real number. To deal with the challenge, a derivative formula of the quaternionic
variable is established. With help of the formula, M-matrix theory and inequality tech-
niques, a concise and efficient quaternionic method to study QNN has been established,
which tackles the QNN as a whole without any decomposition and greatly reduces the
computation burden.

(3) New GES criteria, coined in the form of M-matrix on quaternionic norm, are
obtained. These criteria are easier to verify and have improved the some existing results.
Besides, with these criteria, some restrictions on the MQNN have been removed.

In Section 2, we restate some quaternionic synopsis and define the considered model
formally. We explain the new the uniqueness, existence as well as GES of the equilibrium
solution (ES) in Section 3. The numerical examples and some comparisons with the
previous results are given in Section 4. Concluding remarks are given in the last section.

Notations. R denotes the real number set in this paper. Rm×n stands for the m× n the
real matrix set. C([t0 − τ, t0];S) represents the continuous mapping set from [t0 − τ, t0] to
set S.

2. Mathematical Fundamentals and Model Statement
2.1. Quaternionic Synopsis

q = r + I1 + I2 j + I3k is called as a quaternion, where r, I1, I2, I3 ∈ R. Re(q) = r is
known as the real part of p and Im(q) = I1i + I2 j + I3k are known as the imaginary parts
of q, where the imaginary unit i, j and k respect the following rules:

(1 i j k)T(1 i j k) =


1 i j k
i −1 k −j
j −k −1 i
k j −i −1

.

Q denotes the quaternionic set and Qm×n represents the m× n quaternionic matrices.
For any q = r + I1i + I2 j + I3k , conjugate q̄ and norm |q| of quaternion q are defined as
q̄ = r− I1i− I2 j− I3k and |q|2 = (r2 + I2

1 + I2
2 + I2

3 ).
For q1 = r1 + iI11 + I12 j + I13k, q2 = r2 + I21i + I22 j + I23k ∈ Q, their multiplication is

defined as:

q1q2 =(r1r2 − I11 I21 − I12 I22 − I13 I23) + (r1 I21 + r2 I11 + I12 I23 − I13 I22)i

+ (r1 I22 + r2 I12 + I13 I21 − I11 I23)j + (r1 I23 + r2 I13 + I11 I22 − I12 I21)k.

Function q(t) = r(t) + I1(t)i + I2(t)j + I3(t)k is a quaternionic function on t, in which
r(t), I1(t), I2(t) as well as I3(t) are all real-valued function on R → R. The quater-
nionic function q(t) is a differential iff r(t), I1(t), I2(t) and I3(t) are all differentiable, and
d
dt q(t) , dr(t)

dt + dI1(t)
dt i + dI2(t)

dt j + dI3(t)
dt k.
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The more detailed property of quaternions can be restated as follows:

Proposition 1. In [9] Set q1, q2 ∈ Q, then the following relations hold,

(1) Re(q1 + q2) = Re(q1) + Re(q2), |q1| ≥ Re(q1),

(2) |q1| = |q1|, |q1||q2| = |q1q2|, |q1|+ |q2| ≥ |q1 + q2|.

2.2. Model Statement and Definitions

The MQNN model with varying-time delays is considered; i.e.,

dqk(t)
dt

=− dkqk(t) +
n

∑
m=1

[
akm(qk(t)) fm(qm(t))

+ bkm(qk(t))gm(qm(t− τm(t)))
]
+ Jk, t ≥ 0,

(1)

or the matrix form

dq(t)
dt

=−Λq(t) +A(q(t))F(q(t)) +B(q(t))G(q(t− τ(t))) + J, t ≥ 0, (2)

in which q(t) = (q1(t), q2(t), · · · , qn(t))T ∈ Qn depicts the state vector, d
dt q(t) = ( d

dt q1(t),
d
dt q2(t), · · · , d

dt qn(t))T ∈ Qn; the self-feedback connection weight matrix Λ = diag(d1, d2,
· · · , dn) ∈ Rn×n with dk > 0; the weight metrics A(q(t)) = (akm(qk(t)))n×n and B(q(t)) =
(bkm(qk(t)))n×n are all in Qn×n; the neuron activation function F(q(t)) = ( f1(q1(t)),
f2(q2(t)), · · · , fn(qn(t)))T and G(q(t− τ(t))) = (g1(q1(t− τ1(t))), g2(q2(t− τ2(t))), · · · ,
gn(qn(t− τn(t))))T are in Qn, the external input vector J = (J1, J2, · · · , Jn)T includes in
Qn, the transmission delays τm(t) are bounded with 0 < τm(t) ≤ τ (constant τ > 0),
m ∈ I = {1, 2, · · · , n}.

In conformity with the memristor’s feature and the current-voltage trait, the memris-
tive coefficient akm(qk(t)) and bkm(qk(t)) fulfill the following conditions:

akm(qk(t)) =
{

âkm, |qk(t)| ≤ Tk,
ăkm, |qk(t)| > Tk,

bkm(qk(t)) =
{

b̂km, |qk(t)| ≤ Tk,
b̆km, |qk(t)| > Tk,

(3)

where k, m ∈ I, Tk > 0 are said as the switching leaps, âkm, ăkm, b̂km, b̆km ∈ Q are the known
quaternionic constants.

The initial conditions (IC) of the MQNN model (1) are given by qk(s) = φk(s). Here
φk(s) is bounded function in ([−τ, 0],Q), for k ∈ I.

Remark 1. In [19], the Lagrange stability of the MQNN is discussed. The following switching
rules of aij(qi(t)) are adopted as follows [19]:

a(r)ij (q(r)i (t)) =

 â(r)ij , |q(r)i (t)| ≤ Ti,

ă(r)ij , |q(r)i (t)| > Ti,
a(i)ij (q

(i)
i (t)) =

 â(i)ij , |q(i)i (t)| ≤ Ti,

ă(i)ij , |q(i)i (t)| > Ti,

a(j)
ij (q(j)

i (t)) =

 â(j)
ij , |q(j)

i (t)| ≤ Ti,

ă(j)
ij , |q(j)

i (t)| > Ti,
a(k)ij (q(k)i (t)) =

 â(k)ij , |q(k))i (t)| ≤ Ti,

ă(k)ij , |q(k)i (t)| > Ti,

(4)

where aij(qi(t)) = a(r)ij (q(r)i (t)) +a(i)ij (q
(i)
i (t))i +a(j)

ij (q(j)
i (t))j +a(k)ij (q(k)i (t))k. Clearly, the

switching rule (4) requires that the quaternionic function aij(qi(t)) can be decomposed into its
four parts. However, not all quaternionic function can be decomposed in this way. Moreover, the
switching rules (4) can be regraded as a special case of (3). The switching rule (3) can be applied in
the cases whether akm(qk(t)) can be decomposed or not.
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Due to the discontinuous function akm(qk(t)) and bkm(qk(t)), the solutions of the
MQNN model (1) are seen as the Filippov’s sense. On account of the theory of differential
inclusion, the MQNN model (1) can be reformulated into the form below:

dqk(t)
dt

∈− dkqk(t) +
n

∑
m=1

[
co{âkm, ăkm} fm(qm(t))

+ co
{

b̂km, b̆km

}
gm(qm(t− τm(t)))

]
+ Jk, t ≥ 0, k ∈ I,

(5)

where co[S] denotes the closure of the convex hull of set S. For all k, m ∈ I, there exist the
functions ãkm(t) ∈ co{âkm, ăkm}, b̃km(t) ∈ co

{
b̂km, b̆km

}
yielding

dqk(t)
dt

=− dkqk(t) +
n

∑
m=1

[
ãkm(t) fm(qm(t))

+ b̃km(t)gm(qm(t− τm(t)))
]
+ Jk, t ≥ 0, k ∈ I,

(6)

or the form of matrix,

dq(t)
dt

=−Λq(t) + Ã(t)F(q(t)) + B̃(t)G(q(t− τ(t))) + J, t ≥ 0, (7)

in which Ã(t) = (ãkm(t))n×n, and B̃(t) = (b̃km(t))n×n.
The following hypothesis is necessary to gain the main results:

(H) The continuous function fm(·) and gm(·) satisfy the following conditions:

| fm(h)− fm(r)| ≤ L f
m|h− r|, |gm(h)− gm(r)| ≤ Lg

m|h− r|,

for any h, r ∈ Q, where L f
m, Lg

m > 0, m ∈ I.

Definition 1. A vector quaternionic function q(t) ∈ C([−τ,+∞),Qn) is called as a solution of
the MQNN model (7) through (0, φ), provided q(t) equips with the IC q(s) = φ(s), s ∈ [−τ, 0],
and meets the MQNN model (7) as t ≥ 0, denoted by q(t, φ) (which is abbreviated to q). Specially,
if q(t) = constant q∗, then q∗ is called as an ES of (7).

Definition 2. If there has constants λ > 0 and Υ ≥ 1 satisfying |q(t) − q∗‖ ≤ Υ‖φ(s) −
q∗‖e−λt, then the the MQNN model (7) is known to be globally exponentially stable (GES), where

‖q(t)− q∗‖ =
√

∑n
k=1 |qk(t)− q∗k |2, ||φ(s)− q∗|| =

√
∑n

k=1 sup−τ≤s≤0 |φk(s)− q∗k |2.

Definition 3. In [20] Let matrix B = (bij)n×n with bij ≤ 0 (i 6= j); one of the below statements
ensures that B is an M-matrix.

(i) Each leading principal minors of matrix B is positive.
(ii) If bii > 0, and there is a vector ξ > 0 meeting Bξ > 0.

3. Main Results

Given the MQNN model in (1), we derive the new sufficient conditions to ensure the
GES of its ES.

Theorem 1. Under hypothesis (H), supposing

Λ− (A +L f +B+Lg)
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is an M-matrix, there is unique equilbrium solution in the MQNN model (1), in which A + =
(a+km)n×n with a+km = max{|âkm|, |ăkm|}, B+ = (b+km)n×n with b+km = max{|b̂km|, |b̆km|},
L f = diag(L f

1 , L f
2 , · · · , L f

n), Lg = diag(Lg
1 , Lg

2 , · · · , Lg
n).

Proof. We will first prove that the below matrix equation has a unique quaternionic
solution p∗ to demonstrate that (7) holds an ES.

−Λp + Ã(t)F(p) + B̃(t)G(p) + J = 0. (8)

where p ∈ Qn, F(p) = ( f1(p1), f2(p2), · · · , fn(pn))
T , G(p) = (g1(p1), g2(p2), · · · , gn(pn))

T .
Define the below operator,

Tk(pk) = d−1
k

{
∑n

m=1
[
ãkm(t) fm(pm) + b̃km(t)gm(pm)

]
+ Jk

}
, k ∈ I

or matrix form,

T(p) = Λ−1{Ã(t)F(p) + B̃(t)G(p) + J
}

, (9)

where T(p) = (T1(p1), T2(p2), · · · , Tn(pn))T ∈ n. By (9), ãkm(t) ∈ co{âkm, ăkm}, b̃km(t) ∈
co
{

b̂km, b̆km

}
, hypothesis (H) as well as Proposition 1, we have

|Tk(pk)| ≤d−1
k

{ n

∑
m=1

[
|ãkm(t)|| fm(pm)|+ |b̃km(t)||gm(pm)|

]
+ |Jk|

}
≤d−1

k

{ n

∑
m=1

[
a+km(L f

m|pm|+ | fm(0)|) + b+km(Lg
m|pm|+ |gm(0)|) + |Jk|

}
=d−1

k

{ n

∑
m=1

[
a+kmL f

m + b+kmLg
m

]
|pm|+ J̃k

}
,

where J̃k = |Jk|+ ∑n
m=1(a+km| fm(0)|+ b+km|gm(0)|). That is

[|T(p)|] ≤ Λ−1
{(

A +L f +B+Lg
)
[|p|]

}
+ Λ−1 J̃, (10)

in where [|p(t)|] = (|p1(t)|, |p2(t)|, · · · , |pn(t)|)T , [|T(p)|] = (|T1(p1)|, |T2(p2)|, · · · ,
|Tn(pn)|)T , J̃ = ( J̃1 , J̃2, · · · , J̃n)T .

In the light of M-matrix Λ− (A +L f +B+Lg), there exists a positive vector µ = (µ1,
µ2, · · · , µn)T , which can cause that

J̃ ≤
[
Λ−

(
A +L f +B+Lg

)]
µ,

i.e.,

Λ−1
[(

A +L f +B+Lg
)

µ + J̃
]
≤ µ. (11)

Let R = {p ∈ Qn | [|p|] ≤ µ}. Clearly R is a compact and convex. From (10) and (11),
for any p ∈ R, we have [|T(p)|] ≤ µ. Thus, the operator T : R → R has a point p∗ ∈ R
such that T (p∗) = p∗, in accordance with Brouwer’s fixed point theorem, which is the
solution ofEquation (8).

Next, we use the proof by contradiction to prove the uniqueness of solution of (8). Set
q∗ to be another solution of (8), that is,

p∗ = Λ−1[Ã(t)F(p∗) + B̃(t)G(p∗) + J
]
,

q∗ = Λ−1[Ã(t)F(q∗) + B̃(t)G(q∗) + J
]
.
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We get that

[|p∗ − q∗|] ≤ Λ−1
[
(A +L f +B+Lg)[|p∗ − q∗|]

]
. (12)

Supposing p∗ 6= q∗, [|p∗− q∗|] > 0. By (12), we can receive ρ
[
Λ−1

(
A +L f +B+Lg

)]
≥

1. However, M-matrix Λ−
(
A +L f +B+Lg

)
is equivalent to ρ

[
Λ−1

(
A +L f +B+Lg

)]
<

1. This is a contradiction. Hence, q∗ = q∗, that is, Equation (8) has a unique solution p∗.

To explore the GES standard of system (1), we set up the below Theorem.

Theorem 2. Let u(t) : R→ Q be differentiable, then the following equation is true,

d
dt
|u(t)|2 = 2Re

(
u(t)

d
dt

u(t)
)

. (13)

Proof. Set u(t) = x(t) + y1(t)i + y2(t)j + y3(t)k, where differential functions x(t), y1(t),
y2(t) and y3(t): R→ R, then

d
dt
|u(t)|2 =

d
dt

[
x2(t) + y2

1(t) + y2
2(t) + y2

3(t)
]

= 2
[

x(t)
dx(t)

dt
+ y1(t)

dy1(t)
dt

+ y2(t)
dy2(t)

dt
+ y3(t)

dy3(t)
dt

]
= 2Re

{[
x(t)− y1(t)i− y2(t)j− y3(t)k

][
dx(t)

dt
+

y1(t)
dt

i +
y2(t)

dt
j +

y3(t)
dt

k
]}

= 2Re
(

u(t)
d
dt

u(t)
)

.

Remark 2. Let it be noted that u(t) is a quaternionic function while |u(t)| is a real-valued function.
The significance of Theorem 2 is that it build a derivative relationship between a quaternionic function
and its norm. The relationship lead ones to operate QNN as an entirety, which pave the way for
researching the stability of QNN by utilizing direct quaternionic approaches.

Theorem 3. The MQNN model (1) is GES, if the conditions of Theorem 1 fulfill.

Proof. Set q∗ = (q∗1 , q∗2 , · · · , q∗n) to be the ES of the model (6). by translation qk(t) =
qk(t)− q∗k , k ∈ I, we can accept

dqk(t)
dt

= −dkqk(t) +
n

∑
m=1

[
ãkm(t)fm(qm(t)) + b̃km(t)gm(qm(t− τm(t)))

]
, t ≥ 0, (14)

where fm(qm(t)) = fm(qm(t) + q∗m) − f (q∗m), gm(qm(t − τm(t))) = gm(qm(t − τm(t)) +
q∗m)− gm(q∗m), k, m ∈ I.



Mathematics 2021, 9, 1291 7 of 14

Denote V(t) = ||qk(t)||2, (k ∈ I). Computing dV(t)
dt via (14), and by using Theo-

rem 2, yields

2|qk(t)|
d|qk(t)|

dt
=

d
dt

(
|qk(t)|2

)
= 2Re

(
qk(t)

dqk(t)
dt

)
= 2Re

{
qk(t)

[
− dkqk(t) +

n

∑
m=1

(
ãkm(t)fm(qm(t))

+ b̃km(t)gm(qm(t− τm(t))
)]}

=− 2dk|qk(t)|2 + 2
n

∑
m=1

{
Re
[
qk(t)ãkm(t)fm(qm(t))

]
+ Re

[
qk(t) b̃km(t)gm(qm(t− τm(t)))

]}
, t ≥ 0, k ∈ I.

(15)

By using Proposition 1, hypothesis (H) as well as ãkm(t) ∈ co{âkm, ăkm}, we can gain
the following inequality,

Re
[
qk(t)ãkm(t)fm(qm(t))

]
≤
∣∣∣qk(t)

∣∣∣|ãkm(t)| | fm(qm(t)) |

≤|qk(t)|a+km L f
m |qm(t))|.

(16)

In the same way, we acquire that

Re
[
qk(t)b̃km(t)gm(qm(t− τm(t)))

]
≤ |qk(t)|b+km Lg

m |qm(t− τm(t))|. (17)

Combining (16) and (17) into (15), we can get

d
dt
|qk(t)| ≤ − dk |qk(t)|+

n

∑
m=1

{
a+km L f

m |qm(t)|

+ b+km Lg
m |qm(t− τm(t))|

}
, t ≥ 0, k ∈ I.

(18)

That is equivalent to

d
dt
[|q(t)|] ≤−Λ[|q(t)|] +A +L f [|q(t)|] +B+Lg[|q(t− τ(t))|], t ≥ 0, (19)

where [|q(t)|] = (|q1(t)|, |q2(t)|, · · · , |qn(t)|)T , [|q(t− τ(t))|] = (|q1(t− τ1(t))|, |q2(t−
τ2(t))|, · · · , |qn(t− τn(t))|)T .

In light of M-matrix Λ−
(
A +L f +B+Lg

)
, then there is a vector η = (η1, η2, · · · ,

ηn)T > 0, causing [
Λ−

(
A +L f +B+Lg

)]
η > 0,

that is,

−dkηk +
n

∑
r=1

[
a+km L f

m ηm + b+km Lg
m ηm

]
< 0, k ∈ I. (20)

Define the continuous function

Hk(ν) = (−dk + ν)ηk +
n

∑
r=1

[
a+km L f

m ηm + b+km Lg
m ηmeτν

]
, k ∈ I.
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By (20), we see that Hk(0) < 0. Hk(ν)→ +∞ as ν→ +∞, for m ∈ I. We can acquire
that there exists a constant δ > 0 meeting, according to the continuity of the function
Hk(ν),

Hk(δ) = (−dk + δ)ηk +
n

∑
r=1

[
a+km L f

m ηm + b+km Lg
m ηmeτδ

]
< 0, k ∈ I. (21)

Let vk(t) = eδt|qk(t)|, k ∈ I. By using (18), we receive

d
dt

vk(t)) =δeδt|qk(t)|+ eδt d
dt
|qk(t)|

≤δeδt|qk(t)|+ eδt
[
− dk|qk(t)|+

n

∑
r=1

a+km L f
m |qm(t)|

+
n

∑
r=1

b+km Lg
m |qm(t− τm(t))|

]
=δeδt|qk(t)| − dkeδt|qk(t)|+

n

∑
r=1

a+km L f
m eδt|qm(t)|

+
n

∑
r=1

b+km Lg
m eδt|qm(t− τm(t))|

=(δ− dk)eδt|qk(t)|+
n

∑
r=1

a+km L f
m vm(t) +

n

∑
r=1

b+km Lg
m eδτm(t)vm(t− τm(t))

≤(δ− dk)vk(t) +
n

∑
r=1

a+km L f
m vm(t) +

n

∑
r=1

b+km Lg
m eδτvm(t− τm(t)), k ∈ I.

(22)

Let ν0 =
(1+δ) sup−∞<s<≤0{|ψk(s)−q∗ |}

min1≤m≤n{ηk}
, then

vk(s) = eδs|qk(s)| ≤ |qk(s)| = |ψk(s)− q∗k | < ηkν0, s ∈ [−τ, 0], k ∈ I.

Next, we will confirm that

vk(t) < ηkν0, t ≥ 0, for each k ∈ I, (23)

holds. Actually, if (23) does not hold, then there exists an unspecified positive integer k0
and t∗ > 0 yielding

vk0(t
∗) = ηk0 ν0,

d
dt

vk0(t
∗) ≥ 0, as well as

vm(t) ≤ ηm ν0, t ∈ [−τ, t∗], r ∈ I. (24)

However, in the light of (21)–(22) and (25), one can get,

d
dt

vk0(t) ≤(δ− dk0)ηk0 ν0 +
n

∑
r=1

a+k0m L f
m ηmν0 +

n

∑
r=1

b+k0m Lg
m eδτηmν0

=

[
(δ− dk0)ηk0 +

n

∑
r=1

a+k0m L f
m ηm +

n

∑
r=1

b+k0m Lg
m eδτηm

]
ν0 < 0.

This is opposite to d
dt vk0(t

∗) ≥ 0 in (23). Therefore (23) is verified, which shows

|qk(t)− q∗k | ≤ ηkν0e−δt, f or t ≥ 0, k ∈ I. (25)



Mathematics 2021, 9, 1291 9 of 14

By the initial values ψ̌(s) = ψ(s)− q∗, s ∈ [−τ, 0], is is easy to get

[|q(t)|] ≤ Π
[
|ψ̌(s)|

]
e−εt, t ≥ 0, (26)

where Π = max
{

1, max1≤m≤n{ηk}ν0
min1≤m≤n{sup−∞<s≤0 |ψ̌k(s)|}

}
. Thus, we can receive

‖q(t)− q∗‖ ≤ Π‖ψ(s)− q∗‖e−δt, t ≥ 0.

Remark 3. In the proof of Theorem 2, Formula (13) plays a fundamental role. With the help of
formula (13), the MQNN (6) can be analyzed as a whole without any decomposition. This concise
method for analyzing MQNN can be applied to general QNN, regardless of whether the activity
function of QNN can be decomposed, which greatly reducing the computational cost. Besides, the
results obtained are easy to check in the practice. This is one of the distinguishing features and
dedications of this paper.

Remark 4. If akm(qk(t)) = akm, bkm(qk(t)) = bkm (k, m ∈ I), the MQNN model (1) reduces
into the following QNN model

dqk(t)
dt

=− dkqk(t) +
n

∑
m=1

[
akm(qk(t)) fm(qm(t))

+ bkm(qk(t))gm(qm(t− τm(t)))
]
+ Jk, t ≥ 0.

(27)

By using Theorem 1 and 3, we can receive the following consequences.

Corollary 1. Under hypothesis (H), M-matrix

Λ− (|A|L f + |B|Lg)

can affirms that the system (27) a unique ES, which is GES, in which Λ = diag{d1, d2, · · · , dn},
|A| = (|akm|)n×n, |B| = (|bkm|)n×n, L f = diag(L f

1 , L f
2 , · · · , L f

n), Lg = diag(Lg
1 , Lg

2 , · · · , Lg
n).

4. Examples

We will give two instances to prove the obtained outcomes and make some compar-
isons with the previous works.

Example 1. Consider model (1) with Λ = diag{1.5, 3}, the activation function fm(·) = gm(·) =
tanh(·), parameters akm(qk(t)) and bkm(qk(t)) (k, m = 1, 2):

a11(q1(t)) =

{
0.3− 01.i + 0.1j− 0.2k, |q1(t)| ≤ 0.5;

0.2− 0.3i + 0.1j− 0.1k, |q1(t)| > 0.5;

a12(q1(t)) =

{
−0.25 + 0.2i− 0.2j + 0.1k, |q1(t)| ≤ 0.5;

−0.25 + 0.1i− 0.1j + 0.1k, |q1(t)| > 0.5;

a21(q2(t)) =

{
0.2 + 0.3i− 0.2j− 0.3k, |q2(t)| ≤ 0.5;

0.1 + 0.2i− 0.2j− 0.2k, |q2(t)| > 0.5;

a22(q2(t)) =

{
0.3− 0.3i + 0.2j + 0.2k, |q2(t)| ≤ 0.5;

0.2− 0.2i + 0.1j + 0.1k, |q2(t)| > 0.5;
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b11(q1(t)) =

{
0.3− 0.2i + 0.2j + 0.1k, |q1(t)| ≤ 0.5;

0.2− 0.1i + 0.1j + 0.1k, |q1(t)| > 0.5;

b12(q1(t)) =

{
0.2 + 0.2i− 0.2j− 0.3k, |q1(t)| ≤ 0.5;

0.1 + 0.2i− 0.1j− 0.3k, |q1(t)| > 0.5;

b21(q2(t)) =

{
−0.1 + 0.1i− 0.2j− 0.3k, |q2(t)| ≤ 0.5;

−0.1 + 0.1i− 0.1j− 0.2k, |q2(t)| > 0.5;

b22(q2(t)) =

{
0.3− 0.3i + 0.2j− 0.3k, |q2(t)| ≤ 0.5;

0.2− 0.2i + 0.1j + 0.2k, |q2(t)| > 0.5.

We can get, A+ =

(
0.4796 0.3905
0.5099 0.5099

)
, B+ =

(
0.4243 0.4583
0.3873 0.5568

)
, L f = Lg =

diag(1, 1). It is prone to verify that the matrix

Λ− (A+L f +B+Lg) =

(
0.5961 −0.8488
−0.8972 1.80338

)
.

is an M-matrix. Model (1) satisfies all conditions of Theorem 3, we know that model (1) is GES by
mean of Theorem 3.

Taking τ1(t) = |sint|, τ2(t) = |cos(t)|, J1 = J2 = 0, the numerical simulations with the IC
φ1(s) = 0.5− 0.4i + 0.2j− 0.1k, φ2(s) = −0.3 + 0.4i− 0.2j + 0.2k (s ∈ [−1, 0]) are made by
using Matlab R2018b, are exhibited in Figures 1 and 2.
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Figure 1. State trajectory of four parts of q1(t) for system (1).
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Figure 2. State trajectory of four parts of q2(t) for system (1).

Remark 5. Li and Cao et al have discussed the global dissipativity problem of the MQNN with
proportional delay. The globally exponential dissipativity conditions of MQNN are acquired
(see Theorem 3.1 in [18]. The concept of globally exponential dissipativity is the GES in the
sense of Lyapunov. The bounded time-varying delay includes in the proportional delay. So, in
some extent, model (1) can treated as a special case of system (2) in [18] when I(t) = constant
vector. Theorem 3.1 in [18] should be able to be used to check the GES of the system (1). In fact,
µp(−D) + l‖Ã‖p + l‖B̃‖p = 0.3685 > 0 (p = 2), which does not meet Theorem 3.1 in [18].
Therefore, Theorem 3.1 in [18] can not be used for asserting the GES of the model (1). This shows
that some improvements of Theorem 3.1 in [18] have been made.

Example 2. Consider the model (26) with Λ = diag{1, 1}, the activation function fm(·) =
gm(·) = 0.5tanh(·), parameters akm and bkm (k, m = 1, 2):

A =

(
0.2− 0.3i + 0.2j + 0.12k −0.3 + 0.2i− 0.1j + 0.14k
−0.2− 0.4i + 0.14j + 0.13k 0.2 + 0.3i− 0.1j + 0.2k

)
,

B =

(
0.2− 0.3i + 0.2j + 0.1k 0.2− 0.3i + 0.2j− 0.1k
0.3 + 0.1i + 0.2j + 0.1k −0.2 + 0.2i− 0.3j− 0.2k

)
.

We can get,

Λ− (|A|L f + |B|Lg) =

(
0.5731 −0.4119
−0.4368 0.5480

)
.

is an M-matrix. The model (26) satisfies all conditions of Corollary 1, We know that the model (26) is
GES by mean of Corollary 1.

Taking τ1(t) = 2 + sint, τ2(t) = 2− cos(t), J1 = J2 = 0, the numerical simulations with
the IC φ1(s) = −0.16 + 0.16i + 0.12j− 0.1k, , φ2(s) = 0.1− 0.2i− 0.12j + 0.16k (s ∈ [−3, 0])
are exhibited in Figures 3 and 4.
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Figure 3. State trajectory of four parts of q1(t) for system (26).
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Figure 4. State trajectory of four parts of q2(t) for system (26).

Remark 6. In [14], QNN with mixed delays were considered. Some sufficient conditions for the
stability of the ES of the considered QNN system (1) were obtained by using the decomposing
method (see Theorem 1 and 2 in [14]). The model (26) is a special case of the system (1) in [14]. Yet,
Theorem 1 and 2 in [14] can not be used for checking the stability of the model (26), because Theorem
1 and 2 in [14] require the activity function to be decomposable, while there are not explicit real
imaginary parts in the function tanh(q) q is a quaternion of system (26) and it is in-decomposable.
This shows that the outcomes in [14] have been improved.
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5. Conclusions

We have discussed the existence, uniqueness, and exponential stability of the equilib-
rium solution of MQNN with varying-time delays. Based on a new established derivative
formula of the norm of quaternionic function, we have acquired some new GES criteria of
the MQNN by employing the M-matrix theory and the inequality techniques. Conquering
the shortcomings of the existing decomposition method, our direct quaternionic method
can concisely analyze the MQNN. Compared with the existing decomposition method, our
direct quaternionic method has a largely low computation cost. Moreover, the obtained
algebraic criteria are formulated by the matrix of the quaternionic norm, which is easy
to verify.

The direct quaternion method can contributed a new means to survey the dynamic
behaviors for other types of QNN, such as QNN with impulses and stochastic QNN, which
will be our further researches.
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