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Abstract: The Dempster–Shafer evidence theory has been widely used in the field of data fusion.
However, with further research, incomplete information under the open world assumption has
been discovered as a new type of uncertain information. The classical Dempster’s combination
rules are difficult to solve the related problems of incomplete information under the open world
assumption. At the same time, partial information entropy, such as the Deng entropy is also not
applicable to deal with problems under the open world assumption. Therefore, this paper proposes a
new method framework to process uncertain information and fuse incomplete data. This method
is based on an extension to the Deng entropy in the open world assumption, negation of basic
probability assignment (BPA), and the generalized combination rule. The proposed method can solve
the problem of incomplete information under the open world assumption, and obtain more uncertain
information through the negative processing of BPA, which improves the accuracy of the results. The
results of applying this method to fault diagnosis of electronic rotor examples show that, compared
with the other uncertain information processing and fusion methods, the proposed method has wider
adaptability and higher accuracy, and is more conducive to practical engineering applications.

Keywords: Dempster–Shafer evidence theory; sensor data fusion; fault diagnosis; generalized
combination rule; incomplete information fusion

1. Introduction

Fault diagnosis is an important research content in the engineering industry, and its
applications in vehicle detection [1], high-speed train system diagnosis [2,3], and intelligent
machinery diagnosis [4] have received a lot of attention. Current research on fault diagnosis
mainly includes machine learning and application of diagnostic methods. Some traditional
machine learning methods, such as the Gaussian mixture model, support vector machine
(SVM), have been widely used in the field of fault diagnosis. A large amount of machinery
health information is easier to collect, but it also reduces the efficiency of detection and
diagnosis. The data-driven model improves the efficiency of fault diagnosis and is widely
used in this field. For example, in the literature [5], a differentiable neural network structure
search based on pruning and multi-objective optimization is used for mechanical fault
diagnosis, and the multi-scale fuzzy entropy technology based on Euclidean distance is
applied to fault diagnosis of industrial system [6].

The above research can effectively improve the efficiency of fault diagnosis, but it
is also an important research content for the processing of a large amount of collected
information. In complex systems, multi-source information fusion has the advantage of
improving accuracy and credibility [7], so it has been widely used. However, affected by
the uncertainty of the real world, multi-sensor information sources are considered to be
uncertain [8]. For uncertain information, information entropy [9], probability theory [10],
rough set theory [11,12], Dempster–Shafer evidence theory [13,14], belief function [15,16],
and other methods [17,18] have been proposed to deal with uncertain information. The
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Dempster–Shafer evidence theory is a type of inexact probability [19], as an uncertain
information processing and data fusion tool, it is widely used in pattern recognition [20–22],
multi-attribute decision-making [23,24], image processing [25] and other fields [26–29].
Under the Dempster–Shafer evidence theory framework, many uncertain information
processing problems can be solved by measuring information uncertainty and using
Dempster’s combination rule for fusion, but there are still some open issues that require
further research and breakthrough [30–33].

When studying uncertain information measurement methods, many literatures have
followed Klir and Yuan’s classification of information uncertainty: fuzziness and ambi-
guity [34]. However, with the discovery of research, there is still a new type of uncertain
information under the open world assumption, namely incomplete information. This is
a type of uncertain information generated by the open world characteristics introduced
by the incomplete frame of discernment, new elements, unknown targets, etc. Most of the
existing researches focus on the closed world assumption, and it is difficult to solve the
problem of incomplete information under the open world assumption.

The re-proposition of the generalized evidence theory [35–37] has caused more re-
searchers to pay attention to the studies within the scope of the open world assumption
model [38–40]. In order to effectively solve the problem of incomplete information process-
ing and fusion under the open world assumption, this paper proposes a new data fusion
method, which uses the extension to the Deng entropy in the open world assumption
(EDEOW) proposed by Tang et al. [41] to measure the uncertainty of evidence. Combined
with the calculation method of the negation of basic probability assignment (BPA) proposed
by Yin et al. [42], to obtain the two uncertainties of the original BPA and the negation of BPA
of the evidence modeling. The two uncertainties were added as the final uncertainty of the
evidence, and the data were modified based on this uncertainty. Such processing considers
more uncertainty, which is helpful for improving the accuracy of information processing
and reducing information loss. After that, the proposed method uses the generalized
combination rule (GCR) [37] under the open world assumption to fuse the modified data.
Finally, the method is applied to an example of fault diagnosis to provide decision support
for engineers.

The rest of this paper is organized as follows. The preparatory work for the proposed
method in this paper are introduced in the second section. The third section proposes a new
method based on negation of BPA, EDEOW, and GCR to solve the problem of data fusion
in fault diagnosis applications in the open world. The fourth section uses the proposed
method to solve a fault diagnosis example. The fifth section applies this method to practical
problems in fault diagnosis. The sixth section gives the conclusion of this paper.

2. Preliminaries

In this section, some related information about the Dempster–Shafer evidence theory,
Shannon entropy, Deng entropy, and negation of BPA will be briefly introduced.

2.1. Dempster–Shafer Evidence Theory

Some definitions of the Dempster–Shafer Evidence Theory are expressed as follows [13,14]:

Definition 1. Assuming a non-empty set Ω = {θ1, θ2, . . . , θi, . . . , θN} contains N mutually
exclusive events, then such a set Ω is called Frame of Discernment (FOD). A power set of Ω with
2N elements is denoted as:

2Ω = {∅, {θ1} , {θ2} , . . . , {θn} , {θ1, θ2} , . . . , {θ1, θ2, . . . , θi} , . . . , Ω
}

. (1)
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Definition 2. In the frame of discernment, the mass probability function m is a function from the
power set 2Ω to the interval [0,1]. m satisfies the following relation:

m(∅) = 0, ∑
A∈Ω

m(A) = 1. (2)

If m(A) > 0, the proposition subset A is called a focal element. m(A) represents the degree of support
for proposition A, also known as basic probability assignment (BPA) or basic belief assignment
(BBA).

Definition 3. Body of evidence (BOE) is a binary group composed of a propositional subset and its
mass function, and is a unit of uncertain information evidence. BOE is expressed as follows:

(<, m) =
{
〈A, m(A)〉 : A ∈ 2Ω, m(A) > 0

}
, (3)

where, < is a subset of the power set 2Ω.

Definition 4. The belief function Bel or the plausibility function Pl can be used to express a BPA m:

Bel(A) = ∑
∅ 6=B⊆A

m(B), Pl(A) = ∑
B∩A 6=∅

m(B), (4)

where, Bel(A) represents the level of support for the proposition A, and Pl(A) represents the level of
no objection to the proposition A.

Definition 5. Under the framework of the Dempster–Shafer evidence theory, two independent mass
functions, m1 and m2, can be fused by the following Dempster’s combination rules:

m(A) = (m1⊕m2)(A) =
1

1− k ∑
B∩C=A

m1(B)m2(C), (5)

where k is a normalization factor and is defined as follows:

k = ∑
B∩C=∅

m1(B)m2(C). (6)

It should be noted that the classical definition of the Dempster–Shafer evidence theory
is defined to be applied in the closed world. For the open world, Deng extended Dempster’s
combination rules and named it the generalized combination rule [37].

Definition 6. In the open world assumption, Deng defined the intersection of two empty sets is
still an empty set, satisfying ∅1 ∩∅2 = ∅. For the two given BPA m1 and m2, the generalized
combination rule is defined as follow:

m(A) =
(1−m(∅)) ∑

B∩C=A
m1(B)·m2(C)

1−K ,
K = ∑

B∩C=∅
m1(B)m2(C),

m(∅) = m1(∅) ·m2(∅),
m(∅) = 1 i f and only i f K = 1,

(7)

when m(∅) = 0, GCR degenerates to the classic DS combination rule. Two empty sets can be fused
by multiplication to obtain their GBPA value. In addition, if and only if K = 1, m(∅) = 1.

With the development of data fusion research under the open world assumption,
new literature has proposed the shortcomings of Equation (7). Literature [40] found that
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the method of obtaining the mass function of the empty set by multiplying the mass
function values of two empty sets in the GCR formula is unreasonable, and the result
of its combined use with GCR is inconsistent with practice. In addition, because m1(∅)
and m2(∅) support each other, and the proposition comes from the open world, the result
of their multiplication should not be assigned to the generalized conflict coefficient K,
which is inconsistent with the GBPA. Therefore, further studies are needed to improve the
GCR. However, since the method proposed in this paper uses the negation of evidence for
calculation, it does not involve the multiplication of the mass function values of empty sets,
and can effectively avoid the problems proposed in the literature [40].

2.2. Shannon Entropy

The quantitative measurement of information originated from the concept of “infor-
mation entropy” first proposed by Glaude Shannon in 1948. As an information entropy
of uncertainty measurement, the Shannon entropy can effectively solve the uncertainty
measurement problem of the probability measurement.

Definition 7. For N, discrete probability sets p1, p2, ... , pn, the Shannon entropy is defined as
follows [43]:

H = −∑ pi log pi. (8)

2.3. Belief Entropy

The Deng entropy can be seen as the generalization of the Shannon entropy. It was
proposed by Deng in [44], which deals with the belief for each focal element. When BPA
degenerates to a probability distribution, the Deng entropy degenerates to the Shannon
entropy.

Definition 8. In FOD X, the Deng entropy is defined as follows:

Ed(m) =− ∑
A⊆X

m(A) log2
m(A)

2|A| − 1
, (9)

where m is a mass function, |A| is the cardinality of A.

However, when |A| = 0, Equation (9) will not be available. Therefore, Tang et al. [41]
extended the uncertainty measure under the Dempster–Shafer evidence theory framework.
In the open world assumption, the non-zero mass function of the empty set and the
uncertain information represented by the incomplete FOD were handled more carefully.

Definition 9. Tang et al. defined the extension to Deng’s entropy in the open world (EDEOW)
assumption as:

Eedeow(m) = − ∑
A⊆X

m(A) log2
m(A)

(2(|A|+dm(∅)|X|e) − 1)
. (10)

In the formula, |A| is the cardinality of proposition A, |X| is the number of related elements in
FOD, and ’d e’ is the symbol of the ceiling function, which means the smallest integer is not less
than the variable, e.g., d0.4e = 1.

2.4. Negation of BPA

The negation method is considered to be a feasible way to express knowledge. Smets
defines the negation of the mass function in [45], and used m to represent the negation of
the mass function m in the proposed model. However, this model has some limitations. For
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example, when applied to the negation of m(θ), m(θ) is always equal to 0. Therefore, Yin
et al. proposed a method to calculate negation of the basic probability assignment in [42].

Definition 10. For each focal element ei in FOD, initial belief assignment pi is replaced by
complementary probability 1-pi. After obtaining the negation of m(ei), calculate the sum σ of all
focal elements to standardize the belief of all the negative focal elements. Finally, the general formula
of the negation of BPA is expressed as:

m(ei) =
1−m(ei)

n− 1
, (11)

where n is the number of focal elements, and m(ei) is the confidence of the i-th focal element in the
initial quality function.

3. An Improved Method for Incomplete Information Fusion in Fault Diagnosis

For the problems in the open world, traditional information entropy and DS classical
combination rules are difficult to provide solutions. This section proposes a conflict data
fusion method based on EDEOW to measure the uncertainty information, obtain more
uncertain information through negation of BPA to improve the accuracy of information
processing, and adopt GCR for fusion. In Figure 1, a fault diagnosis method framework
based on EDEOW, negation of BPA, and GCR in the open world is designed.

Figure 1. The proposed data fusion method based on EDEOW, negation of BPA, and GCR.
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The detailed steps of uncertain information processing and fusion are described as
follows:

Step 1: fault feature extraction and sensor evidence modeling: in multiple fault modes, for each
fault feature extracted, evidence modeling is carried out based on the information collected
by the sensor. For complete information, the evidence modeling under the open world
assumption is the same as that in the closed world. As for incomplete information, the
empty set is used to represent it under the open world assumption, and its mass function
is non-zero.
Step 2: calculation of negation BPA: before data fusion, evidence preprocessing will make
the fusion result more accurate. Considering the limitations of data, this paper adopts the
method in [42] to calculate the negation of BPA to obtain more uncertain information. For
each BOE obtained by modeling, negate it with the following formula:

m(ei) =
1−m(ei)

n− 1
. (12)

Step 3: uncertainty calculation based on EDEOW: this paper uses the Deng entropy to measure
the uncertainty of the data. Since the original Deng entropy is only applicable to the
uncertainty measurement in the closed world, this paper adopts the extension to the Deng
entropy in the open world assumption [41] proposed by Tang et al., and uses Equation (10)
to calculate the uncertainty of BPA and negation of BPA.
Step 4: data modification: by summing the two uncertainties of each group of evidence
calculated in step 3, the final uncertainty Eedeowu(mi) obtained can be used to calculate the
weight of the evidence through the following formula:

wi =
Eedeowu(mi)

m
∑

i=1
Eedeowu(mi)

. (13)

Based on the weight of each set of data, the calculation method of modified BPA is
calculated in the same way as in the closed world, where mi(A) is the mass function value
obtained by proposition A through sensor data modeling:

mw(A) =
m

∑
i=1

wimi(A). (14)

Step 5: data fusion based on GCR: considering that the classical Dempster–Shafer theory
is not applicable to the problem under the open world assumption, this paper uses the
extension rule of Dempster’s combination rule proposed by Deng, namely GCR, to fuse
the revised data:

For proposition A in BOE, the result is obtained through (m − 1) times of fusion:

mw1(A) = (mw ⊕mw)(A) = 1−m(∅)
1−k ∑

B∩C=A
mw(B)mw(C),

mw2(A) = (mw1 ⊕mw)(A) = 1−m(∅)
1−k ∑

B∩C=A
mw1(B)mw(C),

. . . . . .
mw(m−1)(A) = (mw(m−2) ⊕mw)(A) = 1−m(∅)

1−k ∑
B∩C=A

mw(m−2)(B)mw(C),

m(A) = (mw(m−1) ⊕mw)(A) = 1−m(∅)
1−k ∑

B∩C=A
mw(m−1)(B)mw(C).

(15)

Step 6: application in fault diagnosis: the above information processing and fusion methods
are used for fault diagnosis, and the results of the diagnosis will be analyzed and judged
based on the fused data.
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4. Example

In this section, an example in [46] is used to verify the effectiveness of the method
proposed in this paper, and to compare and discuss with other existing methods.

4.1. Example Presentation

Literature [46] extracts the records in the database. Suppose there is a frame of
discernment Θ = {F1, F2, F3}, which represents three types of faults that may cause electric
shortage in a car: {low oil pressure, air leakage in the intake system, stuck solenoid valve}.
Five sensors S1, S2, S3, S4, S5 are placed in different positions to measure the system’s
exhaust volume, maximum power, maximum speed and other parameters. Because the
engine speed unexpectedly exceeded the upper limit, the sensor S5 was destroyed and
could not work normally, resulting in deviations in the measurement results. The purpose
of this example is to determine which type of fault occurs in the automotive system through
the method proposed in this article.

4.2. Fusion through the Proposed Method

Step 1: after sensors complete the parameter measurement, the central control system
models the data obtained by the sensor as BPA, which is shown in Table 1. Where mi
corresponds to the evidence modeling result from the sensor Si (I = 1, 2, 3, 4, 5).

Table 1. Sensor data modeled as BPAs.

F1 F2 F3 ∅

m1 0.70 0.10 0 0.20
m2 0.70 0 0 0.30
m3 0.65 0.15 0 0.20
m4 0.75 0 0.05 0.20
m5 0 0.20 0.80 0

It should be noted that the data in literature [46] are in the closed world, while this
paper studies the problems under the open world assumption. Considering that the
universal set in the closed world represent unknown uncertainty, the m(∅) in the open
world also has the same meaning, representing the universal set in the closed world and
unknown elements. Therefore, this paper assumes that the BPA assigned to the universal
set in the closed world is m(∅), so as to satisfy the open world condition.

Step 2: according to Equation (12), calculate the negation of BPA of the data obtained
by the sensor S1 modeling:

m1(F1) =
1−0.7
4−1 = 0.1

m1(F2) =
1−0.1
4−1 = 0.3

m1(F3) =
1−0
4−1 = 0.3333

m1(∅) = 1−0.2
4−1 = 0.2667

(16)

The results of the remaining data calculated by the same method are shown in Table 2.

Table 2. Negation of BPAs of example.

F1 F2 F3 ∅

m1 0.10 0.30 0.3333 0.2667
m2 0.10 0.3333 0.3333 0.2333
m3 0.1167 0.2833 0.3333 0.2667
m4 0.0833 0.3333 0.3167 0.2667
m5 0.3333 0.2667 0.0667 0.3333



Mathematics 2021, 9, 1292 8 of 16

Step 3: use Equation (10) to measure the uncertainty of the original data:

Eedeow(m1) = −0.7 log2
0.7

(2(|1|+d0.2×3e)−1)
− 0.1 log2

0.1
(2(|1|+d0.2×3e)−1)

−0.2 log2
0.2

(2(|0|+d0.2×3e)−1)
= 2.4247

Eedeow(m2) = −0.7 log2
0.7

(2(|1|+d0.3×3e)−1)
− 0.3 log2

0.3
(2(|0|+d0.3×3e)−1)

= 1.9908

Eedeow(m3) = −0.65 log2
0.65

(2(|1|+d0.2×3e)−1)
− 0.15 log2

0.15
(2(|1|+d0.2×3e)−1)

−0.2 log2
0.2

(2(|0|+d0.2×3e)−1)
= 2.5469

Eedeow(m4) = −0.75 log2
0.75

(2(|1|+d0.2×3e)−1)
− 0.05 log2

0.05
(2(|1|+d0.2×3e)−1)

−0.2 log2
0.2

(2(|0|+d0.2×3e)−1)
= 2.2597

Eedeow(m5) = −0.2 log2
0.2

(2(|1|+d0×3e)−1)
− 0.8 log2

0.8
(2(|1|+d0×3e)−1)

= 0.7219

(17)

Using the same method, calculate the uncertainty of the negation of BPA obtained in
step 2:

Eedeow(m1) = −0.1 log2
0.1

(2(|1|+d0.2×3e)−1)
− 0.3 log2

0.3
(2(|1|+d0.2×3e)−1)

0.3333 log2
0.3333

(2(|1|+d0.2×3e)−1)
− 0.2667 log2

0.2667
(2(|0|+d0.2×3e)−1)

= 3.0524
Eedeow(m2) = −0.1 log2

0.1
(2(|1|+d0.2×3e)−1)

− 0.3333 log2
0.3333

(2(|1|+d0.2×3e)−1)
0.3333 log2

0.3333
(2(|1|+d0.2×3e)−1)

− 0.2333 log2
0.2333

(2(|0|+d0.2×3e)−1)
= 3.0937

Eedeow(m3) = −0.1167 log2
0.1167

(2(|1|+d0.2×3e)−1)
− 0.2833 log2

0.2833
(2(|1|+d0.2×3e)−1)

0.3333 log2
0.3333

(2(|1|+d0.2×3e)−1)
− 0.2667 log2

0.2667
(2(|0|+d0.2×3e)−1)

= 3.0762
Eedeow(m4) = −0.0833 log2

0.0833
(2(|1|+d0.2×3e)−1)

− 0.3333 log2
0.3333

(2(|1|+d0.2×3e)−1)
0.3167 log2

0.3167
(2(|1|+d0.2×3e)−1)

− 0.2667 log2
0.2667

(2(|0|+d0.2×3e)−1)
= 3.0231

Eedeow(m5) = −0.3333 log2
0.3333

(2(|1|+d0.2×3e)−1)
− 0.2667 log2

0.2667
(2(|1|+d0.2×3e)−1)

0.0667 log2
0.0667

(2(|1|+d0.2×3e)−1)
− 0.3333 log2

0.3333
(2(|0|+d0.2×3e)−1)

= 2.8824

(18)

Step 4: add the two uncertainties obtained in step 3 to calculate the Eedeowu(mi) (I = 1,
2, 3, 4, 5) of each group of evidence:

Eedeowu(m1) = 2.4247 + 3.0524 = 5.4771
Eedeowu(m2) = 1.9908 + 3.0937 = 5.0845
Eedeowu(m3) = 2.5469 + 3.0762 = 5.6231
Eedeowu(m4) = 2.2597 + 3.0231 = 5.2828
Eedeowu(m5) = 0.7219 + 2.8824 = 3.6043

(19)

Using Equation (13), calculate the weight of each group of evidence:

w1 = 5.4771
5.4771+5.0845+5.6231+5.2828+3.6043 = 0.2185

w2 = 5.0845
5.4771+5.0845+5.6231+5.2828+3.6043 = 0.2028

w3 = 5.6231
5.4771+5.0845+5.6231+5.2828+3.6043 = 0.2243

w4 = 5.2828
5.4771+5.0845+5.6231+5.2828+3.6043 = 0.2107

w5 = 3.6043
5.4771+5.0845+5.6231+5.2828+3.6043 = 0.1438

(20)
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Based on the calculated weights and according to Equation (14), the BPA is modified
as follows:

mw(F1) = 0.7× 0.2185 + 0.7× 0.2028 + 0.65× 0.2243
+0.75× 0.2107 + 0× 0.1438 = 0.5987
mw(F2) = 0.1× 0.2185 + 0× 0.2028 + 0.15× 0.2243
+0× 0.2107 + 0.2× 0.1438 = 0.0843
mw(F3) = 0× 0.2185 + 0× 0.2028 + 0× 0.2243
+0.05× 0.2107 + 0.8× 0.1438 = 0.1256
mw(∅) = 0.2× 0.2185 + 0.3× 0.2028 + 0.2× 0.2243
+0.2× 0.2107 + 0× 0.1438 = 0.1914

(21)

Step 5: use Equation (15) to fuse the modified BPA:

m(F1) = ((((mw ⊕mw)1⊕mw)2⊕mw)3⊕mw)4(F1) = 0.9993
m(F2) = ((((mw ⊕mw)1⊕mw)2⊕mw)3⊕mw)4(F2) = 0.0001
m(F3) = ((((mw ⊕mw)1⊕mw)2⊕mw)3⊕mw)4(F3) = 0.0004
m(∅) = ((((mw ⊕mw)1⊕mw)2⊕mw)3⊕mw)4(∅) = 0.0003

(22)

4.3. Analysis

Since the universal set in the closed world has the same meaning as m(∅) under the
open world assumption, the BPA value assigned to the universal set in the research in
the closed world is assumed to be m(∅) to satisfy the open world condition. Table 3 and
Figure 2 show the fusion results of the method proposed in this paper and other existing
methods for this problem. Based on the threshold ∆ = 0.70 set by the literature [47], if m(Fi)
≥ 0.70 exists in the fusion result, it means that the method has successfully identified the
fault type Fi.

Table 3. Fusion results of example.

F1 F2 F3 ∅

DS [13] 0.0000 0.3443 0.6557 0.0000
Sun et al. [48] 0.4028 0.0660 0.1247 0.4028

Deng et al. [49] 0.9933 0.0030 0.0028 0.0008
Wang et al. [46] 0.9934 0.0033 0.0025 0.0008
The proposed

method 0.9993 0.0001 0.0004 0.0003

In this example, because the sensor S5 was destroyed, the data collected from S5
conflicted with other evidence after modeling, and most of the beliefs were mistakenly
assigned to F3. With this in mind, combined with the results in Table 3, it can be concluded
that F1 is the fault that caused the shortage of power in the automotive system.

As shown in Table 3, the classic DS combination rules are affected when dealing with
conflicting data, and most of the beliefs are incorrectly assigned to F3, which fails to solve
the problem in this example. Sun et al.’s method did not reach the set threshold ∆ = 0.7,
and the type of failure could not be diagnosed. Deng et al., Wang et al., and the method
proposed in this paper all overcome the impact of conflicting data and successfully identify
the fault type as F1. Compared with the complex matrix operation in the method proposed
by Deng et al., the proposed method has lower computational complexity and higher
reliability. Meanwhile, compared with the fusion method proposed by Wang et al., the
method proposed in this paper introduces the concept of negation of BPA. By obtaining
more uncertain information in the process of data preprocessing, the accuracy of fusion
results is improved and the fault types can be diagnosed more accurately.
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Figure 2. Fusion results of different methods in example.

5. Application

In order to further test the effectiveness and applicability of the method proposed
in this paper in solving the problem of fault diagnosis based on sensor data, the case in
literature [50] is used as an example for diagnosis and verification in this section.

5.1. Problem Description

Suppose the motor rotor has three different types of faults, which are F = {rotor
unbalance, rotor misalignment, pedestal loosening}. Three acceleration sensors installed at
different positions are used to measure the vibration acceleration of the motor rotor. The
amplitude of acceleration vibration frequency at different frequencies is defined as a fault
feature variable.

In reference [50], the sensor’s support and credibility were calculated through the
similarity matrix of the characteristic variables. After determining the Z-number, the
membership function corresponding to component A was matched with typical faults to
obtain BPA. The BPAs obtained by modeling the data collected by the sensors are shown in
Table 4.

Table 4. Fault diagnosis data modeled as BPAs.

Freq1 Freq2 Freq3

{F2} {F3} {F1,
F2} ∅ {F2} ∅ {F1} {F2} {F1,

F2} ∅

ms1(·) 0.8176 0.0003 0.1553 0.0268 0.6229 0.3771 0.3666 0.4563 0.1185 0.0586
ms2(·) 0.5658 0.0009 0.0646 0.3687 0.7660 0.2341 0.2793 0.4151 0.2652 0.0404
ms3(·) 0.2403 0.0004 0.0141 0.7452 0.8598 0.1402 0.2897 0.4331 0.2470 0.0302

5.2. Implementation Steps

Step 1: in this example, three different frequencies, Freq1, Freq2, and Freq3, are used
as fault feature variables to implement fault diagnosis. Since the main research content of
this case is to use an improved incomplete information fusion method for fault diagnosis
based on sensor data, the method of data modeling as BPA is not the main content of
this paper. Therefore, this section directly adopts the BPA data reported by sensors in the
literature [50], which is shown in Table 4.
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Step 2: according to the description in the third section, this paper adopts Equation (12)
proposed by Yin et al. to negate BPA. The negation of BPA at Freq1 vibration acceleration
frequency is calculated as follows:

ms1({F2}) = 1−0.8176
4−1 = 0.0608

ms1({F3}) = 1−0.0003
4−1 = 0.3332

ms1({F1, F2}) = 1−0.1553
4−1 = 0.2816

ms1(∅) = 1−0.0268
4−1 = 0.3244

ms2({F2}) = 1−0.5658
4−1 = 0.1447

ms2({F3}) = 1−0.0009
4−1 = 0.3330

ms2({F1, F2}) = 1−0.0646
4−1 = 0.3118

ms2(∅) = 1−0.3687
4−1 = 0.2104

ms3({F2}) = 1−0.2403
4−1 = 0.2532

ms3({F3}) = 1−0.0004
4−1 = 0.3332

ms3({F1, F2}) = 1−0.0141
4−1 = 0.3286

ms3(∅) = 1−0.7452
4−1 = 0.0849

(23)

According to Equation (12), the data calculation results of Freq2 and Freq3 are shown
in Table 5.

Table 5. Negation of BPAs.

Negation
of BPAs

Freq1 Freq2 Freq3

{F2} {F3} {F1, F2} ∅ {F2} ∅ {F1} {F2} {F1, F2} ∅

ms1 (·) 0.0608 0.3332 0.2816 0.3244 0.3771 0.6229 0.2111 0.1812 0.2938 0.3138
ms2 (·) 0.1447 0.3330 0.3118 0.2104 0.2341 0.7659 0.2402 0.1950 0.2449 0.3199
ms3 (·) 0.2532 0.3332 0.3286 0.0849 0.1402 0.8598 0.2367 0.1890 0.2511 0.3232

Step 3: on the basis of the previous step, we use the EDEOW, which proposed by Tang
et al. under the open world assumption, to further preprocess the uncertain information.
Through Equation (10), the uncertainty of each BOE at the frequency of Freq1 is measured
as follows:

Eedeow(ms1) = −0.8176 log2
0.8176

(2(1+d0.0268×3e)−1)
− 0.0003 log2

0.0003
(2(1+d0.0268×3e)−1)

−0.1553 log2
0.1553

(2(2+d0.0268×3e)−1)
− 0.0268 log2

0.0268
(2(0+d0.0268×3e)−1)

= 2.5306
Eedeow(ms2) = −0.5658 log2

0.5658
(2(1+d0.3687×3e)−1)

− 0.0009 log2
0.0009

(2(1+d0.3687×3e)−1)
−0.0646 log2

0.0646
(2(2+d0.3687×3e)−1)

− 0.3687 log2
0.3687

(2(0+d0.3687×3e)−1)
= 3.6877

Eedeow(ms2) = −0.2403 log2
0.2403

(2(1+d0.7452×3e)−1)
− 0.0004 log2

0.0004
(2(1+d0.7452×3e)−1)

−0.0141 log2
0.0141

(2(2+d0.7452×3e)−1)
− 0.7452 log2

0.7452
(2(0+d0.7452×3e)−1)

= 4.0040

(24)

The uncertainty measurement results at Freq2 and Freq3 frequencies are shown in
Table 6.

Table 6. Uncertainty measurement results of BPAs based on EDEOW.

Eedeow(·) Freq1 Freq2 Freq3

Eedeow(ms1 ) 2.5306 3.3024 3.2887
Eedeow(ms2 ) 3.6877 1.9991 3.5804
Eedeow(ms3 ) 4.0040 1.9475 3.5305
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In addition, it is also necessary to measure uncertainty of the negation of BPA. Through
the same formula, the uncertainty calculation results of the negation of BPA at Freq1, Freq2
and Freq3 are shown in Table 7.

Table 7. Uncertainty measurement results of negation of BPAs based on EDEOW.

Eedeow(·) Freq1 Freq2 Freq3

Eedeow(msi ) 3.2307 3.0019 3.4107
Eedeow(ms2 ) 3.5617 3.8498 3.3545
Eedeow(ms3 ) 3.7117 3.5448 3.3532

Step 4: by adding the two uncertainties calculated in the third step, the calculation
process of the final uncertainty of each group of evidence at Freq1 is as follows:

Eedeowu(ms1) = 2.5306 + 3.2307 = 5.7613
Eedeowu(ms2) = 3.6877 + 3.5617 = 7.2494
Eedeowu(ms3) = 4.0040 + 3.7117 = 7.7157

(25)

The final uncertain degree of each group of evidence is shown in Table 8.

Table 8. Uncertain degree of BPAs.

Eedeowu(·) Freq1 Freq2 Freq3

Eedeowu(msi ) 5.7613 6.3043 6.6994
Eedeowu(ms2 ) 7.2494 5.8489 6.9349
Eedeowu(ms3 ) 7.7157 5.4923 6.8837

The final uncertainty is used to modify the data. According to Equation (13), the
weight of each data under Freq1 vibration acceleration frequency is calculated as follows:

ws1 = 5.7613
5.7613+7.2494+7.7157 = 0.2780

ws2 = 7.2494
5.7613+7.2494+7.7157 = 0.3498

ws3 = 7.7157
5.7613+7.2494+7.7157 = 0.3723

(26)

The weight calculation results at Freq2 and Freq3 frequencies are shown in Table 9.

Table 9. Weight of BOEs.

Wsi (·) Freq1 Freq2 Freq3

Ws1 (·) 0.2780 0.3573 0.3265
Ws2 (·) 0.3498 0.3315 0.3380
Ws3 (·) 0.3723 0.3113 0.3355

After calculating the weight of each group of data, according to Equation (14), calculate
the modified BPA under Freq1:

mw({F2}) = 0.8176× 0.2780 + 0.5658× 0.3498 + 0.2403× 0.3723 = 0.5147
mw({F3}) = 0.0003× 0.2780 + 0.0009× 0.3498 + 0.0004× 0.3723 = 0.0005

mw({F1, F2}) = 0.1553× 0.2780 + 0.0646× 0.3498 + 0.0141× 0.3723 = 0.0710
mw(∅) = 0.0268× 0.2780 + 0.3687× 0.3498 + 0.7452× 0.3723 = 0.4139

(27)

The modification results of BPA at other frequencies are shown in Table 10.
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Table 10. Modification BPAs based on the proposed method.

Modification
BPAs

Freq1 Freq2 Freq3

{F2} {F3} {F1, F2} ∅ {F2} ∅ {F1} {F2} {F1, F2} ∅

mw(·) 0.5147 0.0005 0.0710 0.4139 0.7441 0.2560 0.3113 0.4346 0.2112 0.0429

Step 5: after the modification of BPAs, based on the GCR shown in Equation (15), two
fusion operations are required for each data at the Freq1 frequency. The calculation process
is as follows:

m({F2}) = ((mw ⊕mw)1⊕mw)2({F2}) = 0.9286
m({F3}) = ((mw ⊕mw)1⊕mw)2({F3}) = 0.0000

m({F1, F2}) = ((mw ⊕mw)1⊕mw)2({F1, F2}) = 0.0017
m(∅) = ((mw ⊕mw)1⊕mw)2(∅) = 0.0709

(28)

Finally, the fusion results at all frequencies are calculated in the same way and shown
in Table 11.

Table 11. Data fusion results for fault diagnosis.

Freq1 Freq2 Freq3

{F2} {F3} {F1, F2} ∅ {F2} ∅ {F1} {F2} {F1, F2} ∅

Results 0.9286 0.0000 0.0017 0.0709 0.9838 0.0168 0.3309 0.6456 0.0234 0.0001

5.3. Discussion

Table 12 shows the data fusion results of different methods in fault diagnosis applications.

Table 12. Data fusion results of different methods in fault diagnosis.

Freq1 Freq2 Freq3

{F2} {F3} {F1, F2} ∅ {F2} ∅ {F1} {F2} {F1, F2} ∅

Jiang et al.’s
method [50] 0.8861 0.0002 0.0582 - 0.9621 - 0.3384 0.5904 0.0651 -

Tang et al.’s
method [41] 0.9181 0.0000 0.0015 0.0803 0.9796 0.0206 0.3303 0.6459 0.0238 0.0001

The proposed
method 0.9286 0.0000 0.0017 0.0709 0.9838 0.0168 0.3309 0.6456 0.0234 0.0001

The fusion results of different methods are compared intuitively in Figure 3.
As shown in Table 11, among all test frequencies, F2 has the highest confidence sup-

port degree among all test frequencies, which indicates that the fault diagnosis result is
F2. According to Table 12 and Figure 3, the diagnosis results of the proposed method
are consistent with those obtained by other literature methods, which verifies the effec-
tiveness of this method. In addition, compared with the method in the literature [41,50],
the method proposed in this paper has a higher confidence for the identified fault type
F2, which is more conducive to the decision-making of relevant personnel in practical
engineering applications.

The incomplete information fusion method proposed in this paper has a good effect
on the problem of this application. In addition, for the example in Section 4, this method
can be used to diagnose effectively and with high accuracy. Therefore, the proposed
method is applicable for fault diagnosis based on any sensor data. With the proposed
method, we assume that there is unknown fault type. This idea gives space for unknown
fault type by assigning a belief on the empty set which represents other potential fault
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type. More importantly, the proposed idea has no bad effect on identifying the available
fault condition.

Figure 3. Data fusion results of different methods in fault diagnosis.

6. Conclusions

In order to solve the problem of incomplete information under the open world as-
sumption, this paper proposes an incomplete information processing method based on
negation of BPA, EDEOW, and GCR. In this paper, the negation of the BPA calculation
method proposed by Yin et al. is adopted to obtain more uncertain information, thus
reducing information loss and improving information processing accuracy. An extension to
the Deng entropy in the open world assumption is an extended uncertainty measurement
method based on belief structure. The method proposed in this paper uses EDEOW to
measure the uncertainty of original BPA and negation of BPA. The two groups of measured
uncertainties are added together as the final uncertainty. Based on this uncertainty, the
weight of evidence is calculated and the data are modified, and the modification results are
more accurate. The generalized combination rule is an extension of the Dempster–Shafer
theory in the open world. It solves the problem that the classical combination rule of the
Dempster–Shafer evidence theory cannot be applied to the open world assumption. It is
used for the final fusion of the modified data in the proposed method. Compared with
other methods, the new information processing strategy constructed in this paper considers
more uncertainties and makes the measurement results more accurate. At the same time,
the EDEOW and GCR used in this method are both applicable for the problems under the
open world assumption, effectively making up for the shortcomings of traditional methods
that are difficult to solve the problem of incomplete information. Finally, this method is
applied to the problem of fault diagnosis, which is more conducive to the decision-making
of engineers in practical applications.
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