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Abstract: As global competition has intensified in the automotive industry, there is a strong need
for management teams to develop methods that allow accurate and objective assessments of plant
productivity and to identify productivity improvement opportunities for the best manufacturing
practices. Stochastic frontier analysis (SFA) models have been used as a statistical benchmarking
tool to provide a bird’s-eye view of an industrial sector. SFA models can also be adapted for plant
productivity assessment. However, owing to the problem of multicollinearity, the general form of
SFA is difficult to apply to the assessment of complex manufacturing systems in the automotive
industry, which is characterized by many control and external factors that are intercorrelated to each
other. This study proposes a method for applying SFA to vehicle manufacturing plants with a focus
on gaining high accuracy in model parameter estimation, by decomposing a plant into components
(i.e., shops), building an SFA model for each shop, and reintegrating the general plant system through
the appropriate combination of shop-level inefficiency distributions. In particular, this study focuses
on documenting the derivation of a new probability density function that integrates three different
inefficiency distributions. For illustration of the proposed approach, hypothetical vehicle assembly
plants are assessed as examples, where the total labor hours are split into Bodyshop, Paintshop,
and General Assembly, exclusively and collectively. Finally, this study offers a solution process to
clarify the reasons for underperforming plants in terms of labor productivity and identify the course
of actions to cure the issues with some managerial insights emphasizing the balanced approach,
incorporating people, process and technology.

Keywords: productivity assessment; benchmarking; stochastic frontier analysis

1. Introduction

In the automotive industry, productivity is a primary indicator for measuring vehicle
assembly plant performance (along with quality and work-in-process inventory). Therefore,
one of the overriding concerns for management teams in the industry is how to accurately
assess productivity and identify productivity improvement opportunities to close the
competitive gap between their actual practice and competitive best practices.

Regarding productivity assessment in the automotive industry, the idea of using
hour per unit (HPU) as a performance metric is relatively well-accepted (HPU-based
productivity may not be an ideal performance measure if the financial performance of
manufacturing systems is available because financial performance is more directly aligned
with the underlying goal of the company, that is, profit maximization. However, as financial
performance is generally reported to the public at the company level, it is difficult to
estimate the profitability of an individual manufacturing shop or line. Given the lack
of publicly-available financial performance data, HPU as a metric of productivity is a
reasonable index for assessing manufacturing performance.) and has been used in similar
studies [1,2]. HPU is the total working hours spent at a plant divided by the total produced
vehicle volume. The total working hours includes paid lunches, breaks, leaves and overtime.
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Note that HPU is an inverse measure of productivity, that is, a greater value for HPU
indicates lower productivity, and vice-versa. One distinct advantage of using HPU is that
it can account for production volume increases or decreases (denominator part) and labor
efficiency changes (numerator part) simultaneously.

The current practice for assessing productivity is a simple HPU-based comparison
between competitive plants without consideration of different manufacturing operation
conditions among them, which can cause misleading assessments in identifying the compet-
itive productivity gap. As an alternative to potentially inaccurate comparisons, a statistical
regression model can be created for manufacturing plants within a particular industrial
sector, which is used to benchmark a particular plant in relation to competing plants that
perform the best practice in regard to HPU. This study uses stochastic frontier analysis
(SFA) as a base model to account for different operation conditions exposed by influencing
factors of HPU.

Since Aigner et al. (1977) [3] and Meeusen and Broeck (1977) [4] proposed SFA models
independently, SFA has been used as a statistical benchmarking tool to provide a bird’s-eye
view of industry or plant-level efficiency analysis. Through SFA-enabled benchmarking,
inefficient distributions of productivity can be identified, from which the best theoretical
level of productivity can be estimated for a given plant, thereby providing an answer to the
practical question: “how competitive would my plant be compared with everyone else’s,
if all other plants wear the same shoes as mine?” Although the original specification of the
SFA model has been maintained by preserving its error term divided into two components—
one to account for random effects (or measurement errors) and the other to account for
technical inefficiency—the inefficiency component has been altered or extended in several
ways. The survey on alternation and extension will be discussed in Section 2. It is worth
noting that Data Envelopment Analysis (DEA) [5] is also proven an extremely useful tool
based on non-parametric and deterministic modeling concept in the benchmarking study.
However, this study suggests to use SFA because it provides parametric properties required
to integrate shop-level stochastic models. Further, SFA provides useful modeling settings
to address measurement errors that are caused by missing variables like cultural difference
by company, varying weather condition by region and diverse local union contract which
are likely to play a significant role in labor productivity study.

A general form of SFA for HPU-based productivity benchmarking is as follows:

HPU; = f(X;, Zi;B) + €, € =u;+v;, v;~ N(0,02), 1)

where HPU; is hour per unit of plant i, which is the fraction of total labor hours over total
vehicle production; X; and Z; are control and external variables (Control variables typically
consist of the variables that a plant can manipulate by their tactical strategies. External
variables are factors lying outside the decision scope of a plant, such as a new vehicle
model allocated by headquarters as per the company’s long-term manufacturing capacity
planning. Examples of control variables include automation levels in the Bodyshop and
Paintshop, in/outsourcing levels in the Bodyshop and General Assembly (GA). Examples
of external variables are the number of models (or market segments) that the plant produces,
frame styles (unibody vs body-on-frame), welding contents in the Bodyshop, or total parts
attached in GA. The choice of variables to include (or exclude) for the model is determined
by subject matter experts’ priory knowledge and expectations about what factors will have
significant influence on productivity and statistical causality analysis results.), respectively;
B includes the parameters to be estimated; u; is the inefficiency or competitiveness gap
in HPU use, which is distributed according to one-sided distribution; and v; denotes the
measurement error. Note that the sign of u; is plus because the actual HPU; will be higher
than the “best practice” plant. The role of the function f(X;, Z;; B) is to normalize for
different operation conditions by the plant, converting an “apples-to-oranges” comparison
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into an “apple-to-apple” comparison. Given a set of plant data, the distribution of the
competitiveness gap (u;) can be estimated as follows:

u; = HPU,; _f(Xi/ Zi;ﬁ) + 0;. (2)

From the distribution of u;, the percentile ranking of i-plant’s productivity can be
calculated as

e

Pr(u>u;) = / ¢(u)du

u;

=1-(u;) 3)

where ¢(u) is the probability density function (pdf) for the inefficiency, which is assumed to
be supported in [0, 00), and ®(u) = [, ¢(s)ds is the cumulative distribution function (cdf).

Note that the percentile ranking depicted by (3) becomes 100% if u; = 0, meaning that
plant i is ranked as the best in the automotive industry for a given operation condition.
If the productivity of plant i is poor, then the value of (3) is close to 0%. This study uses the
percentile ranking as a percentage performance metric for measuring plant productivity.
For clarification between productivity and efficiency, what is usually analyzed in SFA is
the efficiency score (as being e~¢fficiency) wwhere efficiency is defined relative to some
benchmark of performance as known as “best practice”. However, in the labor study con-
text, this concept must also consider the minimum labor resource required to produce the
particular goods or services. From the managerial viewpoint, it must also help set a realistic
goal based on best observable performance. Therefore, this paper defines the percentile
ranking of i-plant’s productivity from the inefficiency distribution. Using the defined
productivity, it is straightforward for a plant to set a percentile target from an industrial
performance distribution that has a specific curve shape representing what the industrial
competition for operational efficiency looks like and then find a HPU target according to
the percentile target. To highlight the difference between HPU competitiveness gap and
the labor producibility concept, in fact, the interpretation of HPU competitiveness gap
depends on how well a plant performs. The lower ranked plants (i.e., lower percentage
performance) have higher potentials to further improvement so that the reducing one unit
of HPU competitiveness gap is relatively easy for the lower ranked plants. Meanwhile,
the plants that are already closer to their best practice level (i.e., higher percentage per-
formance) tend to reach a point of diminishing returns and so the higher ranked plants
should spend more efforts to lessen one unit of HPU competitiveness gap.

However, there is a modeling challenge in applying a multivariate SFA model to assess
complex manufacturing systems, such as the vehicle assembly process. A typical automo-
bile manufacturing process consists of many processes that can be grouped into the three
main processes of Bodyshop, Paintshop, and GA, as depicted in Figure 1. The Bodyshop
transforms raw materials into the structure of a vehicle. Next, the Paintshop applies a
protective and visual coating to the product. Finally, GA assembles all subcomponents,
such as the engine, tires, and seats, into the vehicle. Although these three processes can be
executed sequentially and simultaneously in the same plant, they are practically indepen-
dent of each other in terms of technology, operation and staffing. This is the reason many
car companies are able to leverage their inner network of manufacturing facilities that are
located remotely, to produce (or paint) parts and pieces alternatively and then, ship them
to another plants for other processes like final assembly.
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Figure 1. Main manufacturing processes in vehicle assembly plant.

In general, assessing a vehicle plant’s productivity should require a multivariate
model, including many explanatory variables, to account for the complex car manufac-
turing system. A multivariate model is a valuable tool in dealing with the interaction
of multiple variables; however, with many intercorrelated explanatory variables, it may
have the problem of suppressor variable (A suppressor variable may inflate the predictive
validity of another variable (or set of variables) by its inclusion in a regression equation.
Multicollinearity is the usual suspect of suppressor variables. Suppressors are present
when too many variables are used in one model and some of input variables are posi-
tively correlated. Its effect is to flip the coefficient sign of suppressor variables because a
suppressor variable suppresses itself, but boosts the other positively correlated variables.
Suppressors tend to remain even after passing a variance inflation factor test.) presence,
which has the potential to significantly limit findings that can be reported because the
obvious solution for suppressor variables is omitting the problem variables, resulting in
useful datasets being passed over. Note that the gain effort of competitors” data in the
context of automotive industry benchmarking is highly expensive and time-consuming.
The collected but neglected useful datasets could have been used to conduct analysis to
find an effective productivity improvement path. Therefore, the data omission due to the
inability in modeling complex manufacturing systems is rather frustrating.

This study will propose a systematic approach to assessing a plant’s productivity,
where the problem of suppressor variable presence caused by multicollinearity is relieved.
The overall approach is to execute the following steps: (1) decompose a vehicle assembly
plant into three shops—Bodyshop, Paintshop and GA; (2) build SFA models for these shops;
and (3) reintegrate the general plant system by the appropriate combination of the shops’
inefficiency distribution, which is part of the shop-level SFA model.

In this procedure, it is required to derive a probability density function from three
different inefficiency distributions to aggregate shop-level assessment results to evaluate
the plant-level productivity. We represent the density function as an integral of a common
function and provide a computational error as well.

The objective of this paper is to provide the following contributions to researchers
and practitioners from the proposed method. First, we provide insights into the use of
SFA for accurate and objective assessment of plant productivity and the identification of
productivity improvement opportunities. Second, we provide a step-by-step procedure for
deriving a composite pdf and cdf from three half-normal inefficiency distributions for HPU
in SFA. In particular, our study shows how to mitigate the problem of suppressor variable
presence in assessing the productivity of highly complex vehicle assembly plants in such
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a way that the overall process is divided into shops (i.e., Bodyshop, Paintshop, and GA).
Third, this paper shows an illustrative example that demonstrates the application of the
proposed approach for assessing hypothetical vehicle assembly plants where the total labor
hours are split into Bodyshop, Paintshop and GA, exclusively and collectively. At last,
this study offers a solution process to clarify the reasons for underperforming plants in
terms of labor productivity and identify the course of actions to cure the issues with some
managerial insights emphasizing the balanced approach incorporating people, process
and technology.

The remainder of this paper is organized as follows. In Section 2, we review the
existing literature. Section 3 deals with the theoretical development of the SFA model
focused on a mathematical solution for the composition of multiple stochastic frontier
distributions. An application of the developed SFA model to the automotive industry
is discussed in Section 4 with some remarks relevant to practitioners. Some concluding
remarks are drawn in the last section.

2. Literature Review

This work is motivated by two streams of extant research: (1) productivity analysis in
manufacturing systems; and (2) efficiency assessment via SFA models.

In the first stream of studies, the productivity of manufacturing systems related to
quality, flexibility and inventory is analyzed. A methodology that measures the efficiency
of vehicle assembly plants in terms of productivity and quality was described by Krafcik
(1988) [6]. This study cites an earlier empirical study that assesses productivity to identify
superior manufacturing practices because a comprehensive comparative analysis was
performed based on real visits to 38 automotive assembly plants in 13 countries around the
world. The automotive industry has attracted significant attention from researchers in man-
agement science and decision optimization due to its significant impact on the real world
economy and its data availability. The mechanism for the achievement of high productivity
via efficient labor utilization was studied by Lieberman et al. [7]. Regarding the impact of
flexibility on productivity, a study was undertaken to analyze how the increased complexity
of parts involved in car manufacturing can result in a negative effect on productivity [1].
In addition, a similar study showed that an increased number of vehicle options has a
negative impact on both productivity and quality [8]. By a comparison of US and Japanese
automobile producers, it was shown that there is a strong relationship between higher
productivity and inventory reduction [9]. Gopal et al. (2013) showed that launch events
can disrupt manufacturing operations, resulting in productivity losses [2]. In their study,
ordinary least squares regression was applied, but various sample selection methods were
utilized to test their hypothesis. For example, a series of matched sample methodologies
or an instrument variable was used to ascertain whether a plant hosting a launch suffers
a decline in productivity, and the Heckman sample selection methodology [10] was used
to examine how experience and flexibility can mitigate productivity losses. Alden et al.
(2006) reported how analytics can contribute to the improvement of plant productivity,
with assembly plants of General Motors taken as examples [11].

The studies in the second stream focus on the one-sided distributional form assump-
tion of the efficiency component in SFA models. As the inefficiency component is widely
assumed to be a half-normal distribution in many applications, we consider integrating
different half-normal distributions here. We remark that a truncated normal distribution or
an exponential distribution is also assumed for the inefficiency component. In particular,
for the truncated normal distribution [12-14], the first parameter can capture firm character-
istics in representing heterogeneous efficiency effects, and the half-normal distribution can
be transformed from the truncated normal distribution. Meesters (2014) also showed that
the exponential distribution is a special limiting case of the truncated normal distribution,
as is the half-normal distribution [15].

Although practical experience with frontier analysis using SFA models has shown that
such standard models are sufficiently accurate (see also [16]), some researchers have devel-
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oped complicated but more realistic distribution models by using the Gamma distribution.
Green (1990) proposed the use of the gamma distribution to estimate the inefficiency term,
although the likelihood function for the convolution of the two error components of the
SFA model is not available in closed form because the likelihood function involves an
integral that cannot be evaluated analytically [17]. However, Beckers and Hammond (1987)
showed that the likelihood can be computed using special functions in this context [18].
Subsequently, Greene (2003) proposed a simulation-based method to address this issue [19].
Tsionas (2012) showed that the fast Fourier transform of the characteristic function can be
used to address the troublesome term in the likelihood function [20]. It is worth noting that
Kumbhakar et al. (2013) introduced the zero inefficiency stochastic frontier model which
can accommodate the presence of both efficient and inefficient units [21] and Makieta (2017)
included more than one random inefficiency terms [22].

For the purpose of this study; it is necessary to compute the distribution of the sum of
inefficiency random variables for standard one-sided distributions. Indeed, in probability
theory and statistics, the computation of the distribution of the sum of independent of
random variables has been widely studied. For example, Moschopoulos (1985) showed that
the distribution of the sum of independent gamma variates with different parameters can
be represented as a gamma series [23] and Bibingera (2013) provided a closed form of the
distribution of the sum of independent exponentially distributed random variables [24,25].
In addition, Krenek et al. (2016) studied the sum of distributions for the case of truncated
distributions [26].

In particular, this work focuses on the derivation as well as numerical computation
of the probability density function from three independent half-normal distributions. In
Bayesian SFA, numerical tools such as Gibbs sampling can be used to approximate the
multivariate probability distribution. On the other hand, it is required to obtain a closed
form of the probability density function for non-Bayesian SFA. We notice that the half-
normal distribution is a limit of a skewed normal distribution [27] and the density function
of the sum of independent skew normal random variables is given in a closed form [28].
However, the expression involves a special function, the Kampé de Fériet function, which
is not easy to evaluate. In contrast to Nadarajah and Li’s work [28], we present the
required pdf and cdf in the form of the integral of the error function and estimate the
computational errors.

SFA is the most commonly used efficient frontier measures in the productivity analysis
in econometrics [29,30]. However, in context of the automotive industry, few researchers
have studied the application of SFA. Boyd (2008, 2014) [31,32] and Oh and Hildreth (2014,
2016) [33,34] worked to address the topic of energy intensity and its influencing factors.
Besides, a few literatures dealing with productivity and Research and Development (R&D)
efficiency in automotive industry with SFA were found [35,36].

Added to SFA, DEA [5] is also an extremely useful tool developed in operations
research community based on non-parametric modeling concept. There are plenty of
literatures reporting DEA application to benchmarking studies (e.g., bank branch pro-
ductivity study [37], warehouse performance study [38]). However, this study uses SFA
because this study needs parametric modeling approach to integrate shop-level ineffi-
ciency distributions.

3. Composition of Multiple Stochastic Frontier Distributions

The goal of plant productivity analysis is to measure the overall plant productivity.
However, due to the complexity of the manufacturing system, the multivariate model
representing a whole plant may include too many explanatory variables intercorrelated
with each other, resulting in the presence of suppressor variables. For example, let Z; and
Z, denote the number of car platforms and the number of car models, respectively. Both Z;
and Z, are used for the same purpose of indicating the complexity level of a given plant.
Therefore, they are positively intercorrelated and have a negative relation with HPU. When
both variables are introduced together into one multivariate model, the coefficient sign
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of one of the two variables is likely to flip over owing to the effect of suppression such
that one variable takes a plus sign while the other variable takes a minus sign. In fact,
Z1 mainly affects the Bodyshop process only, but the impact of Z; is limited to the GA
area. In other words, although Z; and Z; can cause the suppressor variable problem if
combined, by separating them into different SFA models (Z; for Bodyshop and Z, for GA),
the problem can be avoided. This study proposes to build separate SFA models by shop
and then compose their inefficiency distributions to estimate the overall plant productivity.
In this section, a mathematical solution for the composition of multiple stochastic frontier
distributions is built.

To this end, it is required to integrate inefficiency distributions of Bodyshop, Paintshop,
and GA. As discussed earlier in explaining Figure 1, the three processes are independent
of each other and therefore, the competitiveness gap of those processes can be assumed
to be independent. We denote u?Ody ShoP, uPamtShoP, and ulGA as the competitiveness gap of
Bodyshop, Paintshop, and GA, respectively. Then, the overall inefficiency for plant i is
given by

Bodysh Paintsh
1‘0 ys op+uiazns Op—l—uiGA. )

u=1u

As the percentile ranking of i-plant’s productivity is calculated from (3), it is required

to compute the associated probability density function. It is well-known that the proba-

bility density for the sum of independent random variables is given by the convolution

of each density function. Thus, the distribution of the overall inefficiency ¢ can be rep-

resented as the convolution of the distributions ¢ (k = 1,2,3) for Bodyshop, Paintshop,
and GA, respectively,

¢ = (¢1* (P2 % P3)), ©)

where
()0 = [ di(0)pelx— ).

Here, we compute ¢ under the assumption that the inefficiency components are
distributed half-normally. The use of half-normal distribution to represent the inefficiency
components is in fact pretty reasonable in the context of the automotive industry. When
Kernel distribution estimate [39] is applied to predict the shape of HPU competitiveness
distribution in the automotive industry, it turned out that the distribution shape was far
skewed to the left. The skewed shape to the left means that the industrial competition for
labor productivity is highly intensive and many companies are already reaching out to their
best practice, in which case the half-normal distribution can be introduced to account for
the shape of HPU competitiveness distribution at its high rate observed in the far left side.
To be sure, this study carried out LR (likelihood-ratio) tests [40] for u?odysmp , ufamts}mp,
and uiGA where two models were compared: (1) Ordinary Least Square (OLS) and (2) SFA
with the half-normal distribution used for the inefficiency component. All three tests told
that the LR statistic exceeds 99%, indicating that the choice of half normal distribution to
represent inefficiency in Body shop, Paint shop and GA is a correct decision.

Thus, for some oy, > 0,

91(x) = 28(x)Xj0.0) (%)
V2
T o

where gj is a Gaussian distribution function with mean 0 and variance ¢7; and  is the
characteristic function. Next, we state a technical lemma:

2% ey (%), k=1,2,3, (6)
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Lemma 1. Let g, g3 be the probability density functions for the normal distributions with mean 0,
and variances o3 and 03, respectively. Then

/Ot 22(s)g3(t — s)ds = 2\/;7_[0’6_1‘2/202 [erf<\/t§a$> +e f(fa Z)}

o= 1/02 + 0%,
== / e dw. @)

We provide a proof of Lemma 1 in the Appendix A.

If only two independent variables are considered, the distribution of their sum can be
easily computed by the convolution integral (5). By considering the supports of ¢, and ¢3,
we have

where

erf(x

(250300 = [ galt = )s(s)ds
= [ 2t = )s(s)as

It follows from (6) and Lemma 1 that

However, we are interested in the probability distribution function for the sum of three
independent random variables. Unfortunately, we cannot compute it from convolution
theorem (5) as in the case of the sum of two independent variables.

Let x;(k = 1,2,3) be normally distributed random variables with mean 0 and vari-
ances J]%(k =1,2,3). Then

uBodyshop — Paintshop _

[x1, u 2], w4 = s,

and the density function ¢ for u = uBodyshop g Paintshop 4 3 GA satisfies

Pl + fral + [xs] < ) = [ plapdu. ®

On the other hand, the region |x1| + |x2| + |x3| < x in the three-dimensional x7x7x3
space is bounded by the eight plains x; + xp £x3 =x, —x1 +xp £ x3 =x, —x1 — X2 £ x3 =
x, and x1 — xp £ x3 = x. Therefore,

X—x1 (x1+x2)
P(|x1] + |x2] + |x3] < x) / / / 91(x1)82(x2)g3(x3)dx3dxpdxq

X1+X2

x+x1  px—(—x1+x7)
+ / / / 9 X])gQ(XQ)gg(Xg,)dx?,dJdel
—Xx

X]+XQ

—X1— Xz
+/ / / 81(x1)82(x2)83(x3)dx3dxodxy
—x J—x—x;

X1—Xp)—

x—(x1— xz)
—i—// / <1(x1)g2(x2)g3(x3)dx3dxodxy. 9)
—X+x1

(x1—x2)—



Mathematics 2021, 9, 1296 9 of 21

Together with (8), ¢(x) is obtained from Lemma 1 and the derivatives of the integrals
in (9) with respect to x;

2 ¥ 2/202—(x—x )2/2(72{ (x—x1 03) (x—xl 02)]
X) = e M1/ e% 1 erf — | +erf —= ) |dx;. 10
() ooy /o V2o 7 V20 03 ! 10)

The detailed derivation of (10) is given in Appendix B. We remark that ¢(x) can be
rewritten in terms of P(0;) for any permutation operator P due to the symmetry of o1, 0, 03.
Now, we compute the cumulative distribution function, that is,

®(u) = /Ou(p(x)dx. (11)

To reduce the mathematical expression of (10), let us define y(w) as

o —w? /207 w03 w0
P(w) :=e [erf<ﬁaaz>+erf(ﬂ003)}

Using the change of variables with i(w), we rewrite (10) as

X
R
X

Substitution of ¢ into (11) together with changing the order of integration yields

D(u) = 2 /Ou /Ox e~ (=029 4 (1) dapdx

ooy

U u
= mifl [ ety

21 u—w
= \/;0 ./0 erf( Voo >1p(w)dw. (12)

We summarize our findings in Theorem 1.

Theorem 1. Assume that ubodyshop yPaintshop gy4 ,GA gre independent random variables that
are half-normally distributed with parameters 02,03, and 03, respectively. Then the probability

. . . L . . ___ Bodyshop Paintshop GA
density function and the cumulative distribution function for u = u, +u; +u;
are given by (10) and (12), respectively.

It should be noted that one can compute ¢ in a different form, using the result of
Krenek et al. [26]. However, it is not suitable for our numerical implementation as it is
created via induction.

4. Illustrative Example

This section discusses the application of pdf (Equation (10)) and cdf (Equation (12))
developed in the previous section. The example discussed in this section deals with HPU
data from the automotive industry. Since (10) and (12) are expressed in integrals of common
functions, they can be easily implemented in Microsoft Excel and therefore all implemented
works in this section was done in Microsoft Excel.

The data source for HPU data can be found in the Harbour Report (Oliver Wyman
consulting firm, US), which is an annual survey of all automotive manufacturing plants
in the world. Currently, most automotive manufacturers voluntarily provide data for the
survey. To prove the data integrity, Oliver Wyman consultants visit each plant and audit
the data. They publish an annual report that documents and compares the performance of



Mathematics 2021, 9, 1296

10 of 21

plants based on HPU comparisons by market segment. In addition to HPU, the Harbour
Report includes plant-specific operational data, including capacity, production volume,
complexity, automation, souring, contents, and labor. However, due to the non-disclosure
agreement signed by auto companies participating in the Harbour Report, the data in
the report cannot be publicly shared (Before 2007, the Harbour report data was in the
public domain. Gopal et al. (2013) [2] reported that when they used publicly available data
from the years 1999-2007 from North American automotive plants, the average annual
production was 186,000 per plant and the average HPU was 27.1.).

Therefore, for the illustration purpose, the authors generated five similar plants that
are competing in the luxury car market segment. The datasets for plants were gener-
ated to resemble real-world data as close as possible. The dataset is a set of values of
explainable variables listed in Table Al. From the datasets, SFA models for Bodyshop (13),
Paintshop (14) and GA (15) were constructed. The Bodyshop SFA model includes pro-
duction volumes, the number of platforms, body-on-frame, total welds, and welding
automation. Turning to Paintshop, the SFA model takes production volumes, the number
of models, sealer automation, paint content automation, and paint content outsourcing as
explanatory variables. GA’s SFA model uses production volumes, the number of models,
body-on-frame, part numbers, GA outsourcing, logistic outsourcing, and the parts received
as explanatory variables. Then, u; and v; for each plant was calculated.

HPUPsoP — gBodyshop (py NoP, BoF, TW, WA; pBodushop) o Bodushop y o Bodyshop (13)
HpU“"shor — gPaintshop (py, NoM, S A, PCA, PCO; pPeintshory 4y, Peintshor | Painishop (14)
HPUF” = f64(PV,NoM, BoF, PN,GAO, LO, PR; %) + u$* + v¢4 (15)

It is worth noting that the global market is divided into several markets based on car
size and price (The car industry generally uses the standard for the global market segments
set by IHS Markit, UK). Among the market segments, E1 and E2 segments represent large
& luxury class and high luxury class, respectively. In detail, Segment E1 counts car models
with sizes of 4700-5100 mm and prices between $50K and $85K. For example, BMW 5
Series, Mercedes-Benz E-Class, Audi A6, Chrysler 300 and Toyota Crown belong to the E1
segment. The E2 segment contains car models having sizes greater than 4500 mm and prices
of $85K-$170K. For example, Lincoln Town Car, Mercedes-Benz S-Class, BMW 7 Series,
Chevrolet Corvette, and Lexus LS match the standards of the E2 segment. This study
observed real plants producing either E1 or E2, or both car segments, and generated five
synthetic plants. Overall, the plants producing models belonging to E1 and E2 segments
are characterized by higher HPU than low class segment cars because of special efforts
to maintain high quality and the high rate of in-house workload with small production
volume, different from regular mass production models.

The authors believe that the use of synthetic datasets will not be detrimental to the
overall purpose of this study because they are generated to close to the real-world data.
Each plant’s HPU gaps for each theoretical best and the performance gaps are calculated

in Table 1. Recall that udey shop, ufﬂmtSh”p

Bodyshop, Paintshop and GA, respectively, where u

, and u&4 denote the competitiveness gap of
Bodyshop + 2 Paintshop
~ N7(0,07), u ~

i U
N*(0,02), and uf4 ~ NT(0,02). When maximum likelihood estimation was applied to
estimate the parameters in (1), we obtained (712 = 40.895, 022 = 16.463 and 032 = 116.304.
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Table 1. Competitiveness gap and performance comparison.
- Competitiveness Gap Performance
ant
Bodyshop Paintshop GA Plant Bodyshop Paintshop GA Plant

A 4.25 4.27 1.7 10.22 51% 29% 87%  79%

3.02 43 569 13.02 64% 29% 60%  65%
C 5.86 4.18 479 14.83 36% 30% 66%  56%
D 5.35 3.16 12.37 21.34 40% 37% 25%  27%
E 3.55 15.17 21.16 39.88 58% 0% 5% 1%

The curves in Figure 2 represent
* inefficiency cdf for Bodyshop (=" N*(0,0%)dx)
* inefficiency cdf for Paintshop ( =/~ N*(0,03)dx )
* inefficiency cdf for GA (=" N*(0,0%)dx)
* inefficiency cdf for overall plant (= [ ¢(x)dx =1 — P(u) )
Note that the cdf curve of the overall plant is obtained from Theorem 1, but using a
numerical approach (because (12) cannot be solved analytically). This study uses the trape-

zoidal rule to calculate (12) numerically. First, the uniform grid for numerical calculation
of ®(u) is defined as follows:

0=wy,wy,wy, -, wpy=u, A= Wit — W;.

Then, Theorem 1 and the trapezoidal rule yield

=25 e (e e

e

]:

\/7 ME <w1v1 ]>l/)(w]'),

where we adopt erf(0) = 0.

Although the trapezoidal rule always finds an approximation for ®(u), we estimate
the error of the numerical integration compared with the actual ®(u) in order to provide
the accuracy for our simulation. Fix u € (0, 00). Then it is known [41] that the error for the
trapezoidal rule is given by

M-1
e(@) 1= d(u) — /22 2 erf<

To

o)

A2
—ﬁugb”((;’) for some 0 < ¢ < u,

or asymptotically,
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Direct calculation shows that
#(0) = = (Us n Uz) erf<u>
o2\ oy, 03 V20

<2(L.1
L0 \ 02 03

¢ (1) = ——=—p(u).

ooy

As obviously |i(u)| < 2 for any u, it follows that for a sufficiently small A,

(@) < X (2+1+1>. (16)

“120\y o | o3
In our simulation, we take A = 0.01 and thus
le(®)] < 1075,
which gives a tolerance of our simulation results.
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Figure 2. Cumulative distribution function of inefficiency for shops and overall plant.

Figures 3-5 show the performance of competing plants with respect to their com-
petitiveness gaps. Figure 3 shows the order of performance ranking in Bodyshop, where
plant B is ranked first, followed by plants E, A, D, and C. In Paintshop, Figure 4 indicates
that plant D is ranked first, followed by plants C, A, B and E. In GA, plant A outperforms
other plants, followed by plants C, B, D, and E, as shown in Figure 5. In terms of overall
performance, as shown in Figure 6, plant A has the best performance, followed by plants B,
C, D, and E. Note that plant A, which is the best in GA performance, becomes the best in
overall plant-wise performance. This result seems reasonable in the sense that assembling
parts in GA takes up the largest portion of the plant-wise HPU; furthermore, cars belonging
to the E1 and E2 market segments require more labor hours in GA because of higher parts
attachment and various factory fit options compared to ordinary car models. Therefore,
plant A becomes the best in overall plant-wise performance competition, although it has
mediocre performance in Bodyshop and Paintshop. Based on the competitiveness gap dis-
closed from the performance assessment, each plant can set up their feasible performance
improvement target. For example, plant B needs to catch up plant A in Figure 6, where
plant B can set up its target performance to be 79% to go after plant A, because plant A
already shows that 79% achievement in the respective segment is possible.
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Figure 3. Assessment for Bodyshop.
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Figure 4. Assessment for Paintshop.
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Figure 5. Assessment for GA.
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Figure 6. Assessment for plant.

Figures 7 and 8 show the pdfs and the reflected cdfs for our integrated model and the
standard half-normal model for total HPU. We obtained ¢ = 334.202 from the maximum
likelihood estimation with the half-normal model.

Normally, the logical next step after a series of data-driven studies, including bench-
marking, performance assessment, and feasible target setting, is to clarify the reasons
why the outperforming (underperforming) plants show the best (worst) results, and what
course of actions the underperforming plants should take to enhance their performance.
While the data-driven studies can be done by techniques offered in this paper, it is people’s
role to clarify the reasons and identify the course of actions. To help activate and facilitate
the people’s role, this study offers a systematic solution process as shown in Figure 9 where
a description of each step is as follows.

0.06 \ ‘ :
— Integrated HPU model
— Half-normal HPU model
0.05+- 1
-~ . |
0.04 - .
N
N
N
\
0.03 S q
AN
N
N
S
L LN 4
0.02 R
AN
N\
N
NN
0.01F ~ 1
~
~
~ ~
0 L 1 I L —— == = ]
0 10 20 30 40 50 60

Competitiveness gap (HPU in plant)

Figure 7. Probability density functions of inefficiency for integrated model and half-normal model.
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Figure 8. Cumulative distribution functions of inefficiency for integrated model and half-
normal model.
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Figure 9. Solution process to close the competitiveness gap.

The first step is data-driven assessment of labor productivity. This step is about
performance assessment, identification of best practice plant, and feasible target setting,
which this paper has delivered thus far.

The second step is a cross comparison with internal benchmarking results. Typically,
a manufacturing company has used its standard time-and-motion study tool to estimate
workload, based on which the company practices an internal benchmarking study. At this
step, the external benchmarking study executed in the first step can be cross compared
with the internal benchmarking study results to figure out the similarity or difference
between the two benchmarking studies, being able to confirm the areas of opportunity
for further improvement. One advantage of this step comes from the plenty of internal
data and knowledge available within the company and so it is possible to further split
the labor hours into the core areas to fine tune a further segmentation of the functional
area for allocating labor hours. The core areas include manufacturing (i.e., all preparation
and processing tasks associated with joining, stamping, machining, loading, fabricating,
painting, and fastening), maintenance (i.e., planned/preventive /breakdown maintenance,
Die/jig maintenance, conveyor system maintenance, etc.), support (i.e., labor required to
support production, engineering/IT, various reporting, and etc.), logistics (parts receiving,
checking, repacking/sequencing, line side delivery, material handling, etc.), quality (i.e.,
inspection, audits/checks, rework, test, measurement, reporting, etc.), and central site
services (i.e., medical, training, finance, management, house keeping, etc.)

The third step is internal benchmarking visit. In case of a company which has a
global manufacturing footprint, it is highly possible to select a peer group consisting of
comparable plants with similar manufacturing operation parameters inside the company.
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In such a case, underperforming plants in the peer group may visit the best practice plant
(identified from the first step) to learn how well the target plant performs and why the
target plant is successful, and to adapt specific best practices.

The fourth step is brainstorming to identify the course of actions. Even after executing
the third step, an underperforming plant may not discover enough actions for improve-
ment to fill the competitiveness gap identified in the first step. In the case, turning to
brainstorming ideas would be a solution. The typical brainstorming means the efforts of a
group of people to generate new ideas and solutions around a specific problem of interest.
Under the brainstorming scheme, subject matter experts, plant managers, and engineers
hold a meeting where individuals can freely suggest as many spontaneous new ideas for
labor productivity improvement as possible with no fear of being criticised.

The final step is external benchmarking visit. When the fourth step does not discover
a complete solution set for labor productivity improvement due to lack of knowledge
and experience, visiting a competitor’s plant directly may be a last resort but can be an
effective solution. In general, with a non-disclosure agreements concluded, two competing
companies can agree to mutually exchange information beneficial to both companies and
visit each other to identify leading edge practices. Since the best practice plant was already
identified at the first step, it is clear which competitor’s plant to aim to engage.

Further, this study also provide some managerial insights to practitioners that may
increase the adoption and usage of the proposed methods in this paper as follows. Al-
though every global manufacturer is driving its own version of a manufacturing production
system in its local and regional facilities, it is possible to share common insights and ideas
for clarification. While there are multiple reasons for underperformance, but the two
reasons rated most important are overcapacity and the labor/operational competitiveness
gap to best practices in HPU. The overcapacity issues are likely to be an expected challenge
to face during the process of implementing the company’s long-term product portfolio
strategy (e.g., car makers in North America keep traditional passenger car portfolio even
though the sales of passenger cars in North America have been declining for the past years
and continue on a downward trend). Since it is too early to judge the success or failure of
the strategy, a directional change in the strategy is not expected. Indeed, a strategy change
may produce a whole series of changes in objectives through the hierarchical arrangement
with cost and confusion resulting from any major reconstruction. Meanwhile, the com-
petitiveness gap in labor and operational efficiency is considered to be something that a
company can address in the time and space of the present-day world if right decisions
are made for assessment of current competitiveness, target setting, and the identification
of areas of opportunities or a course of action to take. It is worth noting that at present,
the improvement of labor and operational efficiency is tight, but even more important
than ten years ago, as the theme of “doing more with less” continues to dominate the
automotive manufacturing culture. Nowadays, nearly half of the North American and
Europe plants operate on a three-shift or three-crew model, drastically increasing capacity
utilization and capital efficiency with far fewer factories, as existed before the downturn in
2008. With this three-shift pattern, even if the next downturn arrives, the plants will not
be closed, but just reduced to two shifts. However, this shift pattern means that factories
are being asked to add more and more vehicles, which are growing in terms of features
and complexity. In addition, much higher content with upgraded standards for safety
and emissions and shifting consumer demands due to the change of traditional personal
transportation methods are impacting both production complexity and vehicle costs, which
add extreme challenges to the production environment.

As the three-shift pattern with high complexity has become the new standard in the
industry, marginal productivity growth opportunities and an increase in competition for
better operational efficiency have been observed, resulting in marginal productivity growth
between competitors. In this environment, the improvement of labor and operational
efficiency is becoming more important because performance improvements only driven by
technology and automation investments are often masked by increasing product complex-
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ity, washing away much of the productivity gains. In general, higher operational efficiency
is displayed by more flexible manufacturing. For example, in 2016, Honda transferred
the Acura MDX from its Alabama plant to the East Liberty plant in Ohio to allow for
more truck production in the Alabama plant, which also increased the utilization of car
production in the Ohio plant in a very short period without a decline in production.

Regarding the identification of a course of action for labor and operational efficiency,
one surprising discovery is that many of the newest factories with less automation equip-
ment built in China, India, and Eastern Europe have shown incredible performance from
young and eager workforces. This discovery is different from the general belief that the
robots and automation inspired by Industry 4.0 are taking over the role of human work-
ers, outperforming the labor-intensive traditional manufacturing system. Contrary to
expectations, the best plants are not the automated plants, but the plants that display a
good balance of people and technology, working in harmony. In fact, significant levels
of automation may increase downtime which hinders production flows, driving more
highly paid, skilled labor to keep the factory running, while avoiding throughput losses
and quality problems. Rather, high-performance plants are commonly demonstrating less
capital investment to full automation, but strong workforces at all levels, from the plant
manager to the plant floor. These plants integrate automation technology more selectively,
yet foster improvements with relatively low-budget technologies, such as small cobots to
assist with unsafe or ergonomically difficult tasks, automated guided vehicles incorporated
to bring materials, simple means of error proofing, visual controls to highlight potential
problems, and improved part presentation (i.e., the use of specific part kits).

5. Conclusions

This study provided insight into the use of SFA for accurate and objective assessment
of plant productivity and the identification of areas for productivity improvement. A com-
posite pdf and cdf was derived from three half-normal inefficiency distributions for HPU
by dividing the integration domain into eight non-overlapping subdomains. Furthermore,
we estimated the error in computation of cdf that provides the accuracy of our simulation.
It was shown that the new pdf and cdf can be used to assess the productivity of highly
complex vehicle assembly plants such that the overall process is divided into shops (i.e.,
Bodyshop, Paintshop, and GA). The shop models are then hierarchically combined into
the overall plant performance model, resulting in more accurate and objective assessment
which mitigates the problem of suppressor variable presence and ensures no loss from
useful datasets. This technique can be used to measure the gap between a plant’s current
productivity and set a feasible target. Granting all this, however, it is still the people’s role
to clarify the reasons for the competitiveness gap and identify productivity improvement
opportunities. To help activate and facilitate the people’s role, hence, this study offered
a systematic solution process and also provide managerial insights emphasizing the bal-
anced approach incorporating people, process and technology. Although robotization and
automation inspired by Industry 4.0 are believed to revolutionize the automotive industry
and dramatically increase productivity, the reality is that they are not a panacea. Instead,
a balance of people, flexible process and technology is the deciding factor for success in
improving productivity.

In future research, the extension of the proposed model’s inefficiency component to
allow other one-sided distributions than the half-normal distribution would be explored.
Since the shop-level inefficiency can be modeled with an appropriate one-sided distribution
accounting for the characteristics of the shop, it is necessary to develop a general framework
to drive composite pdf and cdf, both numerically and analytically, from distinct one-sided
distributions such as exponential, truncated normal, and gamma distribution; by doing so
we can algebraically capture the different maturity stage of industrial competition on labor
productivity. The authors also plan to reconsider the model formulation with focus on
more accurate variable selection by following the method set forth by Koop et al. (1997) [42]
because of the fact that the scale of the inefficiency term is data-dependent.
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Appendix A. Proof of Lemma 1

In this section, we provide a proof of Lemma 1. From the definition of g» and g3,
we have

t t 1 2 /n2 1 2 /52
t—3)d :/ —5 /202:| |: —(t—s) /2(73:|d
/0 82(5)83( S) ) 0 |:\/ 27‘[(726 V 27‘[0’3e )

_ 1 /te—(t—s)2/2022—52/20§ds'
270703 Jo

It follows from completing the square that

2 2
t Y
1 /ef(tfs)z/Zagfsz/ZUSZdS: 1 eft2/202/ o (s 72) /(20303) 1
27t0703 Jo 27107073 0

2
Recall that 02 = 03 + 03. Let w := U(S — Zzzt) /(V/20,03). Then we deduce
LIS \faz(fg /ﬁ' ey = LB/ {erf(t 03) + erf(taz)}
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Appendix B. Derivation of Equation (10)

Here we derive the Equation (10). Differentiate the first integral in (9) with respect to
X to get

X—x1 (x14x2)
dx/ / / 91(x1)g2(x2)g3(x3)dx3dxy dxq

(x14x2)—
= [ ] sategaa)lgae = (1 + 32)) + ga((x1 4 32) = x))dxz dy
2 / 1(n)g2(x2)g(x — (x1 + x2) s

Here, we use the formula

d

X X 9
E/o h(w,x)dw:h(x,x)—I—/o ah(w,x)dw

successively and use the symmetric property of g3. The same method for other integrals
and the change of variables yield

= 8/ / 1(x1)82(x2)g3(x — (1 + x2) )dxodx.
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Next, we apply Lemma 1 and obtain
X—X1
| sl —x) = x2))dxe

1 2 /52 X — X1 0 X — X107
_ —(x=x1)?/20 f< 13) f< 12)]
e er +er .

2/ 2o { V2o 0 V20 03

Together with (8), it follows

2 /x e~/ 201~ (x=m)?/20? [erf(x — A UB') + erf(x — A @)}dxl,
mooy Jo V20 0 V20 03

¢(x) =
as desired.

Appendix C. The Explanatory Variables Used in SFA Models

The definitions of explanatory variables used in SFA models are found in Table A1.

Table A1l. Terms and definitions.

Production volumes (PV)

Total vehicle production of a plant during a year.

The number of platforms
(NoP)

The number of platforms that a plant produces.

Body-on-frame (BoF)

It is a binary variable to indicate whether a plant produces Body-on-Frame cars like
pick-up truck.

Total welds (TW)

Spot weld equivalents performed in-house by a plant. Spot weld equivalents is the
production volume weighted average of the spot weld equivalents across all products at
a plant. The spot weld equivalent is a means of normalizing all weld types (e.g., laser,
MIG, Gas, and etc.) to a common “spot weld equivalent” using different factors.

Welding automation (WA)

The Bodyshop automation level(%) in a plant which is calculated by (automated stations +
0.5 x semi-automated stations)/(automated stations + semi-automated stations + manual
stations). It only accounts for mainline stations, not including sub assemblies.

The number of models
(NoM)

The number of vehicle models that a plant produces.

Sealer automation (SA)

The automation level(%) of sealer operation in Paintshop in a plant which is the produc-
tion volume weighted average of the percentage of sealer applied automatically across all
products at a plant.

Paint content automation
(PCA)

The automation level(%) of painting operation in Paintshop in a plant which is the
production volume weighted average of the percentage of paint applied automatically
across all products at the plant.

Paint content outsourcing

(PCO)

The outsourcing level(%) of Paintshop in a plant which is calculated by 100%-(the per-
centage of in-plant paint content).

Part numbers (PN)

The production volume weighted average of parts attached to a vehicle across all products
in GA of a plant.

GA outsourcing (GAO)

The outsourcing level(%) of GA in a plant which is calculated by 100%-(the percentage of
in-plant assembly content).

Logistic outsourcing (LO)

The outsourcing level(%) of logistic operation of a plant which is calculated by 100%-(the
percentage of in-plant logistic service content).

Parts received (PR)

The number of part numbers received by a plant, including fasteners, delivered by
suppliers and assembled in GA. The part number is a unique identifier assigned to parts
handled. Be sure that the part number should not be mingled with the number of parts.
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