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Abstract: The HJ biplot is a multivariate analysis technique that allows us to represent both individ-
uals and variables in a space of reduced dimensions. To adapt this approach to massive datasets,
it is necessary to implement new techniques that are capable of reducing the dimensionality of the
data and improving interpretation. Because of this, we propose a modern approach to obtaining
the HJ biplot called the elastic net HJ biplot, which applies the elastic net penalty to improve the
interpretation of the results. It is a novel algorithm in the sense that it is the first attempt within the
biplot family in which regularisation methods are used to obtain modified loadings to optimise the
results. As a complement to the proposed method, and to give practical support to it, a package
has been developed in the R language called SparseBiplots. This package fills a gap that exists in
the context of the HJ biplot through penalized techniques since in addition to the elastic net, it also
includes the ridge and lasso to obtain the HJ biplot. To complete the study, a practical comparison is
made with the standard HJ biplot and the disjoint biplot, and some results common to these methods
are analysed.

Keywords: biplot; sparse; PCA; regularization; elastic net; multivariate analysis; R Software; TCGA;
breast cancer

1. Introduction

Recently, the variety and the rapid growth of datasets have led to an increase in the
amount of information in many disciplines and fields of study. Due to this increase in the
volume of data, a statistical approach based on dimension reduction is an essential tool
to project the original data onto a subspace of lower dimensions, in such a way that it is
possible to capture most of the variability. This representation can be approximated by
applying multivariate techniques including principal component analysis (PCA).

PCA has its origins in works developed by [1], but more substantial development was
carried out by [1,2]. A more current reference can be found in [3]. PCA is traditionally
undertaken through the singular value decomposition (SVD) technique of [4].

In PCA, data are projected on orthogonal axes of maximum variability in a space
of reduced dimensions, usually a plane. Thus, each principal component is a linear
combination of the initial variables and their contribution to each component is established.
The coefficients of the combinations, which are called loadings and are usually different
from zero, generate the main drawback of the PCA: its interpretation.

Several alternatives have been proposed to improve the interpretation of the results,
ranging from rotation techniques to the imposition of restrictions on factor loadings. Ini-
tially, Hausman [5] proposed restricting the value that can be assigned to loads of the
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principal components (PCs) to a set of integers {−1, 0, 1} to build simplified components.
Subsequently, Vines [6] welcomed the idea of [5] and suggested the use of arbitrary integers.
A different method was proposed by McCabe [7] that consisted of selecting a subset of
variables, identified as main variables, based on an optimisation criterion, without having
to go through PCA. To solve this problem, Cadima and Jolliffe [8] presented a method
called a simple threshold, which consisted of converting factorial loadings with absolute
values less than a certain threshold to zero loadings.

Traditionally, rotation techniques have been used to simplify the structure of principal
components (PCs) and facilitate their interpretation [9]. However, the reduction in the
dimensionality of the data is not always sufficient to facilitate the interpretation of the PCs.
An ad hoc approach is to use regularisation techniques, although these require a restriction
parameter to induce projection vectors with modified loadings (null or near zero), the
interpretation of the results improves significantly. Thus, Tibshirani [10] introduced the
least absolute shrinkage and selection operator (lasso) method in which he combined a
regression model with a procedure for the contraction of some parameters towards zero,
imposing a penalty on the regression coefficients. A few years later, Jolliffe and Jolliffe
and Uddin [11] presented a solution that modified the traditional approach to PCs using
two stages, PCA and rotation. They proposed the simplified component technique (ScoT),
in which the original PCs and the VARIMAX rotation are combined to shrink loadings
towards zero, thus maintaining the decrease in the proportion of explained variance. Since
the loadings obtained by ScoT achieve small values, but not null, Jolliffe et al. [12], proposed
the SCoTLASS (simplified component technique subject to lasso) algorithm, which imposes
a restriction in such a way that some loadings are completely null while sacrificing the
variance. In the same sense, Zou et al. [13] proposed a penalized algorithm called sparse
PCA, which applies the elastic net technique in addition to the lasso penalty [14] and which
efficiently solved the problem using minimum angle regression [15]. Subject to cardinality
restrictions (the number of zero loadings per component), Moghaddam et al. [16] built an
algorithm for sparse components. Next, D’Aspremont et al. [17] explained the cardinality
restriction based on semi-definite programming. Taking advantage of some of the previous
ideas, Ref. [18] connected the PCA with the SVD of the data and obtained sparse PCs
through regularisation penalties (sPCA-rSVD). Subsequently, Ref. [19] unified the low-
range approach of [18] with the criterion of maximum variance of [12] and the sparse
PCA method of [13], to give a general solution to the problem of sparse PCA. In the same
context, Ref. [20] suggested maximising the explained variance by the cardinality of sparse
PCs. Through an extension of the classical PCA, Ref. [21] built sparse components by
replacing the l2 norm in problems of traditional eigenvalues with a new norm consisting
of a combination of the l1 and l2 norms. A modification to the PCA was presented by [22]
which allowed identification of components of maximum variance, guaranteeing that each
variable contributes to only to one of the factor axes obtained. Reference [23] formulated
the CUR matrix decomposition, expressed in a small number of rows and/or columns in a
low-range approximation of the original matrix. This is a different technique in the sense
that it does not aim to obtain factorial axes as in the SVD.

A thorough review of the principal components analysis, from the traditional approach
to the modern point of view through the sparse PCA, was conducted by [24]. Similarly,
Ref. [25] provided an overview of sparse representation algorithms from the theory of
mathematical optimisation.

Although PCA is probably the most popular technique in multivariate statistics [3,26],
the structure of the observations is represented as points in the plane, but is not described
jointly with the variables, which causes further inconvenience for the interpretation of
the data. In this scenario, the biplot methods [27,28] have the advantage that they allow
both variables and samples to be represented in a low-dimensional subspace. Hence, the
present paper has been developed to take an important step in contributing to the process
of analysing large-scale data, and at the same time to make a novel contribution in favour
of the biplot methods.
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The main objective is to propose a new biplot methodology called the Sparse HJ
biplot as an alternative method to improve the interpretation of information provided by
high-dimensionality data. The suggested algorithm adapts the restrictions to penalise the
loadings and produce sparse components; that is, each component is a combination of only
the relevant variables. In addition to the proposed method, a package was implemented in
the R language to give practical support to the new algorithm.

The paper is organised into the following sections. In Section 2.1, descriptions of
the approach proposed by [27] and HJ biplot [28] are presented and their properties are
synthesised. Next, Section 2.2 describes the disjoint biplot (DBiplot) [29], a recent adaptation
to the study of disjoint axes in the HJ biplot. Section 3 presents our main contribution, a
method called Sparse HJ biplot, in which the elastic net penalty is applied to obtain zero
loadings. Finally, in Section 4 this method is applied to a dataset and compared with results
obtained by other methods.

2. Materials and Methods

In multivariate analysis when you have the interest of representing variables and
individuals in the same coordinate system, biplots methods allow obtaining visually
interpretable results. Although biplot methods and classical methods of multivariate
analysis work with two-way matrices, the need to integrate techniques for manipulating
large volumes of data is necessary for many scientific disciplines. The advance of science
requires the design of advanced techniques to simplify the analysis of the data. In the case
of Biplot methods, the literature only reports the disjoint biplot technique (described in
Section 2.2), to produce axes with zero factorial loadings that facilitate the interpretation
of massive data. Therefore, to analyze this type of data, in this paper an innovative
multivariate technique, named “sparse HJ-Biplot”, was developed. This is a new alternative
of HJ-Biplot adapted to the analysis of large data sets, that raises the interpretation of the
results. The mathematical structure of the algorithm is described in Section 2.3.

To illustrate the techniques used in this paper, we take a sample from data published
by The Cancer Genome Atlas [30]. The data subset used is “breast.TCGA” and it was down-
loaded from the mixOmics R language package [31]. It has been selected the proteomics
information which includes 150 breast cancer samples and the expression or abundance
of omics data in 142 proteins. These samples are classified into three groups: Basal, Her2,
Luminal A.

2.1. Biplot and HJ-Biplot

The biplot methods [27] are a form of low-dimensional graphic representation of
a multivariate data matrix (individuals x variables). The two most important biplot
factorisations presented by [27], were the GH biplot and the JK biplot. The GH biplot
achieves a high-quality representation of the variables, while the JK biplot achieves this
high quality in the ranks of individuals. Consequently, the biplot representation is not
simultaneous for either of the two methods.

An alternative to optimise the biplot methods described by [27,28] proposed a mul-
tivariate technique called the HJ biplot. This contribution maximises the representation
quality of both rows and columns simultaneously [32] for the same coordinate system. In
this way, it is possible to interpret the relationships between individuals and variables at
the same time.

From the algebraic point of view, the biplot methods are based on the same principles
of PCA and SVD of a data matrix. In a biplot, the data are projected onto orthogonal axes
of maximum variability in a space of reduced dimension. The HJ biplot facilitates the
interpretation of the positions of rows, columns and row-column relations through the
axes, in the same way as correspondence analysis [33–36].
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In the HJ biplot, the algorithm starts with the decomposition into eigenvalues and
eigenvectors of the matrix Xnxp defined previously:

X ∼= UDVT

where,

X: is the data matrix
U: is the matrix of data whose columns contain the eigenvectors of XXT

V: is the matrix of data whose columns contain the eigenvectors of XTX
D: is the diagonal matrix containing the eigenvalues of X
U and V must be orthonormal, that is, UTU = I and VTV = I, to guarantee the uniqueness
of the factorisation.

The best approximation to X is, therefore:

X ∼= UDVT ∼=
r

∑
k=1

dkukvT
k

Considering that de X matrix is centered, the markers for the columns in the HJ biplot
are matched with the marked columns of the GH biplot; in turn, the markers for the rows
are made to agree with the marker’s rows of the JK biplot. Thus,

E = UD and G = VD

In the same manner, the row markers in the HJ biplot correspond with the row markers
of JK biplot, and the markers for the columns coincide with the markers for the columns
in a GH biplot, concerning the factorial axes. Figure 1 shows the relationships between U
and V.
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Figure 1. Markers in the HJ biplot.

The rules for the interpretation of the HJ biplot are:

• The proximity between the points that represent the row markers is interpreted as
the similarity between them. Consequently, nearby points allow the identification of
clusters of individuals with similar profiles.

• The standard deviation of a variable can be estimated by the module of the vector
which represents it.

• Correlations between variables can be captured from the angles between vectors. If
two variables are correlated, they will have an acute angle; if the angle they form is
obtuse the variables will present a negative correlation; and, if the angle is a right
angle it indicates that the variables are not correlated.

• The points orthogonally projected onto a variable approximates the position of the
sample values in that variable.



Mathematics 2021, 9, 1298 5 of 15

2.2. Disjoint HJ Biplot

An algorithm for HJ biplot representation was proposed by [29,37]. The DBiplot allows
for better interpretation of the extracted factorial axes and is a method that constructs
disjoint factor axes guaranteeing that each variable of the original data matrix contributes
only to one dimension. The algorithm starts with a random classification of the variables
in the principal components, and the optimal classification is sought through an iterative
procedure leading to maximisation of the explained variability.

The graphic representation in the subspace of reduced dimension is carried out
through the HJ biplot. For this, a function called CDBiplot is hosted within the graphic
interface biplotbootGUI [37]. The interface has three main functions. The CDBiplot function
executes the interface to build the DBiplot. Using this interface, it is also possible to perform
the representation of clusters, using the clustering biplot function (CBiplot) and a third
alternative called clustering disjoint biplot, which allows the simultaneous representation
of two ways, where the latter is characterised by disjoint axes.

Concerning the biplot, we have not found any other evidence for the formulation of
alternative algorithms that penalise and contract the loadings of factorial axes to enhance
the interpretation of the results. Because of this, we propose a new methodology for the
HJ biplot that adapts the restrictions on the principal components applying the elastic net
penalty. This new approach is called the Sparse HJ biplot.

2.3. Sparse HJ Biplot

The elastic net method for regression analysis, which combines the ridge and lasso
regularisation techniques was presented by [14]. This method penalises the size of the
regression coefficients based on the l1 and l2 norms, as follows:

l1 = ||β||1 =
p

∑
j=1

∣∣β j
∣∣ and l2 = (||β||2)

2 =
p

∑
j=1

β j
2

The Sparse HJ biplot proposes a solution to the problem of obtaining a linear combina-
tion of variables determined by a vector of sparse loadings that maximises data variability
or minimises construction error. We use the concept of minimisation of the reconstruction
error (E):

E = [
∣∣∣∣X− X̂

∣∣∣∣2] = Trace (E[(X− X̂)(X− X̂)
T
])

Based on this approach, the ability to interpret the axes (sparse) obtained is greatly improved.
In this work, the elastic net regularisation method is implemented in the HJ biplot,

combining the lasso and ridge techniques. The formulation of the HJ biplot as a regression
problem imposes restrictions on factorial loadings to produce modified axes.

Since the HJ biplot does not reproduce the starting data, a factor is introduced to make
this recovery possible. The following model is obtained:

X̂ = AD−1BT + E

From the elastic net regularisation method, modified loadings for the biplot are derived
as follows:

Velasticnet = argmin
∣∣∣∣∣∣X− AD−1BT

∣∣∣∣∣∣2 + λ2

p

∑
j=1

V2
j + λ1

p

∑
j=1

∣∣Vj
∣∣

Using the first k factorial axes, the matrices are defined:

Apxk = [α1, α2, . . . , αk] and Bpxk = [β1, β2, . . . , βk].

For any λ2 > 0, we have:

(
Â, B̂

)
= argmin

n

∑
i=1

∣∣∣∣∣∣xi − ABTxi

∣∣∣∣∣∣2 + λ2

k

∑
j=1

∣∣∣∣β j
∣∣∣∣2 + λ1,j

k

∑
j=1

∣∣∣∣β j
∣∣∣∣

1
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subject to AT A = IKxK, where λ1,j is the lasso penalty parameter to induce sparsity
(Sparsity: the condition of the penalty that refers to the automatic selection of variables,
setting sufficiently small coefficients to null).

λ2 is the regularization parameter to contract the loadings.
||·||2 denotes the l2 norm and ||·||1 denotes the l1 norm.
This problem can be solved by alternating the optimisation between A and B, using

the LARS-EN algorithm [14].
For fixed A, B is obtained by solving the following problem:

β̂ j = argmin
∣∣∣∣Xαj − Xβ j

∣∣∣∣2 + λ2
∣∣∣∣β j

∣∣∣∣2 + λ1,j
∣∣∣∣β j

∣∣∣∣1
= (αj − β j)

TXTX
(
αj − β j

)
+ λ2

∣∣∣∣∣∣β j

∣∣∣∣∣∣2 + λ1,j

∣∣∣∣∣∣β j

∣∣∣∣∣∣1
where each β̂ j is an elastic net estimator.

For fixed B, the penalty part is ignored and minimized

argmin
n

∑
i=1
||xi − ABTxi||2 = ||X− XBAT ||2

subject to AT A = IKxK.
This a Procrustes problem, and the solution is provided by DVS, (XTX)B=UDVT

with Â = UVT .
Recently [38] proposed a solution to the optimisation problem using the variable

projection method. The main characteristic of this method is to partially decrease the
orthogonally constrained variables.

The steps for the implementation of the elastic net regularisation method in the HJ
biplot are detailed in the following algorithm (see Algorithm 1).

Algorithm 1 Sparse HJ biplot algorithm using elastic net regularisation.

1. Consider a nxp data matrix.
2. A tolerance value is set (1 × 10−5).
3. The data is transformed (centred or standardised).
4. Decomposition of the original data matrix is performed via SVD.
5. A is taken as the loadings of the first k components V[, 1:k].
6. β j is calculated by:

β j = (αj − β j)
T XT X

(
αj − β j

)
+ λ2

∣∣∣∣∣∣β j

∣∣∣∣∣∣2 + λ1,j

∣∣∣∣∣∣β j

∣∣∣∣∣∣1
7. A is updated via SVD of XT Xβ:

XT Xβ = UDVT → A = UVT

8. The difference between A and B is updated:

di fAB =
1
p

p

∑
i=1

1

|βi|2|αi|2
m

∑
j=1

βij − αij

9. Steps 4, 5 and 6 are repeated until di fAB < tolerance.
10. The columns are normalized using V̂EN

J =
β j

||β j|| , j = 1, . . . , k

11. We then calculate the row markers and column markers.
12. The elastic net HJ biplot obtained by the previous steps is plotted.

The following scheme (Figure 2) presents the steps describing the application of the
regularisation methods in the HJ biplot, which leads to modified axes being obtained.
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Explained variance by the Sparse HJ biplot.
In the HJ biplot, orthogonal loadings and uncorrelated axes are obtained from the

transformation of the original variables. Both conditions are met, since for a covariance
matrix D̂ = XTX then VTV = I and VT DV is a diagonal matrix. Taking Ẑ as the estimated
sparse PCs, the total explained variance is determined by tr

(
ẐT Ẑ

)
.

Although sparse PCs are capable of producing orthogonal loadings, their compo-
nents are correlated [12]. Under these conditions, it is not appropriate to calculate the
explained variance in the same way as in an ordinary biplot, since the true variance would
be overestimated.

In this analysis, the aim is that each component should be independent of the previous
ones; therefore, if linear dependence exists, it must be eliminated. From the alternatives
that are available to obtain the adjusted total variance and give a solution to this problem
in sparse components, [13] suggest using projection vectors to remove linear dependence.
These authors denote Ẑj·1,...,j−1 as the residual of fitting Ẑ for Ẑ1, . . . , Ẑj−1, as follows:

Ẑj·1,...,j−1 = Ẑj − H1,...,j−1Ẑj

where H1,...,j−1 is the projection matrix over
{

Ẑi
}j−1

1 .
Therefore, the adjusted variance of Ẑj is

∣∣∣∣Ẑj·1,...,j−1
∣∣∣∣2 and the total explained variance

is determined as
k
∑

j=1

∣∣∣∣∣
∣∣∣∣∣Ẑj·1,...,j−1

∣∣∣∣∣
∣∣∣∣∣2 . In the case of the estimated sparse components Ẑ are

uncorrelated, this formula matches tr
(
ẐT Ẑ

)
.

The QR decomposition, in which Q is an orthonormal matrix and R an upper triangu-
lar matrix, is a simpler way to estimate the adjusted variance. Taking Ẑ = QR we have∣∣∣∣∣∣Ẑj·1,...,j−1

∣∣∣∣∣∣2 = R2
jj .

The total explained variance is then
k
∑

j=1
R2

jj.
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2.4. Software

To give practical support to the new algorithm and to provide a new tool that enables
the use of the proposed method, a package was developed in the R programming language
(R Core Team, 2021), called SparseBiplots [39].

This package includes a collection of functions that allow multivariate data to be
represented on a low dimension subspace, using the HJ biplot methodology. The package
implements the HJ biplot and three new techniques to reduce the size of the data, select
variables, and identify patterns. It performs the HJ biplot adapting restrictions to decrease
and/or produce zero loadings, using the methods of regularization ridge, lasso, and elastic
net into the loadings matrix.

In each of the techniques implemented it is possible to obtain the eigenvalues, the
explained variance, the loadings matrix, the coordinates for the individuals and the coordi-
nates of variables. The package also allows the graphic representation into two selected
dimensions to be obtained using the ggplot2 grammar [40].

This package combines an advanced methodology, the power of the R programming
language and the elegance of ggplot2 to help models clearly explain the results and improve
the informative capacity of the data. It is a new alternative to analysing data from different
sources such as medicine, chromatography, spectrometry, psychology, or others.

3. Illustrative Example

In order to illustrate the new algorithm and to compare the results with the standard
HJ biplot and the DBiplot, we consider the subset of data explained in Section 2.

The analysis of the data begins with the calculation of the loadings matrix associated
with the factorial axes of each of the three methods, to compare the contributions of the
proteins to the new axes (see Table 1). In this way a technical meaning is given to each axis,
facilitating the interpretation of the results. No sparsity is induced in the HJ Biplot loadings
matrix. Each factorial axis is obtained as a linear combination of all the proteins, making
the characterisation of each axis difficult. DBiplot, on the other hand, generates disjoint
factorial axes, where each protein contributes to a single factorial axis; this facilitates the
grouping of proteins with similar performance making the axes mostly characterisable.
However, the fact that each protein contributes its information entirely to a single axis
severely limits the variability explained by the model. In this new proposal, the sparse
biplot decreases the importance of proteins that contribute the smallest information to each
axis, producing sparse factor axes with some loadings as zeros, by the penalty imposed.
In contrast to the DBiplot, variables can contribute information to more than one axis. It
does not limit the grouping of variables in different axes, conversely produces axes that
can hold some similarities, but keeps the difference in their characterisation.

Table 1. Loadings matrix for the first three principal components obtained from the HJ biplot, DBiplot and the Sparse HJ
biplot algorithms. To enhance the sparsity in each method, different fonts colors are used.

Proteins
HJ Biplot Disjoint Biplot Elastic Net HJ Biplot

D1 D2 D3 D1 D2 D3 D1 D2 D3

14-3-3_epsilon 9.835 −0.791 0.698 1 0 0 6.330 0 0
4E-BP1 −1.127 3.408 −0.752 0 0 1 0 0 0
4E-BP1_pS65 −2.074 6.317 −2.116 0 0 1 0 1.633 0
4E-BP1_pT37 −1.862 2.997 −5.079 0 0 1 0 0 0
4E-BP1_pT70 0.486 5.227 −1.753 0 0 1 0 0.832 0
53BP1 −6.654 −3.875 1.235 0 0 1 −3.015 0 0
A-Raf_pS299 −4.47 2.681 −1.221 0 1 0 0 0 0
ACC1 −4.007 −3.042 −0.894 0 0 1 0 0 0
ACC_pS79 −4.094 −2.386 −2.147 0 0 1 0 0 0
AMPK_alpha −1.103 −5.287 1.69 1 0 0 0 −0.917 0
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Table 1. Cont.

Proteins
HJ Biplot Disjoint Biplot Elastic Net HJ Biplot

D1 D2 D3 D1 D2 D3 D1 D2 D3

AMPK_pT172 −0.86 −6.362 1.486 1 0 0 0 −1.075 0
ANLN 0.877 6.213 5.348 1 0 0 0 0 2.111
AR −0.729 −6.68 4.084 1 0 0 0 −4.209 0
ARID1A −3.643 0.852 1.409 1 0 0 0 0 0
ASNS −4.067 8.449 −1.908 0 0 1 0 4.819 0
ATM −5.234 −1.222 −0.396 0 1 0 −1.118 0 0
Akt −5.513 −4.694 −0.288 0 0 1 −1.664 0 0
Akt_pS473 −1.049 1.326 −7.186 0 0 1 0 0 0
Akt_pT308 −1.782 3.054 −5.25 0 0 1 0 0 0
Annexin_I 6.102 −0.652 −4.703 1 0 0 1.919 0 0
B-Raf −7.829 0.995 2.763 1 0 0 −4.104 0 0
Bak 9.633 −1.78 −1.534 1 0 0 6.042 0 0
Bax 4.12 −1.972 −2.539 1 0 0 0 0 0
Bcl-2 1.021 −6.875 4.678 1 0 0 0 −3.623 0
Bcl-xL 4.824 −0.207 1.384 1 0 0 0.189 0 0
Beclin −3.283 4.485 6.71 1 0 0 0 0 2.459
Bid 9.885 1.076 1.13 1 0 0 6.612 0 0
Bim 0.715 −2.899 3.656 1 0 0 0 0 0
C-Raf −7.355 −2.215 −0.384 1 0 0 −3.880 0 0
C-Raf_pS338 5.312 6.464 3.593 1 0 0 1.686 0 2.060
CD31 −2.116 8.398 7.088 1 0 0 0 0 4.871
CD49b 3.632 2.32 3.552 0 0 1 0 0 0
CDK1 0.488 9.008 −0.729 1 0 0 0 3.351 0.892
Caspase-
7_cleavedD198 1.906 6.466 −1.048 1 0 0 0 2.174 0

Caveolin-1 7.827 −6.415 −1.311 1 0 0 3.643 −0.742 −0.702
Chk1 6.792 7.605 1.289 1 0 0 3.358 0.985 0.563
Chk1_pS345 2.418 8.966 5.551 1 0 0 0 0 4.071
Chk2 −6 3.914 −2.176 1 0 0 −1.815 1.190 0
Chk2_pT68 −2.247 10.009 4.991 1 0 0 0 0.914 4.810
Claudin-7 −4.187 0.804 4.021 1 0 0 0 0 0
Collagen_VI 8.506 −2.722 −0.097 1 0 0 4.628 0 0
Cyclin_B1 −4.571 7.465 −2.745 1 0 0 0 4.414 0
Cyclin_D1 8.872 −2.678 2.491 1 0 0 5.170 0 0
Cyclin_E1 −1.927 6.257 −3.637 1 0 0 0 3.837 0
DJ-1 3.216 −5.246 2.356 1 0 0 0 −1.053 0
Dvl3 −7.369 −0.063 −0.467 1 0 0 −3.462 0 0
E-Cadherin −4.731 1.337 3.855 1 0 0 −0.142 0 0
EGFR 2.315 4.231 −2.325 0 0 1 0 0.244 0
EGFR_pY1068 −0.772 1.862 −2.4 0 0 1 0 0 0
EGFR_pY1173 8.702 1.484 1.23 0 1 0 5.321 0 0
ER-alpha −0.686 −8.918 5.329 0 1 0 0 −6.509 0
ER-alpha_pS118 −3.542 −4.816 6.177 1 0 0 0 −2.834 0
ERK2 −4.911 −4.53 −1.404 0 1 0 −0.903 0 0
FOXO3a 7.666 3.783 1.127 1 0 0 4.027 0 0
Fibronectin 1.852 −2.596 −0.897 1 0 0 0 0 0
GAB2 −3.465 1.083 −0.098 1 0 0 0 0 0
GATA3 −1.972 −8.738 5.216 0 1 0 0 −6.058 0
GSK3-alpha-beta −9.243 0.501 −0.787 1 0 0 −5.924 0 0
GSK3-alpha-
beta_pS21_S9 −6.718 −0.029 −4.263 0 0 1 −2.273 0 0

HER2 −3.51 −0.115 0.883 0 0 1 0 0 0
HER2_pY1248 −0.973 1.28 −0.442 0 0 1 0 0 0
HER3 3.995 −3.859 0.899 0 1 0 0 0 0
HER3_pY1289 5.381 0.692 −1.768 0 0 1 1.365 0 0
HSP70 8.525 3.238 0.181 0 1 0 5.127 0 0
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Table 1. Cont.

Proteins
HJ Biplot Disjoint Biplot Elastic Net HJ Biplot

D1 D2 D3 D1 D2 D3 D1 D2 D3

IGFBP2 1.102 −3.158 1.768 1 0 0 0 0 0
INPP4B −2.524 −6.657 6.597 1 0 0 0 −5.098 0
IRS1 4.045 −2.6 5.377 1 0 0 0 −0.741 0
JNK2 −0.584 −9.036 1.984 1 0 0 0 −4.625 −0.041
JNK_pT183_pT185 2.476 −2.463 −0.011 1 0 0 0 0 0
K-Ras 10.304 0.949 0.456 1 0 0 7.040 0 0
Ku80 −8.303 0.743 0.447 1 0 0 −4.768 0 0
LBK1 −2.52 1.968 7.864 1 0 0 0 0 1.173
Lck 4.528 3.158 −3.052 0 1 0 0.055 0 0
MAPK_pT202_Y204 −0.304 −2.731 −3.607 1 0 0 0 0 0
MEK1 2.993 −2.122 −2.706 1 0 0 0 0 0
MEK1_pS217_S221 −5.209 −1.263 −2.992 0 0 1 −0.514 0 0
MIG-6 4.206 2.429 1.513 0 1 0 0 0 0
Mre11 2.55 7.729 7.37 1 0 0 0 0 4.444
N-Cadherin 10.669 1.608 0.799 1 0 0 7.616 0 0
NF-kB-p65_pS536 −4.992 0.915 −2.066 0 0 1 −0.330 0 0
NF2 −4.468 −1.197 1.559 0 0 1 −0.284 0 0
Notch1 4.22 5.154 0.049 0 1 0 0 0.221 0
P-Cadherin 0.692 5.044 −4.532 1 0 0 0 2.793 0
PAI-1 2.668 0.836 −1.01 1 0 0 0 0 0
PCNA 5.345 2.069 −2.278 1 0 0 0.893 0 0
PDCD4 −7.3 4.39 2.29 1 0 0 −2.851 0 0.807
PDK1_pS241 −4.328 −7.468 1.103 0 0 1 −0.406 −2.068 0
PI3K-p110-alpha −2.045 −1.893 −0.058 0 1 0 0 0 0
PKC-alpha 4.107 −2.008 −2.34 1 0 0 0 0 0
PKC-alpha_pS657 2.787 −0.643 −0.587 1 0 0 0 0 0
PKC-delta_pS664 −1.622 3.93 6.058 1 0 0 0 0 1.686
PR −0.264 −6.858 5.072 0 0 1 0 −4.465 0
PRAS40_pT246 −4.816 6.243 −2.556 0 1 0 0 0.549 0
PRDX1 1.244 2.609 −0.483 1 0 0 0 0 0
PTEN −3.443 −4.129 0.798 1 0 0 0 0 0
Paxillin −3.448 −4.577 −2.127 1 0 0 0 0 0
Pea-15 3.573 −5.791 0.144 1 0 0 0 −0.581 0
RBM3 −3.695 −3.794 0.379 1 0 0 0 0 0
Rad50 −0.172 −5.001 2.657 0 1 0 0 −0.962 0
Rb_pS807_S811 −6.574 1.905 −2.987 1 0 0 −2.009 0 0
S6 −7.718 4.048 −0.745 1 0 0 −3.914 0.543 0
S6_pS235_S236 −2.383 2.566 −6.953 1 0 0 0 0.644 0
S6_pS240_S244 −2.97 2.075 −7.177 1 0 0 0 0.350 0
SCD1 −4.54 6.624 4.302 1 0 0 0 0 2.683
STAT3_pY705 4.967 −2.48 −2.268 1 0 0 0.564 0 0
STAT5-alpha −4.779 −3.47 −2.199 0 0 1 −0.608 0 0
Shc_pY317 −4.083 3.86 2.936 0 1 0 0 0 0.740
Smad1 0.205 −0.579 2.104 1 0 0 0 0 0
Smad3 4.219 −5.98 2.297 1 0 0 0 −1.414 0
Smad4 9.908 −0.979 −1.163 1 0 0 6.333 0 0
Src 5.433 1.57 −0.883 1 0 0 1.023 0 0
Src_pY416 −2.997 8.115 2 1 0 0 0 0.303 2.653
Src_pY527 4.385 −0.67 −5.883 1 0 0 0.282 0 0
Stathmin 7.149 7.29 4.099 1 0 0 3.795 0 1.895
Syk −4.569 2.55 −4.518 0 0 1 −0.140 0.699 0
Transglutaminase −2.552 3.844 −0.091 0 1 0 0 0 0
Tuberin −6.672 −6.243 −0.289 1 0 0 −3.259 −0.161 0
VEGFR2 −4.498 −4.125 2.757 0 1 0 −0.236 −0.168 0
XBP1 1.892 1.07 4.482 1 0 0 0 0 0
XRCC1 1.111 −0.622 2.963 0 0 1 0 0 0
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Table 1. Cont.

Proteins
HJ Biplot Disjoint Biplot Elastic Net HJ Biplot

D1 D2 D3 D1 D2 D3 D1 D2 D3

YAP_pS127 0.955 −1.745 −1.806 0 1 0 0 0 0
YB-1 −3.686 −0.954 1.81 0 1 0 0 0 0
YB-1_pS102 −2.047 2.807 −6.06 1 0 0 0 0 0
alpha-Catenin −4.342 4.573 7.605 1 0 0 0 0 3.159
beta-Catenin −6.877 −0.545 0.895 1 0 0 −2.921 0 0
c-Kit 2.082 3.856 −2.432 1 0 0 0 0.042 0
c-Met_pY1235 1.579 8.612 6.828 1 0 0 0 0 4.546
c-Myc 1.778 2.82 2.362 1 0 0 0 0 0
eEF2 −5.963 3.474 −1.39 1 0 0 −1.832 0.245 0
eEF2K −5.193 −5.415 2.727 0 1 0 −1.232 −1.218 0
eIF4E 1.789 −0.64 −1.43 1 0 0 0 0 0
mTOR −9.332 −2.094 2.38 1 0 0 −6.073 0 0
mTOR_pS2448 −4.804 0.348 −1.92 1 0 0 0 0 0
p27 3.678 −0.86 2.963 1 0 0 0 0 0
p27_pT157 −1.764 7.218 4.386 1 0 0 0 0 2.536
p27_pT198 −2.494 5.968 −1.246 1 0 0 0 1.908 0
p38_MAPK 0.767 −5.788 −0.57 1 0 0 0 0 −0.006
p38_pT180_Y182 0.215 −1.303 −3.117 1 0 0 0 0 0
p53 −2.966 9.064 4.314 1 0 0 0 0.846 3.663
p70S6K −4.922 −1.661 1.338 1 0 0 −0.838 0 0
p70S6K_pT389 5.575 1.371 −1.5 1 0 0 1.619 0 0
p90RSK_pT359_S363 −6.319 1.839 −1.653 1 0 0 −1.687 0 0

The three techniques were then plotted using the type of cancer as a grouping factor
for the samples.

In the HJ biplot (Figure 3) a slight pattern can be observed between the three types of
cancer and the proteins, but this is not entirely clear. However, due to the high number of
proteins, it is difficult to identify the contribution in each axis.
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The disjoint biplot was realized with the help of the biplotbootGUI package, the data
were analyzed by performing 1000 iterations of the algorithm obtaining the graph shown
(Figure 4). The DBiplot shows a better structure in terms of interpretation, although the
cancer–protein interaction is quite poor. A common characteristic of this technique is that
most of the variables contribute mainly to the first axis.
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Finally, the SparseBiplot (Figure 5) shows an interaction between proteins and cancer
types, that is clearer and easier to interpret. It shows that the variables that contribute
negatively to the second axis have higher values for cancer type Luminal A. On the contrary,
the proteins that contribute positively to the second axis have a higher value for cancer
type Basal, and average values in Her2 type cancers. Axis 1 is a highly informative gradient
(45.8%); and collectively with axis 2 captures approximately 75% of the variability of the
data. The interpretation of the SparseBiplot makes possible the recognition of a proteomic
characterisation of each of the groups, starting from a set of original proteins since the rest
have obtained null loadings.
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4. Conclusions and Discussion

The theoretical contribution of this research means excellent progress for Big Data
analysis and multivariate statistical methods. In this paper, we proposed an innovative
algorithm to describe samples and variables in a low-dimensional space keeping the
most relevant variables. Additionally, the developed software is a valuable tool that
enables applying the theoretical contribution to the data analysis in every scientific field, as
suggested by [41,42].

In contrast to the current developmental dynamic of the biplot method, no reference
was found to applied regularisation techniques to the biplot. Therefore, the main contribu-
tion of this paper is to propose a new biplot version with penalized loadings, called the
elastic net HJ biplot, using the ridge (based on the standard l2 norm) and lasso (based on
the standard l1 norm) regularisation methods [43].

The advantage of applying penalization to induce sparsity in the HJ biplot produces
the loadings matrix of the resulting axis to be sparse, allowing us to omit the slightly
important variables into the biplot. Consequently, the interpretability of the biplot’s results
becomes clear by knowing the variables that contribute the most information to each axis
in the biplot, providing efficient solutions to problems arising from the high dimension of
the data [44].

A package, called SparseBiplots [39], was developed in the R programming language
to perform the proposed elastic net HJ biplot algorithm. As mentioned by [45], in some
study designs the sample size is smaller than the number of variables. In particular, our
package has the advantage of being able to solve this type of problem in two-way tables.

The presented methodology opens a new road to future research in multivariate
statistics, as it serves as the basis for it to be extended to three-way data analysis techniques,
such as Statis and Statis Dual [46], partial triadic analysis [47], Tucker [48], Tucker3 [49],
Parallel Factor Analysis (PARAFAC) [50], among others.



Mathematics 2021, 9, 1298 14 of 15

Author Contributions: Conceptualization, M.C.-M.; methodology, C.A.T.-C., M.P.G.-V.; software,
M.C.-M., C.A.T.-C.; validation, M.C.-M., A.B.N.-L.; formal analysis, M.C.-M., M.P.G.-V., C.A.T.-C.;
investigation, M.C.-M., A.B.N.-L.; writing—original draft preparation, writing—review and editing,
M.C.-M., M.P.G.-V., A.B.N.-L., C.A.T.-C.; funding acquisition, M.C.-M. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was made possible thanks to the support of the Sistema Nacional de Investi-
gación (SNI) of Secretaría Nacional de Ciencia, Tecnología e Innovación (Panamá).

Institutional Review Board Statement: Ethical review and approval were waived for this paper
due to the data from The Cancer Genome Atlas (TCGA) used are completely anonymized, without
violating the privacy of any patient data.

Informed Consent Statement: Patient consent was waived due to the full anonymity of the used data.

Data Availability Statement: The data analysed in this paper to compare the techniques performed
can be found in https://portal.gdc.cancer.gov/ (accessed on 15 May 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pearson, K.F.R.S. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901,

2, 559–572. [CrossRef]
2. Hotelling, H. Analysis of a Complex of Statistical Variables into Principal Components. J. Educ. Psychol. 1933, 24, 417. [CrossRef]
3. Jolliffe, I. Principal Component Analysis; Wiley Online Library: Hoboken, NJ, USA, 2002.
4. Eckart, C.; Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1936, 1, 211–218. [CrossRef]
5. Hausman, R.E. Constrained Multivariate Analysis. In Optimisation in Statistics; Zanakis, S.H., Rustagi, J.S., Eds.; North-Holland

Publishing Company: Amsterdam, The Netherlands, 1982; pp. 137–151.
6. Vines, S.K. Simple principal components. J. R. Stat. Soc. Ser. C Appl. Stat. 2000, 49, 441–451. [CrossRef]
7. McCabe, G.P. Principal Variables. Technometrics 1984, 26, 137–144. [CrossRef]
8. Cadima, J.; Jolliffe, I.T. Department of Mathematical Sciences Loading and correlations in the interpretation of principle

compenents. J. Appl. Stat. 1995, 22, 203–214. [CrossRef]
9. Jolliffe, I.T. Rotation of principal components: Choice of normalization constraints. J. Appl. Stat. 1995, 22, 29–35. [CrossRef]
10. Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [CrossRef]
11. Jolliffe, I.T.; Uddin, M. The Simplified Component Technique: An Alternative to Rotated Principal Components. J. Comput. Graph.

Stat. 2000, 9, 689–710. [CrossRef]
12. Jolliffe, I.T.; Trendafilov, N.; Uddin, M. A Modified Principal Component Technique Based on the LASSO. J. Comput. Graph. Stat.

2003, 12, 531–547. [CrossRef]
13. Zou, H.; Hastie, T.; Tibshirani, R. Sparse Principal Component Analysis. J. Comput. Graph. Stat. 2006, 15, 265–286. [CrossRef]
14. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320.

[CrossRef]
15. Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R. Least Angle Regression. Ann. Stat. 2004, 32, 407–499. [CrossRef]
16. Moghaddam, B.; Weiss, Y.; Avidan, S. Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms. Adv. Neural Inf. Process.

Syst. 2006, 18, 915.
17. D’Aspremont, A.; El Ghaoui, L.; Jordan, M.; Lanckriet, G.R.G. A Direct Formulation for Sparse PCA Using Semidefinite

Programming. SIAM Rev. 2007, 49, 434–448. [CrossRef]
18. Shen, H.; Huang, J.Z. Sparse principal component analysis via regularized low rank matrix approximation. J. Multivar. Anal.

2008, 99, 1015–1034. [CrossRef]
19. Witten, D.M.; Tibshirani, R.; Hastie, T. A penalized matrix decomposition, with applications to sparse principal components and

canonical correlation analysis. Biostatistics 2009, 10, 515–534. [CrossRef]
20. Farcomeni, A. An exact approach to sparse principal component analysis. Comput. Stat. 2009, 24, 583–604. [CrossRef]
21. Qi, X.; Luo, R.; Zhao, H. Sparse principal component analysis by choice of norm. J. Multivar. Anal. 2013, 114, 127–160. [CrossRef]
22. Vichi, M.; Saporta, G. Clustering and disjoint principal component analysis. Comput. Stat. Data Anal. 2009, 53, 3194–3208.

[CrossRef]
23. Mahoney, M.W.; Drineas, P. CUR matrix decompositions for improved data analysis. Proc. Natl. Acad. Sci. USA 2009, 106, 697–702.

[CrossRef]
24. Trendafilov, N.T. From simple structure to sparse components: A review. Comput. Stat. 2014, 29, 431–454. [CrossRef]
25. Zhang, Z.; Xuelong, L.; Yang, J.; Li, X.; Zhang, D. A Survey of Sparse Representation: Algorithms and Applications. IEEE Access

2015, 3, 490–530. [CrossRef]
26. Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [CrossRef]

https://portal.gdc.cancer.gov/
http://doi.org/10.1080/14786440109462720
http://doi.org/10.1037/h0071325
http://doi.org/10.1007/BF02288367
http://doi.org/10.1111/1467-9876.00204
http://doi.org/10.1080/00401706.1984.10487939
http://doi.org/10.1080/757584614
http://doi.org/10.1080/757584395
http://doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://doi.org/10.1080/10618600.2000.10474908
http://doi.org/10.1198/1061860032148
http://doi.org/10.1198/106186006X113430
http://doi.org/10.1111/j.1467-9868.2005.00503.x
http://doi.org/10.1214/009053604000000067
http://doi.org/10.1137/050645506
http://doi.org/10.1016/j.jmva.2007.06.007
http://doi.org/10.1093/biostatistics/kxp008
http://doi.org/10.1007/s00180-008-0147-3
http://doi.org/10.1016/j.jmva.2012.07.004
http://doi.org/10.1016/j.csda.2008.05.028
http://doi.org/10.1073/pnas.0803205106
http://doi.org/10.1007/s00180-013-0434-5
http://doi.org/10.1109/ACCESS.2015.2430359
http://doi.org/10.1002/wics.101


Mathematics 2021, 9, 1298 15 of 15

27. Gabriel, K.R. The Biplot Graphic Display of Matrices with Application to Principal Component Analysis. Biometrika 1971, 58,
453–467. [CrossRef]

28. Galindo-Villardón, P. Una Alternativa de Representacion Simultanea: HJ-Biplot. Qüestiió Quad. D’Estad. I Investig. Oper. 1986, 10,
13–23.

29. Nieto-Librero, A.B.; Sierra, C.; Vicente-Galindo, M.; Ruíz-Barzola, O.; Galindo-Villardón, M.P. Clustering Disjoint HJ-Biplot: A
new tool for identifying pollution patterns in geochemical studies. Chemosphere 2017, 176, 389–396. [CrossRef] [PubMed]

30. Cancer Genome Atlas Network. Comprehensive Molecular Portraits of Human Breast Tumours. Nature 2012, 490, 61. [CrossRef]
[PubMed]

31. Rohart, F.; Gautier, B.; Singh, A.; Cao, K.-A.L. mixOmics: An R package for ‘omics feature selection and multiple data integration.
PLoS Comput. Biol. 2017, 13, e1005752. [CrossRef]

32. Galindo-Villardón, P.; Cuadras, C.M. Una Extensión del Método Biplot y su relación con otras técnicas. Publ. Bioestad. Bio-
matemática 1986, 17, 13–23.

33. Greenacre, M.J. Correspondence analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 613–619. [CrossRef]
34. Cubilla-Montilla, M.; Nieto-Librero, A.-B.; Galindo-Villardón, M.P.; Galindo, M.P.V.; Garcia-Sanchez, I.-M. Are cultural values

sufficient to improve stakeholder engagement human and labour rights issues? Corp. Soc. Responsib. Environ. Manag. 2019, 26,
938–955. [CrossRef]

35. Cubilla-Montilla, M.I.; Galindo-Villardón, P.; Nieto-Librero, A.B.; Galindo, M.P.V.; García-Sánchez, I.M. What companies do not
disclose about their environmental policy and what institutional pressures may do to respect. Corp. Soc. Responsib. Environ.
Manag. 2020, 27, 1181–1197. [CrossRef]

36. Murillo-Avalos, C.L.; Cubilla-Montilla, M.; Sánchez, M.; Ángel, C.; Vicente-Galindo, P. What environmental social responsibility
practices do large companies manage for sustainable development? Corp. Soc. Responsib. Environ. Manag. 2021, 28, 153–168.
[CrossRef]

37. Nieto-Librero, A.B.; Galindo-Villardón, P.; Freitas, A. Package biplotbootGUI: Bootstrap on Classical Biplots and Clustering
Disjoint Biplot. Available online: https://CRAN.R-project.org/package=biplotbootGUI (accessed on 4 April 2021).

38. Erichson, N.B.; Zheng, P.; Manohar, K.; Brunton, S.L.; Kutz, J.N.; Aravkin, A.Y. Sparse Principal Component Analysis via Variable
Projection. SIAM J. Appl. Math. 2020, 80, 977–1002. [CrossRef]

39. Cubilla-Montilla, M.; Torres-Cubilla, C.A.; Galindo-Villardón, P.; Nieto-Librero, A.B. Package SparseBiplots. Available online:
https://CRAN.R-project.org/package=SparseBiplots (accessed on 4 April 2021).

40. Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [CrossRef]
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