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Abstract: The current trend in genetic research is the study of omics data as a whole, either combining
studies or omics techniques. This raises the need for new robust statistical methods that can integrate
and order the relevant biological information. A good way to approach the problem is to order
the features studied according to the different kinds of data so a key point is to associate good
values to the features that permit us a good sorting of them. These values are usually the p-values
corresponding to a hypothesis which has been tested for each feature studied. The Montecarlo method
is certainly one of the most robust methods for hypothesis testing. However, a large number of
simulations is needed to obtain a reliable p-value, so the method becomes computationally infeasible
in many situations. We propose a new way to order genes according to their differential features
by using a score defined from a beta distribution fitted to the generated p-values. Our approach
has been tested using simulated data and colorectal cancer datasets from Infinium methylationEPIC
array, Affymetrix gene expression array and Illumina RNA-seq platforms. The results show that
this approach allows a proper ordering of genes using a number of simulations much lower than
with the Montecarlo method. Furthermore, the score can be interpreted as an estimated p-value
and compared with Montecarlo and other approaches like the p-value of the moderated t-tests.
We have also identified a new expression pattern of eighteen genes common to all colorectal cancer
microarrays, i.e., 21 datasets. Thus, the proposed method is effective for obtaining biological results
using different datasets. Our score shows a slightly smaller type I error for small sizes than the
Montecarlo p-value. The type II error of Montecarlo p-value is lower than the one obtained with the
proposed score and with a moderated p-value, but these differences are highly reduced for larger
sample sizes and higher false discovery rates. Similar performances from type I and II errors and the
score enable a clear ordering of the features being evaluated.

Keywords: beta distribution; gene ordering; colorectal cancer; Montecarlo method; moderated t-test

1. Introduction

A major aim in most omics analyses is to order the genes according to their biological
relevance with respect to a biological phenomenon [1,2]. To do so, experimental studies are
designed and performed but usually the number of available samples in these studies is
much lower than the number of expressed features (genes, methylation, etc.). In statistical
terms, the number of variables is much higher than the sample size. We have a large
number of hypotheses to be tested and distributional hypotheses about these features are
not tenable i.e., the null distribution of the statistics is unknown. A common approach
to tackle this problem resorts to randomization methods where different realizations of
this randomization distribution are generated and, from them, a Montecarlo p-value
is obtained [3–6]. Then these p-values are simply ordered or compared with a given
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threshold. These randomization procedures are also attractive because, due to their lack of
assumptions about the underlying distribution followed by the data, they can be generally
applied and are therefore indicated for data which comes from many different sources
(as is common in meta-analysis of several experiments with omics data).

Let B be the number of randomizations (plus the p-value obtained using the original
data) which are generated in a study performed for all genes (where gene expression is an
example of feature); the number of possible Montecarlo p-values is B + 1 and let us call
N the total number of genes to be ordered [3]. By computational reasons B use is in the
order of 100 to 10,000, whereas the number of gene uses is more than 20,000. It is even not
uncommon to work with N = 40,000 or more, as for isoforms or CpG site (the DNA region
where a cytosine is followed by a guanine nucleotide and can be methylated). Therefore,
and since the possible different p-values in a Montecarlo test of B randomizations are
exactly B + 1, a high number of ties appear [4,5]. This clearly precludes obtaining a reliable
ranking of the features, as long as the original p-values are used for other purposes like
aggregation. The motivation of this paper is precisely to obtain a better value that leads to
a better ordering. An appropriate order of the features allows us to properly compare the
studies and therefore to be able to group different datasets to obtain robust results.

The order in which the features are differentially identified indicates a stronger rela-
tionship with the biological question under study. The most significant features should
have a closer relationship with the biological phenomenon. However, the differentially
expressed features which are first on the list have usually not been validated experimen-
tally [7,8] so the researcher has no evidence that allows him/her to order them properly.
Thus, some weakly related genes are included in the first positions of the list, introducing
bias in the biological understanding. Therefore, it is the correct ordering of genes, more
than just a p-value, that is essential to adequately study a biological problem [9,10]. Cer-
tainly, the difficulty would not arise if the number of randomizations in a Montecarlo test
were sufficiently large. Indeed, the result of the p-value when the number of randomisation
is large enough is considered as the most accurate estimation we can get from the given
data. What our method intends to do is to get the best possible approximation to this limit
value without performing an unfeasible number of simulations.

The null hypothesis of no differential expressions per feature can be tested using
permutation tests. As stated before, this is a reliable, albeit computationally intensive,
choice. Given an experimental design and a statistical test, the researcher tests the null
hypothesis of no differential expression for a given feature against the alternative hypoth-
esis of existence of a differential feature, i.e., the studied feature is associated with the
experimental design. A random permutation of the label–sample correspondence produces
a different dataset, and therefore a different p-value using the same statistical test. Ob-
viously, if we consider B permutations of the label-sample correspondences, B different
p-values are obtained (p1, . . . , pB). We denote as p0 the p-value obtained using the original
sample classification, i.e., the original dataset. This comment applies to both the simplest
experimental design where paired or independent samples are compared but also to more
complex designs where some null effect (coefficient) is tested.

The widely used procedure to test the significance of the feature consists in the
comparison between p0 and p1, . . . , pB and the usual method of comparison relies on
counting the number of pi’s with a value less than p0, which is used to get the Montecarlo p-
value. This is a p-value conditioned to the observed data and to the null distribution used to
randomize the sample–treatment correspondence. It is a solid and useful approach but has
a major drawback: This Montecarlo p-value can only take a small number of values, indeed
only B + 1 different values. If the procedure is repeated many times (multiple comparisons)
the same p-value will be obtained many times so a final ordering using them will produce a
great number of ties. Our aim in this paper is to use the same robust procedure while doing
the final comparison with a method that increases the discrimination between otherwise
equivalent randomizations.
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2. Materials and Methods
2.1. Modelling Montecarlo p-Values

As will be stated in Section 2.3, we have paired and non-paired datasets. A statistical
test is chosen for testing the null hypothesis of no differential expression. Whatever
the statistic used, t0 will be its value obtained using the original sample classification.
The values t1, . . . , tB are the corresponding observed statistics for the B randomised sample
classification. The randomisation distribution takes into account the experimental design.
The Montecarlo p-value ([3,6]) is defined as

p =
#{i : |ti| > |t0|}

B + 1
. (1)

It is assumed a two-tail distribution and that values with a large absolute value
correspond to the alternative hypothesis. The Montecarlo p-value is certainly a p-value
under the null hypothesis of no differential expression because we assume that all possible
orderings of {t0, t1, . . . , tB} have the same probability, which is 1/(B + 1). Instead of using
the formerly defined Montecarlo p-value, a common practice consists in using the Z-scale.
Let Φ be a cumulative distribution function, either that of the standard normal distribution
or of other continuous distribution; then, for each observed statistic ti we define

ui = 2 min{Φ(ti), 1−Φ(ti)}. (2)

In general, if we consider the observed ti values as samples of a random variable T
we have the following transformation

U = 2 min{Φ(T), 1−Φ(T)}. (3)

Under this transformation an equivalent definition of the Montecarlo p-value is

p =
#{i : ui < u0}

B + 1
. (4)

These p-values or the corresponding adjusted p-values are used to order the different
features evaluated, which in this way become ranked. The following comment is the moti-
vation of this paper. Note that a Montecarlo p-value obtained from B replications can take
only one of the values in {0, 1/(B + 1), . . . , 1} (considered as a p-value, as in Equation (1))
or their corresponding transformed values, as in Equation (4). However, whatever the
case, there are only B + 1 possible values. Moreover, note that the number of features is
N and let us remember that N uses are in the range of from a few thousand to almost a
million (for instance, in methylation studies). On the other hand, the number of replica
B uses is about one hundred (generally, no more than one thousand). In the unrealistic
case of the observed p-values being uniformly distributed (under the null hypothesis of no
differential expression) the mean number of values equal to each possible p-value would
be N/(B + 1) which would be the average number of ties. Moreover, even more ties will
appear if the distribution is not uniform. In our opinion, a basic result in a differential
expression analysis has to be the final ordering of the genes or features studied. It is clear
that doing that only using the Montecarlo p-value of Equation (1) or Equation (4) does not
allow a sensible order.

2.2. Our Approach

The idea proposed is as follows. The Montecarlo p-value depends only on the number
of simulations and on the number of generated ui values which are smaller than the original
u0. It does not depend on the relative location of these generated ui’s with respect to u0.
To highlight the consequences of this let us consider two synthetic examples of extreme
situations, both with u0 = 0.03. In the first situation all ui’s are greater than u0 and also
very close to 1. In the second situation all uis are greater than u0, too, but in the interval
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[0.031, 0.032]. In both cases the Montecarlo p-values are zero but clearly the second situation
shows that u0 is not so extreme. It is natural to define some kind of score to distinguish
both situations.

Our approach will assume that even the distribution of the random variable U defined
in Equation (3) is strictly unknown. We have to take into account that the tests are applied
to each row in the expression matrix, i.e., thousands of tests. Any distributional assumption
done for all rows is not tenable, i.e., we cannot assume a common cumulative distribution
function Φ. This is why we propose the beta distribution just as an approximate and
convenient null distribution. We are not assuming that the distribution of U is a beta
distribution (which is not true). However, we believe that this family of distributions is
general enough to approximate the real unknown distribution of the statistic U, just as a
simple approximation. Note that the support of the distribution of U is the unit interval
[0, 1]. Whatever its real null distribution would be, it can be reasonably approximated by a
beta distribution with appropriate α and β values. In particular the uniform distribution in
the unit interval corresponds to α = β = 1 as is well known. From a probabilistic point of
view this is a reasonable assumption that will be discussed in Section 4. Let us remember
that a random variable follows a beta distribution with parameters (α, β), U ∼ Be(α, β),
when its density function is f (u|α, β) = 1

Be(α,β)uα−1(1− u)β−1, for 0 ≤ u ≤ 1 and zero
otherwise; the parameters are positive real numbers, α, β > 0 and the normalisation factor,
the beta function, is defined as Be(α, β) =

∫ 1
0 uα−1(1− u)β−1du. This is a distribution

suitable to model data in the unit interval [0, 1] with great flexibility.
We will have random variables U0, U1, . . . , UB corresponding to the original sample

classification and to the B replications of the null distribution chosen. This sample will
be considered as independent and identically distributed random variables with a beta
distribution. Since the p-values are in the unit interval [0, 1], and since this family of
distributions is sufficiently flexible, we consider it as a suitable model for a lot of different
datasets, as long as the α and β parameters are correctly estimated. For the given U0 = u0,
we are interested in

γ(u0) = P(U < u0|α, β) =
∫ u0

0
f (u|α, β)du. (5)

We will call score to γ(u0). Really, the Montecarlo p-value defined in (4) is just an
estimator of γ(u0) without any distributional assumption, i.e.,

γ̂(u0) =
1

B + 1

B

∑
i=1

1[0,u0]
(Ui), (6)

where, for a set S, 1S is defined as 1S(u) = 1 if u ∈ S and zero otherwise. The natural
estimator for γ(u0) assuming a beta distribution for the p-value would be

γ̂(u0) = P(U < u0|α̂, β̂) =
∫ u0

0
f (x|α̂, β̂)dx. (7)

where (α̂, β̂) are estimated using the observed u1, . . . , uB.
The parameters (α, β) were estimated using two methods: The maximum likelihood

estimator and the moment estimator [11]. Both estimation methods were implemented in
C++ and included as part of an R-package publicly accessible. Furthermore, it is possible to
obtain a confidence interval for the score defined in Equation (7) by using the delta method
([12], p. 587). The confidence region for (α, β) will produce a confidence interval for γ(u0)
given by

h(α̂, β̂)± n−3/2Z1−α/2∇h(α̂, β̂)′ I(α̂, β̂)−1∇h(α̂, β̂).

where Z1−α/2 is the 1− α/2-quantile of the standard normal distribution, the function
h is defined as h(α, β) =

∫ p0
0 f (x | α, β)dx, and the ∇ operator is the gradient given by
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the partial derivatives of h with respect to its variables (α, β). Full details are included in
Appendix A.

The procedure will estimate the score γ (in fact, an estimation of the p-value) for each
gene and it will order the genes according to such score. For the practical applications
that will be described in Section 2.3 we will consider experiments with two conditions.
Either a paired or a non-paired t-test has been used according to the experimental design.
If n denotes the total number of cases plus controls, keeping constant the number of cases
(let it be n1, and therefore, the number of controls is n2 = n− n1) a random choice of n1
elements among n is generated and considered a random selection of cases. Each random
selection will produce a different statistic and a p-value. Let t0 and p0 be the statistic and
p-value obtained with the true classification of cases and controls and let (ti, pi) be the
corresponding values observed for the i-th random selection. To order the genes a beta
distribution will be adjusted per gene, and then the estimate will be calculated as stated
before. For the transformation between raw p-values and integrated p-values or score
(Equation (4)) two Φ functions were considered: The cumulative distribution functions of
a standard normal distribution and of a t-distribution with the right number of degrees of
freedom assuming a common variance. Additionally the means were compared using a
moderated t-test [13].

2.3. Applications to Omics Data

Different applications of the just proposed score to three types of omics data are pro-
vided. All these datasets can be downloaded from the public repositories Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/, accessed on 5 June 2021), Sequence
Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra, accessed on 5 June 2021 ) and
The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/, accessed on 5 June
2021 ). For all example datasets two level experimental factor is considered indicating
whether each sample corresponds to healthy or to cancerous colorectal tissue. The file
SupplementaryMaterialData.pdf, provided in the Supplementary Material, contains a
detailed description of where to find and how to preprocess the different datasets.

• RNA-Seq data: Three RNA-seq paired datasets were analyzed. Two of them corre-
spond respectively to the Bioprojects PRJNA413956 [14] and PRJNA218851 [15] and
the third is a dataset with 50 pairs of preprocessed data (count files) obtained from the
TCGA (see Table 1, experiments 25 to 27).

• Methylation data: The Infinium DNA MethylationEPIC assay GSE149282 dataset ([16])
was included as example of differential methylation analysis. The MethylationEPIC
array includes 850,000 methylation sites (CpGs) across the genome at single-nucleotide
resolution. The dataset is made with 24 colorectal cancer (CRC) and normal adjacent
colon from 12 patients. See Table 1 (experiment 24).
We compare the results obtained using the score with the moderated t-test ([13],
implemented in [17]).

• Microarray data: The expression array datasets were downloaded from GEO [18],
by searching the terms “expression profiling by array”, “Homo sapiens”, “tissue”,
“colorectal cancer NOT cell line”. This query returned 218 results (to date 15 May
2019). Of these, 195 datasets were excluded because of xenografts, organoid culture,
Superseries, NanoString platform and others. Finally 21 datasets corresponding
to case/control samples obtained directly from patients were included; from these
datasets, 9 were paired, i.e., healthy and cancerous samples from the same patient, and
the other 12 were non-paired studies, i.e., those with independent samples (see Table 1,
experiments 1 to 23. Datasets 20 and 22 were discarded afterwards and therefore were
not included in the table).

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/sra
https://cancergenome.nih.gov/
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Table 1. Summary of datasets included in the analysis for testing the proposed method.

Experiment ID Type Platform Samples

1 GSE110223 [19] paired hgu133a 26

2 GSE110224 [19] paired hgu133plus2 34

3 GSE15960 [20] paired hgu133plus2 12

4 GSE20916 [21] non-paired hgu133plus2 145

5 GSE21510 [22] non-paired hgu133plus2 148

6 GSE23878 [23] non-paired hgu133plus2 59

7 GSE24514 [24] non-paired hgu133a 49

8 GSE32323 [25] paired hgu133plus2 34

9 GSE33113 [26] non-paired hgu133plus2 96

10 GSE37364 [27] non-paired hgu133plus2 52

11 GSE41258 [28] non-paired hgu133a 240

12 GSE4183 [20] non-paired hgu133plus2 38

13 GSE44076 [29] paired hgu219 196

14 GSE44861 [30] paired hgu133a 94

15 GSE49355 [31] non-paired hgu133a 38

16 GSE77953 [32] non-paired hgu133a 30

17 GSE8671 [33] paired hgu133plus2 64

18 GSE9348 [34] non-paired hgu133plus2 82

19 GSE19249 [35] non-paired hgu133a2 23

21 GSE41328 [36] paired hgu133plus2 10

23 GSE18105 [37] paired hgu133plus2 34

24 GSE149282 [16] paired Infinium MethylationEPIC 24

25 PRJNA413956 [14] paired Illumina HiSeq 3000 14

26 PRJNA218851 [15] paired Illumina HiSeq 2000 36

27 TCGA COAD paired RNA-Seq (not provided) 100

3. Results
3.1. Comparison between Conventional Montecarlo p-Value and the Score

To compare the Montecarlo p-value and the score, we selected genes that are differen-
tially expressed in most colorectal cancer studies according to the literature, for instance
MYC, CD44, OLFM4 and other genes (see Supplementary Material).

There are three different choices of the proposed method that have to be evaluated:
The use of a t-Student vs. normal distribution for the transformation between the raw
p-values and the score, the number of randomizations and the way to generate them
(between-pair or complete). These possibilities were evaluated for the Montecarlo p-value
and the score. The number of randomizations to be executed, B, is relevant since the
development of a computationally feasible approach is one of the objectives. For each
experiment analyzed, B values from 10 to 1000 in steps of 10 were tested.

A representative example of the results is included in Figure 1 which shows the results
of the MYC gene in experiment 1 (all results for each gene in each experiment are included
in the Supplementary Material). In general, no differences were observed when using the
t-Student distribution (Figure 1A) vs. normal (Figure 1B) distribution. On the other hand,
major differences were found when the between-pair randomization (Figure 1A,B) was
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compared to complete randomization (Figure 1D,E). Regarding the number of simulations
B (Figure 1C,F), the Montecarlo shows a greater variability than the beta distribution.
Furthermore, it is not necessary to perform a large number of simulations to reach a value
similar to the one obtained with the maximum B = 1000 evaluated. Indeed, from a small
number of simulations and up, the value remains sufficiently stable.

Figure 1. Comparison between the score and Montecarlo p-value using MYC gene results in the GSE110223 dataset as
an example. For each plot, the Montecarlo p-value (blue) and the score (red) are displayed with respect to the number
of randomizations. (A) Results obtained using the t-Student distribution and between-pair randomization. (B) Results
obtained using normal distribution and between-pair randomization. (C) The plot shown in (B), using an enlarged scale
to highlight the upper range. (D) Results obtained using t-Student distribution and complete randomization. (E) Results
obtained using normal distribution and complete randomization. (F) The plot shown in (E), using an enlarged scale to
highlight the lower range.

From a statistical point of view the natural randomization distribution would be the
between-pair randomization distribution because the original data in this example are
paired. The statistical practice suggests that in such cases the between-pair distribution
should provide a more powerful test. This is what it could be expected but surprisingly
the observed p-values for complete distribution in our data seem to perform better. This
particular gene is usually reported as associated with colorectal cancer. However, this
is not a gold standard (in fact, there is none), but can be used to evaluate the method.
The complete randomization distribution detects the gene, which does not happen with
the between-pair randomization distribution. This and other examples suggested that
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we recommend the complete against the between-pair distribution independently of the
original design.

Therefore, the parameters selected to be used in further experiments with the beta
distribution method were the use of a normal distribution for the transformation between
raw p-values and integrated p-values or score, the use of complete randomization and a
number of B = 300 simulations.

3.2. Simulation Study

A simulation study is proposed to evaluate the ability of the method to mark properly
the significance of a gene. Artificial data coming from a model that mimics a real experiment
will be generated but obviously the true significance of each fictitious gene is known. This
is done with the following steps:

1. A value for the false discovery rate (FDR) α is given.
2. For a given model, a realisation is generated.
3. The Montecarlo p-value, our proposed score and the p-value of the moderated t-test

are calculated. A number of simulations (from 100 to 1000) is used for the evaluation
of the Montecarlo p-value and of the proposed score.

4. The Benjamini–Hochberg correction will be applied to the three quantities evaluated
in step 3.

5. The features (genes) declared as significant will be compared with the (real) significant
features.

6. Steps 2 to 5 are repeated.

This experimental setup requires the generation of random but plausible matrices of
expression. In order to do so two different stochastic models have been implemented and
used. The first one has 200 significant genes and 800 non-significant genes. The expressions
of a non-significant gene are independent samples from a normal distribution with mean
20 and standard deviation 1 (N(20, 1)), whereas the expressions of a significant gene will
come from a normal, too, N(m, 1), as in the first condition but with mean m = 20 + δ for a
given positive δ. We will vary the value of δ from 0.01 to 4 in steps of 0.02. Additionally the
same number of observations are generated per condition. This sample size goes from 10 to
20 with unit increment. The number of replicas goes from 100 to 1000 with an increment of
100. Finally, different false discovery rates α were used from 0.001 to 0.05 with an increment
of 0.001.

The second stochastic model uses the gamma distribution instead of the normal
distribution. The parameters were chosen in such a way that we reproduce the habitual
setup, i.e., the expressions of a non-significant gene are independent samples from a gamma
distribution with mean 20 and standard deviation 1, whereas the mean of the first group
for significant features is equal to 20 and for the second group is m = 20 + δ (with δ taking
values from 0.01 to 4 in steps of 0.02). The variance is equal to 1 for both groups. The false
positive and false negative proportions were estimated (i.e., the type I and II errors).

Figure 2 is an example of this simulation; it displays the two types of errors estimated
for different experimental settings (the left column corresponds to type I error and the
right column to type II error) using a total of 100 simulations and a normal cumulative
distribution function. The two first rows correspond to α = 0.001, while the two last rows
correspond to α = 0.05. The first and third rows correspond to a number of samples per
group n1 = 10, whereas the second and fourth are for n1 = 20. The red, green and blue
lines correspond to the Montecarlo method, our score and the moderated t-test, respectively.
From the point of view of type I error, the performance of our score is very similar to the
moderated t-test with values smaller than the Montecarlo p-value. The behaviour for the
type II error is not so clear. When the groups compared have 20 values and FDR = 0.05
then practically there is no difference between the methods except that the Montecarlo
performs better for small differences between the means. A similar comment applies
for comparisons of groups of 10 values, although the observed differences are greater.
The performance of our score and that of the moderated p-values are very close. When
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smaller groups with 10 values are used, the Montecarlo p-value shows a lower type II error.
The differences are smaller for FDR = 0.05 than for FDR = 0.001.

In summary, our score improves the performance of the Montecarlo p-value for the
type I error and it shows a behaviour very close to that of the moderated the p-values. If
the type II error is considered, then the Montecarlo p-value shows the best performance
and then our score. Additional plots with comparable results are included in the file
SupplementaryMaterialAddons.pdf as supplementary material, in particular some GIF
animations showing the behaviour of both types of error are shown.

Figure 2. Cont.
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Figure 2. Type I (left column) and type II (right column) errors when comparing two groups of gamma distributed random
values. The difference between the means is the abscisa, δ. Please, notice the different scales in the Y-axis for types I and II.
First and third rows (respectively, second and fourth rows) correspond to two groups of 10 values (respectively, 20 values).
The two first rows (respectively, the two last rows) use a false discovery rate equal to 0.001 (respectively, 0.05).

The functions rArrayNorm and rArrayGamma included in the associated R package
OMICfpp2were used to generate the random expression matrices. The file fun-BetaMonteca
rlo20 contains the function doReplication used in the simulation study and the whole
code is included in the last section of SupplementaryMaterialMethods_BetaMonte
Carlo.pdf.

3.3. Using the Score with Real Datasets

Colorectal cancer datasets from different platforms were used to test the biological
effectiveness of the proposed approach.
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3.3.1. Using the Score for Multi-Cohort Analysis

The biological results of 21 colorectal cancer (CRC) datasets (see Table 1) were analyzed.
As stated before, a normal distribution, complete randomization and 300 realizations were
used. A total of 18 genes were found to be significant (score < 0.05) in all the microarrays
of gene expression experiments (see Table 2). With a less restrictive criterion (namely,
admit a gene if it was present in most of the studies, and missing in no more than two),
197 genes were significant since not all platforms include the same genes. With respect
to the genes of the first criterion, most of these 18 were reported associated to colorectal
cancer in experimental studies (see Section 4).

Table 2. The genes reported as significant in the 21 micro-array experiment analyzed using the beta
distribution approach.

Symbol Entrez ID Min Median Max

TGFBI 7045 0 0 0.0436
BTNL3 10,917 0 4.74 × 10−16 0.0169
RDH5 5959 0 9.99 × 10−16 0.0418
XPOT 11,260 0 2.66 × 10−15 0.0284

ACADS 35 0 3.62 × 10−14 0.0025
GCG 2641 0 1.40 × 10−13 0.0495

CXCL1 2919 0 2.70 × 10−11 0.0492
B3GALT4 8705 0 2.07 × 10−10 0.0333
LRRFIP2 9209 0 3.47 × 10−9 0.0407
CDHR5 53,841 0 4.28 × 10−9 0.0166
HHLA2 11,148 0 2.28 × 10−8 0.0202

PRKAR2B 5577 0 3.10 × 10−8 0.0335
HMGCL 3155 0 2.09 × 10−7 0.0475
FABP2 2169 0 6.20 × 10−7 0.0137
STAP2 55,620 0 9.48 × 10−7 0.0419
FXYD3 5349 0 9.48 × 10−6 0.0497
ANO10 55,129 0 4.99 × 10−6 0.0199

CKB 1152 0 0.00024 0.0401

3.3.2. Score vs. Moderated p-Value

The moderated t-test method included in [17], (limma) is the most used method for
statistical analysis of microarray datasets. Only the genes PRKAR2B and B3GALT4 were
reported as significant in the 21 experiments by using the limma model and these two
genes were also reported by our score (Table 2). Thus, the results obtained for genes in
the Table 2 in each experiment using both methods were contrasted (Figure 3). In general,
a clear pattern is observed through the experiments and for each gene using the proposed
score, whereas this does not happen in the p-value of the moderated t-test method.

3.3.3. Using the Score on Different Platforms

The infinium methylationEPIC array with 850,000 methylation sites throughout the
human genome was analyzed using the score. The method proved to be efficient at
analyzing the variables in a short period of time, without ties and with coherent biological
results. Figure 4 displays our score versus the p-values using the well established method
limma. The observed correlation is 0.96. Note that our approach does not need the
parametric hypothesis.

Three RNA-Seq datasets were included in the analysis. The RNA-Seq data are counts.
The top ten genes reported as differentially expressed in the PRJNA413956 experiment
were ETFDH, RPSAP48, IPO7P2, CEMIP, LILRB5, KIFAP3, ENC1, LILRB5, TROAP and
SMG9. For PRJNA218851 dataset were the genes OTOP3, BEST4, SPIB, HAUS6P3, UNC5C,
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OTOP2, CA7, SALL4, SH2D6 and ETV4. In both cases, the genes have previously been
linked to CRC and other cancers, but new genes are also identified, which are reported to
be associated with CRC here for the first time. Regarding the results obtained for the TCGA
data, 3567 zeros were obtained, which does not allow order concerning the genes in this
case. This also occurred with some of the microarray experiments, curiously, with larger
sample sizes. To solve this problem, bootstrap were carried out, reducing the number of
ties from 3567 to 195. More experiments are necessary to refine this option when the ties
do not allow order concerning the significant genes.

Figure 3. Comparison between common significant genes using the moderated p-value and our score. The 18 genes were
reported with a score < 0.05 and with a moderated p-value < 0.05. The cut off for score (A) and moderated t-test (B) are
indicated by the vertical red dashed line in the density plot. All genes were represented across the 21 datasets with the
corresponding score (C) and p-value (D).
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Figure 4. Comparison between our score and p-values obtained using the method limma for the
infinium methylationEPIC array.

4. Discussion

The major aim of the paper is to propose a score for ordering omics features (gene
expression, methylation levels, etc.). It is proposed as an improvement of the usual
Montecarlo p-value. It is closely related with it but improves the use of the randomization
p-values. This is the focus of the paper. Both approaches have been compared with a well
established methodology, the moderated t-test.

The expression data that come from microarrays and similar techniques have a high
level of noise and masking between different effects. Therefore, comparisons between
experiments performed in different although similar conditions might be biased which
implies that the obtained p-values should be taken cautiously. Nevertheless, the relative
importance of the expression of a gene in relation with the others in the same experiment is
likely to be more meaningful, and therefore ordering is a key issue to be considered.

The central idea is to assume that p-values can be considered as samples that come
from a beta distribution. We think that, given the flexibility of this family of distributions,
the assumption is tenable. It is true that, if some knowledge of the underlying distribution
of the given data were available, tailoring the distribution would be the obvious choice.
However, in real situations the use of a beta distribution provides us a powerful tool. It is
reasonable to wonder if the family of distributions covered by a beta family is flexible
enough, i.e., if multimodal distributions could not be better fitted by something more
complex like a mixture of beta distributions. Following the parsimony principle (use the
simplest possible model that accounts for the data) we decided not to do so, since the
results seem sensible. Nevertheless, this is a possibility to be explored in further work,
taking into account the balance between goodness of fit and model complexity.
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The raw statistics are transformed by a link function in order to obtain the p-values.
These link functions are cumulative distribution functions. The score proposed is to be
used mainly for ordering purposes. Nevertheless, the simulation study shows that if it
is used as a p-value, the type I and type II errors are similar to those obtained with the
moderated p-values, and both are different from the Montecarlo method. Notice that
these results were obtained with fewer simulations i.e., less computational workload (with
respect to the Montecarlo method) and without explicit assumptions about the specific
distribution followed by the data (with respect to the moderated p-values method).

Moreover, the first step of the method used a t-test statistic, but it is worth mentioning
that any other statistic could have been used, too. With respect to the practical application
of the method, the cumulative distribution function used as a link does not seem to be
crucial since similar results have been obtained using the distribution function of standard
normal and of the t-Student distribution.

With respect to computation time, the method was programmed in C++ and auto-
matically uses threads in several process units/cores if they are available, which makes it
efficient, but it has been embedded into an R package to be called from R code, which makes
it easier to use. The fact of being able to obtain good orderings with a relatively low number
of randomizations constitutes an advantage with respect to the Montecarlo method.

Further, when paying attention to the generated ordering in a given experiment, our
method is better than the classical Montecarlo method.

Finally, we proposed a pattern made of 18 genes that, using our approach, appear
differentially expressed in the multi-cohort colorectal cancer datasets analysed. Most of
these genes were found significant by validation in the relevant bibliography, for instance,
PRKAR2B and B3GALT4 were found to be differentially expressed in all experiments, both
using limma and our approach. The protein kinase cAMP-dependent type II regulatory
subunit beta (PRKAR2B), has been associated with cancer [38], including colorectal cancer,
in more than 50 publications. The B3GALT4 gene has been associated with the prognosis of
colorectal cancer [39]. Other genes identified only by our score as the transforming growth
factor beta induced (TGFBI) [40] or CXCL1 [41] are also widely related to cancer. Therefore,
we consider it interesting to evaluate their joint biological function and their diagnostic
value in subsequent studies, since the novel approach proposed here obtains reproducible
results between experiments.

5. Conclusions

The approach proposed in this paper has shown a better performance than the Monte-
carlo p-values but with much fewer simulations and, differently to other methods, namely
moderated t-test, without additional assumptions. It obtains reliable biological results in
multiple platforms of omics data and across different experiments.
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Appendix A

The following equations show in detail how to obtain the confidence interval men-
tioned in former sections.

Theorem A1. The confidence interval for γ is given by

h(α̂, β̂)± n−3/2Z1−α/2∇h(α̂, β̂)′ I(α̂, β̂)−1∇h(α̂, β̂).

where Z1−α/2 is the 1− α/2 quantile of the standard normal distribution.

Proof. If we denote the density of the beta distribution as

f (x|α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 = Be(α, β)xα−1(1− x)β−1.

then the log-likelihood for a single observation is given by

L(α, β) = α log x + β log(1− x)− log Be(α, β).

The first partial derivatives with respect to each variable are:

∂ log L
∂α

= log x− Γ′(α)
Γ(α)

+
Γ′(α + β)

Γ(α + β)
, (A1)

∂ log L
∂β

= log(1− x)− Γ′(β)

Γ(β)
+

Γ′(α + β)

Γ(α + β)
. (A2)

The second-order partial derivatives are:

I11 =
∂2 log L

∂α2 =
Γ(α + β)Γ′′(α + β)−−(Γ′(α + β))2

(Γ(α + β))2 − Γ(α)Γ′′(α)−−(Γ′(α))2

(Γ(α))2 , (A3)

I22 =
∂2 log L

∂β2 =
Γ(α + β)Γ′′(α + β)−−(Γ′(α + β))2

(Γ(α + β))2 − Γ(β)Γ′′(β)−−(Γ′(β))2

(Γ(β))2 , (A4)

I12 = I21 =
∂2 log L

∂α∂β
=

Γ(α + β)Γ′′(α + β)−−(Γ′(α + β))2

(Γ(α + β))2 . (A5)

The Fisher information matrix is I(α, β) = [Iij]i,j=1,2. If we replace in it the unknown
parameters α and β by those evaluated at (α̂, β̂) we get the asymptotic covariance matrix
for the Maximum Likelihood Estimator (MLE) that appears in the multivariate version of
the delta method [12]. In fact, we have that

(α̂, β̂) ∼ N2((α, β),−(nI(α, β))−1).

However, since we are really interested in the estimation of

γ = h(α, β) =
∫ p0

0
f (x|α, β)dx, (A6)
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for a given p0, we will apply the delta method using the scalar function h just
defined obtaining

√
n(h(α̂, β̂)− h(α, β)) ∼ N(0,∇h(α, β)′Σ∇h(α, β),

where Σ = −nI(α, β)−1. To apply this expression we need an estimator of ∇h. The partial
derivatives are given by

∂h
∂α

=
∫ p0

0

∂ f (x|α, β)

∂α
dx and

∂h
∂β

=
∫ p0

0

∂ f (x|α, β)

∂β
dx,

but

f (x|α, β) =
(1− x)(β−1)

Γ(β)x
· Γ(α + β)xα

Γ(α)
=

x(α−1)

Γ(α)(1− x)
· Γ(α + β)(1− x)β

Γ(β)

and then

∂ f (x|α, β)

∂α
=

(1− x)(β−1)

Γ(β)x

[
(Γ′(α + β)xα + xα log xΓ(α + β))Γ(α)− Γ(α + β)xαΓ′(α)

Γ(α)2

]
.

Note that Γ′(y) = Γ(y)ψ0(y) where ψ0(y) is the digamma function defined as

ψ0(y) =
d

dy
log(Γ(y)) =

Γ′(y)
Γ(y)

.

Finally, we have

∂ f (x|α, β)

∂α
=

(1− x)(β−1)xα

Γ(β)xΓ(α)
(Γ(α + β)ψ0(α + β) + log xΓ(α + β)− Γ(α + β)ψ0(α))

=
Γ(α + β)xα−1(1− x)β−1

Γ(α)Γ(β)
(ψ0(α + β)(1 + log x)− ψ0(α))

= f (x|α, β) · (ψ0(α + β)(1 + log x)− ψ0(α)). (A7)

Analogously

∂ f (x|α, β)

∂β
= f (x|α, β) · (ψ0(α + β)(1 + log(1− x))− ψ0(β)). (A8)

Then

∂h
∂α

= (ψ0(α + β)− ψ0(α))
∫ p0

0
f (x|α, β)dx + ψ0(α + β)

∫ p0

0
f (x|α, β) log xdx, (A9)

and

∂h
∂β

= (ψ0(α+ β)−ψ0(β))
∫ p0

0
f (x|α, β)dx +ψ0(α+ β)

∫ p0

0
f (x|α, β) log(1− x)dx. (A10)

As a last step, it will be needed to estimate the values of
∫ p0

0 f (x|α, β) log xdx and∫ p0
0 f (x|α, β) log(1 − x)dx. Note that we have the following Taylor series: log(x) =

∑n≥1
(−1)n

n (1− x)n and log(1− x) = −∑n≥1
xn

n . If we denote the incomplete beta function
B(x; α, β) =

∫ x
0 uα−1(1− u)β−1du then the above Taylor series can be applied leading to

∫ p0

0
f (x|α, β) log xdx =

Γ(α + β)

Γ(α)Γ(β)

+∞

∑
n=1

(−1)n

n
B(p0; α, β + n). (A11)
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Analogously

∫ p0

0
f (x|α, β) log(1− x)dx = − Γ(α + β)

Γ(α)Γ(β)

+∞

∑
n=1

1
n

B(p0; α + n, β). (A12)

Therefore, the confidence interval for γ with a confidence level of 1− α will be

h(α̂, β̂)±
√

nZ1−α/2∇h(α̂, β̂)′ I(α̂, β̂)−1∇h(α̂, β̂).
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