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Abstract: In this paper we present a two parameter family of differential equations treated by Jacopo
Riccati, which does not appear in any modern repertoires and we extend the original solution method
to a four parameter family of equations, translating the Riccati approach in terms of Lie symmetries.
To get the complete solution, hypergeometric functions come into play, which, of course, were
unknown in Riccati’s time. Re-discovering the method introduced by Riccati, called by himself
dimidiata separazione (splitted separation), we arrive at the closed form integration of a differential
equation, more general to the one treated in Riccati’s contribution, and which also does not appear in
the known repertoires.
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1. Introduction

Given a scalar ordinary differential equation in normal form, say

y′ = ω(x, y), (1)

where we assume the usual existence and uniqueness conditions, i.e., ω : Ω ⊂ R2 → R is
a Lipschitz-continuous function and Ω is an open set, it is well known that the problem
of representing its solutions in terms of elementary, or special, functions is, in general,
analytically intractable. In some well known and particular situations, this representation is
possible, according to some specific structure of the equation itself. Among the elementary
solution methods, the most advanced is that of the search for an integrating factor, which,
as we know, is related to the determination of a Lie symmetry, see [1] Section 2.5. When
the integrating factor depends on both variables (x, y) some old-school texbooks like,
for instance, [2] pages 50–51 or [3] pages 53–55, seek for the integrating factor using an
“inspection method”, useful when the given equation presents a particular structure. This
special technique has a long, and probably forgotten, history. It was, in fact, introduced
by the Italian mathematician Jacopo Francesco Riccati (1676–1754) and was published
posthumously in 1761, in the first [4] of four tomes of Riccati, Opera Omnia, dedicated to
his lectures on differential equations. Riccati called his method “dimidiata separazione”
which can be translated as splitted separation. This paper is devoted to one particular
family of equations studied by Riccati, revisiting it in terms of Lie symmetry and using the
2F1 Gauss hypegeometric function to express in closed form its integral curves. Moreover,
using Lie symmetry we solve a more general equation of the same kind.

2. Materials and Methods
2.1. The Original Equation

The equation proposed by Riccati, written in Pfaffian form, is:

ym(x dx + y dy) = xn(y dx− x dy). (2)
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Here follows Riccati’s argument, given in modern terms; the original source, reference [4]
page 486, is shown in Figure 1. The strategy is to seek for the primitive of the two differential
forms, which appear in (2). The first step consists in writing (2), dividing both sides for y2:

ym−2(x dx + y dy) = xn (y dx− x dy)
y2 . (3)

Figure 1. Riccati original treatment of (2).

In terms of total diffentential D f = fxdx + fydy, we can consider Equation (3) using
the following identities:

D
(

1
2
(x2 + y2)

)
= x dx + y dy, D

(
x
y

)
=

y dx− x dy
y2 .

It is, then, natural to introduce the change of variables

q = q(x, y) =
x
y

, p = p(x, y) =
√

x2 + y2. (4)

To transform Equation (2) via this change of variable, we first write it in normal form:

y′ =
xny− xym

ym+1 + xn+1 . (5)

For n = m (5) obviously reduces to a homogeneous equation, solvable by elementary
methods, whose solution is defined by:

∫ y
x

y0
x0

1 + un+1

un(1 + u2)
du = ln

x0

x
. (6)

We, thus, may assume m 6= n. Therefore, the change of variable (4) leads to the
transformed equation

dp
dq

=
Dx[p(x, y(x)]
Dx[q(x, y(x)]

=
y(x)2(x + y(x)y′(x))

(y(x)− xy′(x))
√

x2 + y(x)2
,
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but, since y′(x) is provided by (5), we obtain:

dp
dq

=
xny2−m√

x2 + y2
.

Expressing the original variables (x, y) in terms of (p, q), that is, inverting (4):

x =
p q√

1 + q2
, y =

p√
1 + q2

,

we arrive at the transformed equation

dp
dq

= p−m+n+1qn
(

1 + q2
)m

2 −
n
2−1

, (7)

which is separable, so that the integration of (5) is, as a matter of fact, completed.

2.2. Approach Via Lie Theory

We skip the computation of the integrals generated by (7) since, in view of solving a
more general family of equations, we will integrate (5) using the infinitesimal generator of
the Lie group of symmetries associated to (5). This means (see [1] page 30 Equation (2.57))
that, given Equation (1), if we are able to find two functions ξ(x, y), η(x, y) verifying the
linearized symmetry condition:

η′x +
(

η′y − ξ ′x

)
ω− ξ ′xω2 − ξ ω′x − η ω′y = 0, (8)

it is possible to obtain the canonical coordinates associated with (5); see for instance [1] (p. 24).
We can formulate the following theorem, which describes the quadrature formula for

the solution of the differential Equation (5).

Theorem 1. If n, m are real numbers such that n 6= m and if (x0, y0) lies in the positive quadrant,
then the integral curve of (5) which passes for (x0, y0) is implicitly defined by:

1
m− n

((
x2 + y2

)m−n
2 −

(
x2

0 + y2
0

)m−n
2
)
=
∫ x

y

x0
y0

un
(

1 + u2
)m−n−2

2 du. (9)

Proof. To integrate Equation (5), since we know the Riccati variable transformation, we
can use the method indicated in [1] page 26 in order to reconstruct the Lie symmetries
when canonical coordinates are given. In our situation we found that, defining

ξ(x, y) =
x

(x2 + y2)
m−n

2
, η(x, y) =

y

(x2 + y2)
m−n

2
, (10)

the linearized symmetry condition (8) is satisfied: This is a matter of algebraic computation.
We explain the “reverse enginerinng” procedure employed to obtain (10). Following
the argument of [1] page 26, if (X, Y) = (X(x, y), Y(x, y)) are canonical coordinates for
the differential Equation (5), expressing the original variables (x, y) in terms of (X, Y)
as x = f (X, Y) and y = g(X, Y) the invariance condition requires that the transformed
coordinates must satisfy the following translation property:{

x̂ = f (X(x, y), Y(x, y) + ε),
ŷ = g(X(x, y), Y(x, y) + ε).

(11)
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Now, also if it is not the case, we assume for a while the change of variable (4) as
canonical, and since for it we have

f (X, Y) =
XY√

1 + X2
, g(X, Y) =

Y√
1 + X2

,

thus, the expressions in the right hand side in (11) read as:
x̂ = x +

x ε√
x2 + y2

,

ŷ = y +
y ε√

x2 + y2
.

(12)

Differentiating with respect to ε (12) should provide, in case of canonical coordinates,
the infinitesimal generator of the Lie symmetries of the differential Equation (5). In our
situation from (12) we obtain:

ξ̆(x, y) =
x√

x2 + y2
, η̆(x, y) =

y√
x2 + y2

.

The couple (ξ̆, η̆) misses the linearized symmetry condition (8); in fact, the left hand
side of (8) evaluated when ξ = η̆ and η = η̆ is indeed:

(m− n− 1)ymxn
√

x2 + y2

(ym+1 + xn+1)
2 .

This means that (ξ̆, η̆) is the infinitesimal generator for (5) only in the particular
occurrence m = n + 1 and, more importantly, gives us the suggestion to look for an
infinitesimal generator of the form:

ξa(x, y) =
x

(x2 + y2)a , ηa(x, y) =
y

(x2 + y2)a ,

where a is a real parameter which we choose in order to meet condition (8). Thus, evaluating
the left hand side of (8) for (ξa, ηa), we get:

ymxn(−2a + m− n)
(
x2 + y2)1−a

(ym+1 + xn+1)
2 . (13)

It is clear that (13) is zero if m− n− 2a = 0 and this explains why (10) is the infinitesimal
generator of the Lie group of (5). Hence, using (10) we arrive at the canonical coordinates:

X(x, y) =
x
y

, Y(x, y) =
1

m− n
(x2 + y2)

m−n
2 .

Thus, differential Equation (5) is fully separated in:

Y′ = Xn
(

X2 + 1
) 1

2 (m−n−2)
. (14)

Hence, integrating (14), we obtain:

Y(X) =
∫ X

X0

un(1 + u2)
1
2 (m−n−2)du + Y0, (15)

where X0 = x0/y0. Formula (9) follows, turning back to the original variables (x, y).



Mathematics 2021, 9, 1312 5 of 10

Remark 1. Keeping in mind the elementary limit, for p, q > 0

lim
ε→0

p
ε
2 − q

ε
2

ε
=

1
2

ln
p
q

,

we can take the limit for m− n→ 0 in (9), obtaining

1
2

ln
x2 + y2

x2
0 + y2

0
=
∫ x

y

x0
y0

un
(

1 + u2
)−1

du,

which, after some elementary computations, agrees with (6).

3. Results
3.1. Hypergeometric Integrations

In some particular situations it is indeed possible to evaluate the integral at the right
hand side of (15) in closed form. To this aim, since some notions and terminology are
needed. For the sake of completeness, we recall the integral representation of the Gauss
hypergeometric function, which is, as is well known, defined in terms of power series,
which converges for |x| < 1

2F1

(
a, b
c

∣∣∣∣x) :=
∞

∑
n=0

(a)n(b)n

(c)n

xn

n!
.

When Re(a) > 0, Re(c− a) > 0 then 2F1 can be represented by the integral, see [5]
Section 2 Equation (30):

2F1

(
a, b
c

∣∣∣∣x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

sa−1(1− s)c−a−1

(1− sx)b ds. (16)

Equation (16) provides the analytical continuation of 2F1 to the complex plane exclud-
ing the half line (1, ∞); in the following we will use this fact. Thus integral (15) can be
evaluated in closed form, if the hypotheses of the integral representation (16) are fulfilled.

Theorem 2. If n, m are real numbers n 6= m and if n > −1 for any (x0, y0) in the positive quadrant,
then the integral curve of (5) which passes for (x0, y0) has equation Φ(x, y) = Φ(x0, y0) where:

Φ(x, y) =
n + 1
m− n

(
x2 + y2

)m−n
2 −

(
x
y

)n+1

2F1

(
n+1

2 , n−m+2
2

n+3
2

∣∣∣∣∣− x2

y2

)
. (17)

Proof. If n > −1 it is possible to invoke (16); in fact, we express the integral in the right
hand side of (15) as

1
2

(∫ X2

0
u

n−1
2 (1 + u)

m−n−2
2 du−

∫ X2
0

0
u

n−1
2 (1 + u)

m−n−2
2 du

)
+ Y0. (18)

Notice that we must assume the convergence of the integrand in the origin, which
is guaranteed by the assumption n > −1. Then, normalizing the integration intervals
with the change of variable s = X2σ and s = X2

0σ in the first and the second integral,
respectively, in (18) we use (16), to rewrite (14) as:

Y(X) =
1
2

(
2Xn+1

n + 1 2F1

(
n+1

2 , n+2−m
2

n+3
2

∣∣∣∣∣− X2

)
−

2Xn+1
0

n + 1 2F1

(
n+1

2 , n+2−m
2

n+3
2

∣∣∣∣∣− X2
0

))
+ Y0.

Going back to the original variables, we get Equation (17).
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Remark 2. Since the argument of 2F1 in (17) is strictly negative, and so we operate in the analytic
continuation of 2F1 itself, function Φ(x, y) is well posed in the interior of the first quadrant.

Remark 3. The hypergeometric structure of (17) allows algebraic implicit solutions of (5) provided
that the quantity (n + 2−m)/2 turns out to be a negative integer, so that the 2F1 collapses to a
polynomial, that, of course, is strictly connected to the fact that in this case integral (9) is computed
in terms of elementary functions. Other solutions of (17) expressible in terms of the elementary
transcendental occur for half integer values of n + 1/2 and (n + 2−m)/2. We provide a couple of
illustrative examples.

Example 1. For instance, for n = 2, m = 6 (17) allows algebraic solutions: in fact, the differential
equation for x0, y0 > 0 y′ =

x2y− xy6

x3 + y7 ,

y(x0) = y0,

has an implicit solution given by:

3
4

(
x2 + y2

)2
− 3x5 + 5x3y2

5y5 =
3
4

(
x2

0 + y2
0

)2
−

3x5
0 + 5x3

0y2
0

5y5
0

.

Of course, in this situation it is possible to represent the integral curves in polynomial form,
which in this case for simplicity we took x0 = y0 = 1:

30x2y7 + 15y9 − 12x5 + 15x4y5 − 20x3y2 − 28y5 = 0.

Example 2. If we take n = 2 and m = 3 in (17) relation

2F1

(
3
2 , 1

2
5
2

∣∣∣∣∣− z

)
=

3
2z3/2

(√
z(1 + z)− arcsinh

√
z
)

comes into play, see [6], http:// functions.wolfram.com/07.23.03.2889.01 (accessed on 5 June 2021),
so that the solution to y′ =

x2y− xy3

x3 + y4 ,

y(x0) = y0,

for positive initial data is:

(
2y2 − x

)√
x2 + y2

y2 + arcsinh
x
y
=

(
2y2

0 − x0
)√

x2
0 + y2

0

y2
0

+ arcsinh
x0

y0
.

If n > −1 hypotheses for the integral hypergeometric representation (16) are not
fulfilled, but it is still possible, and the second parameter m is chosen suitably to obtain a
hypergeometric representation of the solution of (5) as shown in the following Theorem 3.

Theorem 3. If n, m are real numbers n 6= m such that n ≤ −1 and m < 1 then for any
(x0, y0) in the positive quadrant, the integral curve of (5) which passes for (x0, y0) has equation
Ξ(x, y) = Ξ(x0, y0), where:

Ξ(x, y) =
1−m
m− n

(
x2 + y2

)m−n
2

+
( y

x

)1−m
2F1

(
1−m

2 , n−m+2
2

3−m
2

∣∣∣∣∣− y2

x2

)
. (19)

http://functions.wolfram.com/07.23.03.2889.01 
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Proof. Since we cannot use the integral representation to evaluate integral (15) we change
variable u = 1/v so that

Y =
∫ 1

X0

1
X

v−m
(

1 + v2
) 1

2 (m−n−2)
dv + Y0. (20)

At this point, integral (20) can be handled with the same technique used in Theorem 2
to arrive at thesis (19); we omit the computational details here.

Example 3. Taking n = −2, m = −3 differential Equation (17) becomesy′ =
y4 − x3

x2y + xy3 ,

y(x0) = y0,

and its solution via (19) is given by:

2x2 − x + y2

x
√

x2 + y2
=

2x2
0 − x0 + y2

0

x0

√
x2

0 + y2
0

.

3.2. A More General Equation

The use of the Lie symmetries, until now has not improved what Riccati found, if we
leave aside the hypergeometric integration of (14) that was of course unknown in Riccati’s
age. However, having a more general perspective enables the discovery of a richer family
of differential equations which can be treated with this method. Let r, s be two positive
reals and let m and n be two real numbers such that n 6= m. Consider the differential
equation in Pfaffian form:

ym D
(

1
r
(xr + yr)

)
= xn ys+1D

(
xs

sys

)
. (21)

Equation (21) can be written in normal form as

y′ =
xn+s−1y− xrym

ym+r + xn+s . (22)

We are in position to provide the generalization of Theorem 1.

Theorem 4. If n, m, r, are real numbers n+ r 6= m+ s and if (x0, y0) lies in the positive quadrant,
then the integral curve of (22) which passes for (x0, y0) is implicitly defined by:

1
m− n + r− s

((
x1+r + y1+r

)m−n+r−s
1+r −

(
x1+r

0 + y1+r
0

)m−n+r−s
2

)
=∫ x

y

x0
y0

un+s−1
(

1 + u1+r
)m−n−s−1

2 du.
(23)

Proof. The thesis follows observing that in this situation the infinitesimal generator of the
Lie group of transformation associated at the Equation (22) is

ξ(x, y) =
x

(xr+1 + yr+1)
m−n+r−s

r+1
, η(x, y) =

y

(xr+1 + yr+1)
m−n+r−s

r+1
. (24)
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Therefore the canonical coordinates are readily obtained:

Y(x, y) =
(xr+1 + yr+1)

m−n+r−s
r+1

m− n + r− s
, X(x, y) =

x
y

,

and using these coordinates Equation (22) is transformed into:

Y′ = Xn+s−1(1 + Xr+1)
m−n−s−1

r+1 . (25)

Equation (23) follows in a similar fashion as Theorem 2

Remark 4. For r = s = 1 Theorem 4 reduces to Theorem 1.

At this point it is also easy to generalize Theorem 2 using again the integral represen-
tation (16).

Theorem 5. n, m are real numbers n + r 6= m + s and assume:

n + s > 0. (26)

If (x0, y0) lies in the positive quadrant, then the integral curve of (22) for (x0, y0) has equation:

Ψ(x, y) = Ψ(x0, y0), (27)

where:

Ψ(x, y) = n+s
m−n+r−s

(
xr+1 + yr+1

)m−n+r−s
1+r −

(
x
y

)n+s

2F1

(
n+s
1+r , 1−m+n+s

1+r
n+r+s+1

r+1

∣∣∣∣∣− xr+1

yr+1

)
. (28)

Proof. To solve (22) we have to integrate the canonical (fully separated) differential Equa-
tion (25) and, as in Theorem 2, in order to express the integral in terms of 2F1 we need to
extend the integration interval including the origin and so we have to impose conditions
(see the right hand side of (23)) 1− n− s < 1 which is ensured by (26). Thus we can adapt
the argument of Theorem 2 to rewrite the right hand side of (23) as:

1
1 + r

(∫ X1+r

0

u
n−r+s−1

1+r

(1 + u)
n−m+s+1

r+1
du−

∫ X1+r
0

0

u
n−r+s−1

1+r

(1 + u)
n−m+s+1

r+1
du

)
+ Y0. (29)

Normalizing the intervals of integration on the right hand side of (29), we can use the
same argument of Theorem 2 to arrive at (28).

Example 4. We take, for instance, r = 2, s = 3, m = 2, n = 3 and the initial data x0 = 1, y0 = 2
(22) takes the form: y′ =

x5y− x2y2

x6 + y4 ,

y(x0) = y0.

Using (27) and (28) we can provide the solution in implicit form, which to the best of our
knowledge, is not yet reported in any repertoire and not obtainable via computer algebra:

2x3 + 3y3 + y

y(x3 + y3)
2/3 =

2x3
0 + 3y3

0 + y0

y0
(
x3

0 + y3
0
)2/3 ,
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or in algebraic form, for a suitable constant of integration c:(
2x3 + 3y3 + y

)3
= c3y3

(
x3 + y3

)2
.

In the case that integral representation condition (26) is not fulfilled, theorem (5) cannot
be invoked, but it is possible, using exactly the same techniques, obtain the analogous of
Theorem 3.

Theorem 6. If n, m are real numbers n + s 6= m + r such that n ≤ −s and if condition

m + r
1 + r

< 1, (30)

then for any (x0, y0) in the positive quadrant, the integral curve of (22) which passes for (x0, y0)
has equation Λ(x, y) = Λ(x0, y0), where

Λ(x, y) =
1−m

m− n + r− s

(
xr+1 + yr+1

)m−n+r−s
1+r

+
( y

x

)1−m
2F1

(
1−m
1+r , n−m+s+1

1+r
r−m+2

1+r

∣∣∣∣∣− y1+r

x1+r

)
.

(31)

Proof. Since in this situation the integrand at the right hand side of (23) is not integrable at
the origin we use, as we did in theorem 3, the variable transformation u = 1/v, obtaining:

Y−Y0 =
1

1 + r

∫ 1
X1+r

0
1

X1+r

v−
m+r
1+r

(1 + v)
n−m+1+s

1+r
dv. (32)

Condition (30) ensures the integrability at the origin of (32) and from this point
the same hypergeometric integration procedure can be repeated concluding the proof of
the theorem.

Example 5. Taking n = −4, m = −2, r = 1, s = 2 Equation (22) assumes the form

y′ =

y
x3 − x

y2

1
x2 +

1
y

= − x4 − y3

x3y + xy2 .

From (31) we infer that integral curves through (x0, y0) in the first quadrant are:

(
2x2 + y

)√
x2 + y2

x2 − arcsinh
( y

x

)
=

(
2x2

0 + y0
)√

x2
0 + y2

0

x2
0

− arcsinh
(

y0

x0

)
,

Notice that we used the identity:

2F1

(
3
2 , 1

1
5
2

∣∣∣∣∣− z

)
=

1
2

(
3
√

1 + z
z

− 3 arcsinh
√

z

z
3
2

)
,

see [6], http:// functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/07/07/
03/0012/ (accessed on 5 June 2021).

4. Discussion

Starting from a two parameter family of differential equations, (5), studied by Jacopo
Riccati in the second part of his treatise [4], we interpreted Riccati’s procedure in terms of
Lie symmetries, extending it to the more general four parameter family of Equation (22).
Once the canonical form of both families of equations has been obtained, see (14) and (25)

http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/07/07/03/0012/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/07/07/03/0012/
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providing quadrature relations, Theorems 1 and 4, we derive, where possible, through
integral representation of Gauss hypergeometric function 2F1, the explicit representation of
integral curves, Theorems 2, 3, 5 and 6. Finally, some particular cases have been highlighted
in which these representations are given in terms of algebraic curves or containing elemen-
tary transcendents. Note that none of the particular cases reported in the Examples 1–5
appear in specialistic repertories and are not obtainable via computer algebra. The latter,
however, greatly facilitated the search for infinitesimal generators (10) and (24) used in the
proofs of Theorems 1 and 4.

5. Conclusions

Hopefully the contribution made in this article is a prelude to further research develop-
ments in the field of ordinary differential equations, continuing the historical interpretation
approach adopted here, i.e., not limiting it to a chronological description of the results
obtained by the founding masters, but rather to mastering their techniques, in the light of
both the most recent knowledge, such as Lie symmetries, used in this article, and computer
algebra, which allows to tackle computational difficulties that could not be faced previously
and to consider generalisations of equations dealt with in the past.
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