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Abstract: A slime mould algorithm (SMA) is a new meta-heuristic algorithm, which can be widely
used in practical engineering problems. In this paper, an improved slime mould algorithm (ESMA)
is proposed to estimate the water demand of Nanchang City. Firstly, the opposition-based learning
strategy and elite chaotic searching strategy are used to improve the SMA. By comparing the
ESMA with other intelligent optimization algorithms in 23 benchmark test functions, it is verified
that the ESMA has the advantages of fast convergence, high convergence precision, and strong
robustness. Secondly, based on the data of historical water consumption and local economic structure
of Nanchang, four estimation models, including linear, exponential, logarithmic, and hybrid, are
established. The experiment takes the water consumption of Nanchang City from 2004 to 2019 as
an example to analyze, and the estimation models are optimized using the ESMA to determine
the model parameters, then the estimation models are tested. The simulation results show that
all four models can obtain better prediction accuracy, and the proposed ESMA has the best effect
on the hybrid prediction model, and the prediction accuracy is up to 97.705%. Finally, the water
consumption of Nanchang in 2020–2024 is forecasted.

Keywords: water demand estimation; slime mould algorithm; opposition-based learning; elite
chaotic searching strategy; parameters optimization

1. Introduction

Water is a very precious natural resource, even called the source of life. With the
continuous economic development and population growth, people’s demand for water is
also increasing. However, due to the long regeneration cycle of water, the contradiction
between the supply and demand of water resources is more and more tense, resulting in
a serious shortage of water resources. Therefore, the optimal and reasonable allocation
of water resources is the key to sustainable utilization of water resources [1]. Due to the
randomness of water consumption and the influence of the economy, population, and other
factors, water resources demand estimation has always been a very difficult problem.

At present, the methods of water resources prediction at home and abroad are var-
ied [2]. From the spatial and temporal scale of the forecast, it can be divided into a
short-term, medium-term, long-term, global, national forecast, and so on. From the range
of the forecast, it can be divided into the whole forecast and partial forecast. From the
approach of the forecast, it can be divided into grey correlation model [3], regression
analysis model [4], and neural network prediction model [5]. Although the traditional
forecast models can predict the demand for water resources by different approaches, the
low predicted accuracy of those models might not apply to solving practical problems.
Choosing the appropriate parameters in the models is an effective way to eliminate the
effect of sparsity and uncertainty of historical data, and improve the accuracy of predicted
results. The selection of parameters among so many candidates is a challenging task and
can be regarded as an optimization problem. Therefore, intelligent optimization algorithms
are used to solve such parametric optimization models. In order to effectively ameliorate
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the demand estimation of irrigation water, Pulido-Calvo and Gutiérrez-Estrada studied
a hybrid model based on genetic algorithm and computational neural network, as well
as fuzzy logic in [6]. Bai et al. [7] proposed a multi-scale urban water resources demand
estimation method based on an adaptive chaotic particle swarm optimization algorithm
to search weight factors. Romano and Kapelan [8] constructed a valid estimation model
with an average error of about 5% using evolutionary algorithms and artificial neural
networks. Similarly, Oliveira et al. [9] applied the harmonious search algorithm to the
short-term water demand estimation and searched the parameters in the model by us-
ing the harmony search (HS) algorithm. Swarm intelligence optimization algorithms are
research hotspots in the optimization field. Swarm intelligence optimization algorithms
simulate biological, social behavior, among which the most classic algorithm is particle
swarm optimization (PSO) [10]. In recent years, other swarm intelligence optimization
algorithms proposed include whale optimization algorithm (WOA) [11], gray wolf op-
timizer (GWO) [12], harris hawk optimization (HHO) [13], firefly algorithm (FA) [14],
manta rays foraging optimization (MRFO) [15], marine predators algorithm (MPA) [16],
slime mould algorithm (SMA) [17], etc. Among them, the SMA is a new meta-heuristic
algorithm proposed by Li et al. [17] in 2020, which is inspired by the diffusion and foraging
behavior of slime mould. The SMA algorithm has the advantages of strong global search
ability and strong robustness, so it has been applied to solve some practical engineering
optimization problems [18–26]. But at the same time, the SMA also has some defects, such
as low calculation accuracy and premature convergence on some benchmark functions. In
order to improve the convergence accuracy and speed of the algorithm, a new, improved
slime mould algorithm (ESMA) is proposed. In view of the four water resources estimation
models (linear, logarithmic, exponential, and hybrid) established in Nanchang City, the
ESMA is used to optimize the model parameters and test the models. In addition, the
ESMA is compared with other intelligent algorithms in the models, and the future water
consumption of Nanchang City in 2020–2024 is predicted.

The rest of this paper is organized as follows: In Section 2, an improved slime mould
algorithm (ESMA) is proposed. In Section 3, the ESMA is compared with the other six
optimization algorithms on 23 test functions, and the superiority of the ESMA is verified by
experiments. In Section 4, four estimation models of linear, logarithmic, exponential, and
hybrid are proposed to predict the water resources of Nanchang City. The ESMA is used to
optimize the model parameters, and the models are tested, and the simulation results and
discussion are given. Finally, the work is summarized in Section 5.

2. An Improved Slime Mould Algorithm
2.1. Slime Mould Algorithm

The slime mould algorithm (SMA) was proposed by Li et al. [17] in 2020, which was
inspired by the diffusion and foraging behavior of slime mould in nature. In this paper,
the “slime mould” refers to Physarum polycephalum, and the main study in this paper is
the nutritional stage of the slime mould, in which the organic matter in the slime mould is
responsible for finding, surrounding, and digesting food. The mathematical models for
these stages are shown below.

2.1.1. Initialization

A single objective optimization model can be represented by Equation (1),

min f (X)
s.t. lb ≤ X ≤ ub

(1)

where f (x) is the optimization function, and lb, ub ∈ Rd are the lower and upper bound of
the variable x ∈ Rd



Mathematics 2021, 9, 1316 3 of 26

For the above d-dimensional optimization problem, the initial slime mould population
with n individuals is a n × d matrix called X(0) = {X1, X2, · · · , Xn},. Each individual in
the population is a vector with d elements, which is initialized by Equation (2).

Xi = lb + rand·(ub− lb), i = 1, 2, . . . , n (2)

2.1.2. Approach Food

Since slime mould can approach food according to the smell in the air, and this
approach behavior can be expressed by the following formula,

X(t + 1)
{

Xb(t) + vb·(W·XA(t)− XB(t)), r < p
vc·X(t), r ≥ p

(3)

where, t represents the current iteration number, X represents the position of slime mould,
Xb is the individual position with the highest odor concentration, XA and XB are the two
individuals randomly selected from the population. The selection behavior of slime mould
is simulated by two parameters, vb and vc, and the value range of vb is [−a, a], vc decreased
linearly from 1 to 0. r is a random number between [0, 1], W represents the weight of the
search agent.

The formula of p is expressed as follows,

p = tanh|S(i)− DF|, i = 1, 2, . . . , n (4)

where, S(i) represents the fitness value of the current individual, and DF represents the
optimal fitness value in all the current iterations.

The expression of vb is as follows,

vb = [−a, a], a = arctanh(− 2
max_t

+ 1) (5)

where, max_t represents the maximum number of iterations.
The weight W is given as follows,

W(SmellIndex(i) =

1 + r· log
(

bF−S(i)
bF−wF + 1

)
, condition

1 + r· log( bF−S(i)
bF−wF + 1

)
, others

(6)

SmellIndex = sort(S) (7)

where, r is a random number between [0, 1], condition represents the first half of the
population. bF and wF, respectively, represent the optimal and worst value obtained in the
current iteration, and SmellIndex denotes the sequence of fitness values sorted (ascends in
the minimum value problem).

2.1.3. Wrap Food

This stage simulates the contraction mode of venous tissue structure of slime mould
mathematically when searching. The slime mould can adjust its search patterns according
to the quality of food. The specific mathematical formula of the slime mould updating its
position can be expressed as

X∗ =


rand·(ub− lb) + lb, rand < z

Xb(t) + vb·(W·XA(t)− XB(t)), r < p
vc·X(t), r ≥ p

(8)

where, ub and lb are the upper and lower bounds of the search space, respectively, rand
and r are random numbers between [0, 1]. z is a parameter of balancing algorithm’s
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exploration and exploitation capability, and different values can be selected according to
specific problems. In this paper, z is 0.03.

Algorithm 1 gives the pseudo-code of the SMA.

Algorithm 1. Slime mould algorithm

Input: Slime mould population Xi (i = 1,2, . . . ,n) and related parameters such as n, dim, max_t;
Output: Optimal fitness value best_fitness and the corresponding optimal position Xb.
While (t < max_t)

Check if solutions go outside the search space and bring them back
Calculate fitness values of all individuals, update the best and worst fitness value
Calculate the weight W according to Equation (6)
Record the best fitness best_fitness and the corresponding Xb
For each search agent

Update the value of vb, vc, and p
Update the individual position according to Equation (8)

End For
t = t + 1

End While

2.2. The Proposed Improved Slime Mould Algorithm
2.2.1. Opposition-Based Learning

According to the idea of opposition-based learning (OBL) [27,28], in the optimization
process, the current solution has a 50% probability of being far away from the optimal solu-
tion of the problem compared with its opposition solution. Therefore, selecting the better
individual from the current solution population and the opposition solution population as
the new generation population can accelerate the convergence to a certain extent, increase
the diversity of the population, and improve the performance of the algorithm.

Suppose that the size of the population is n, then the population is represented as
X = (X1, X2, · · · , Xn)′, ub and lb represent the upper and lower bounds of the search agent,
respectively. Let the algorithm generates n opposite solutions through the opposition-based
learning, then the opposite population can be represented as X̃ = (X̃1, X̃2, · · · , X̃n)′, the
specific calculation formula of opposition-based learning is

X̃i = lb + ub− Xi (9)

The fitness values of the current solution population X and the opposition solution
population X̃ were calculated, respectively. Among the 2n individuals composed of the
current solution population and the opposition solution population, that is X2n = {Xi, i =
1, · · · , n} ∪ {X̃i, i = 1, · · · , n}, n individuals with better fitness values were selected as the
new generation population.

2.2.2. Elite Chaotic Searching Strategy

Opposition-based learning strategy mainly emphasizes the exploration ability of
the algorithm, and to improve the exploitation ability of the algorithm, an elite chaotic
searching strategy is added. Through chaotic mutation of the elite individual, the algorithm
can further update the elite individual, this can improve the exploitation ability of the
algorithm. The specific update process for the elite chaotic searching strategy is as follows.

Firstly, the fitness value of all the individuals (n) in the current population are cal-
culated and sorted, and the first m(m = pr · n) individuals with better fitness value are
selected as the elite individuals of the current population, where pr ∈ [0, 1] is the se-
lected elite proportion, and pr = 0.1 in this paper. The selected elite individuals are
denoted as {EX1(t), EX2(t), · · · , EXm(t)}∈ {X1(t), X2(t), · · · , Xn(t)} and the upper and
lower bounds of the j-th dimension are respectively:{

Ebj(t) = max(EX1j(t), EX2j(t), · · · , EXmj(t))
Eaj(t) = min(EX1j(t), EX2j(t), · · · , EXmj(t))

(10)
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Then, the elite individuals are mapped from the search space to the interval [0, 1]
according to Equation (11), and the chaotic individuals Ci(t) = (Ci1(t), Ci2(t), · · · , Cid(t))
are obtained, where d is the dimension of individuals.

Ci(t) =
EXi(t)− lb

ub− lb
, i = 1, 2, · · · , m (11)

Logistic chaotic mapping is iterated for Cij(t) according to the following equation

Ck+1
ij (t) = µ · Ck

ij(t) · (1− Ck
ij(t)) (12)

where, i = 1, · · · , m; j = 1, · · · , d, constant µ = 4, k represents the number of chaotic
iterations, and kmax is the maximum number of chaotic iterations. In this paper, the
maximum number of current population iterations is taken as the maximum number of
chaotic iterations.

When the chaotic iteration reaches kmax, the chaotic individual Ckmax
ij (t) are mapped

to [Eaj(t), Ebj(t)] according to the following formula to get the i-th new elite individual
ECij(t).

ECij(t) = Ckmax
ij (t) · (Ebj(t)− Eaj(t)) + Eaj(t) (13)

Finally, a greedy selection is made between the elite individuals ECi(t) and EXi(t),
and the individuals with better fitness value are selected to enter the next generation, i.e.,

EXi(t) =
{

EXi(t) f (EXi(t)) ≤ f (ECi(t))
ECi(t) f (EXi(t)) > f (ECi(t))

(14)

Due to the introduction of chaotic mutation in the strategy, the randomness of the
position of the elite individuals is enhanced, and the local search ability of the algorithm
is improved accordingly. The greedy selection of the elite individuals can accelerate the
convergence speed of the algorithm. Experiments show that this strategy can improve the
exploitation ability of the original algorithm.

2.2.3. The Improved Slime Mould Algorithm Combining the Two Strategies

This paper improves the original slime mould algorithm by adding opposition-based
learning and an elite chaotic searching strategy into the SMA. The opposition-based learn-
ing increases the population diversity, while the elite chaotic searching strategy improves
the exploitation ability of the algorithm. The proposed improved slime mould algorithm is
called the ESMA for short. The concrete steps of the improved algorithm are given below.

Step1: Initialize some parameters related to the ESMA, such as population size n,
variable dimension dim, upper and lower bounds of variables, maximum iteration times
max_t, etc.;

Step2: Initialize the population randomly by Equation (2), calculate the opposition
solution population of the current population according to Equation (9), and sort the fitness
of the current solution population and the opposition solution population, and select the
first n individuals with better fitness value as the current solution population;

Step3: When t < max_t, the fitness value of each individual is calculated, the best and
the worst fitness values are updated;

Step4: Update the value of weight W with Equation (6), update the minimum fitness
value as the optimal value best_fitness, and record the optimal individual Xb corresponding
to the optimal value;

Step5: Update parameters p, vb, and vc for each individual, and update population
position according to Equation (8);

Step6: Perform opposition-based learning operation for the current population according
to Equation (9), then sort the fitness of the current solution population and the opposition
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solution population, select the first n individuals with better fitness value as the current
population, and then execute elite chaotic searching strategy according to Equations (10)–(14);

Step7: Let t = t + 1, if t < max_t, returns Step3, otherwise, outputs the optimal value
best_fitness and the optimal individual Xb.

In addition, Algorithm 2 gives the pseudo-code of the ESMA.

Algorithm 2. Pseudo-code of the ESMA

Initialize related parameters such as n, dim, max_t, and Slime mould population Xi (i = 1,2,...,n);
Calculate opposition population X̃ of current population Xi (i = 1,2, . . . ,n) by Equation (9)
Calculate the fitness of population X̃ ∪ X, pick n individuals with better fitness value as the
current population
While (t < max_t)

Calculate fitness values of all individuals, update the best and worst fitness value
Calculate the weight W according to Equation (6)
Record the best fitness best_fitness and the corresponding Xb
For i = 1: n

Update the value of vb, vc, and p
Update the population position according to Equation (8)

End For
Calculate X̃ by Equation (9), pick n individuals with better fitness value as the current

population based on the fitness values of population X̃ ∪ X
Select the first m individuals as elite individuals EXi
Calculate new elite individuals obtained by chaotic iteration through Equations (10)–(13)
Update the elite individuals’ position according to Equation (14)
Check if solutions go outside the search space and bring them back
t = t + 1

End While
Return optimal fitness value best_fitness and the corresponding optimal position Xb

3. Comparison of the ESMA with Other Algorithms

In order to further test the performance of the ESMA, it is compared with other
intelligent algorithms. In this section, the ESMA is compared with other six algorithms
in twenty-three test functions, and the six algorithms are the GWO [12], WOA [11], ant
lion optimizer (ALO) [29], sine cosine algorithm (SCA) [30], moth-flame optimization
(MFO) [31], and the original the SMA [17], the parameters setting in the Algorithms are
shown in Table 1. To get unbiased experimental result, all the experiments are carried out
on the same computer, and the detailed settings are shown in Table 2. Tables 3–5 show
23 benchmark test functions—they can effectively evaluate the ability of algorithms to
explore, exploit and avoid falling into local optimum. Table 3 is unimodal test functions—it
is mainly used to evaluate the exploitation ability of the algorithm. Table 4 is multimodal
test functions—it can test the exploration performance of the algorithm, and the fixed-
dimensional multimodal test functions in Table 5 can test the ability of the algorithm to
jump out of local extremums in low dimensions.

In the simulation experiment of the algorithms, set the population size n = 30, dimen-
sion dim = 30, and the maximum number of iterations max_t = 500. In order to eliminate the
influence of random factors on the experimental results, and to carry out better statistical
analysis on the algorithms, each algorithm runs independently on each benchmark function
20 times, and gives the best value (Best), worst value (Worst), mean value (Mean), standard
deviation (Std) and the Rank obtained according to the average value of each algorithm.
The specific algorithms comparison results are shown in Table 6 and Figures 1–3.
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slightly inferior to the WOA and GWO in terms of convergence accuracy, while for other 
low-dimensional multimodal test functions, the ESMA performs better in terms of con-
vergence speed and accuracy. In general, through the test of convergence curves, the pro-
posed ESMA has obvious improvement in the convergence characteristics on the CEC-
2005 benchmark functions. 

4. The ESMA for Demand Estimation of Water Resources 
4.1. Establishment of Water Resources Demand Estimation Model 

In this section, the water resources demand forecasting model of Nanchang City, 
China, is established. The water resources demand of a city is related to many factors, 
such as ecological environment and economic development, so it is of great significance 
to forecast the water resources demand of a city. Table 8 shows the data of the total city 
water consumption, agricultural water consumption, industrial water consumption, resi-
dential water consumption, and ecological water consumption in Nanchang from 2004 to 
2019. 

In order to show the relationship between water resources and regional economic 
development level, water consumption in different areas can be connected with the cor-
responding economic indicators and population size. For agricultural and industrial wa-
ter consumption, the water is mainly used for crop irrigation and industrial production, 
respectively. Therefore, the gross agricultural production, and gross industrial production 
are appropriate indicators for agricultural and industrial water consumption. Residential 
water consumption refers to the water that residents need for daily life, including drink-
ing, washing, and bathing, which is closely related to the population size of Nanchang 
City. However, ecological water consumption is the total amount of water needed to 
maintain the integrity of an ecosystem, which is not used as social and economic water. 
This factor is not applicable to explain the relationship between water consumption and 
the national economy. On the other hand, as shown in Figure 4, ecological water use oc-
cupies the smallest proportion of the total water consumption, only 2.86%. Therefore, this 
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Figure 3. Convergence curves of the ESMA and other algorithms on fixed-dimensional multimodal
functions.

Table 1. Initial parameter settings of all algorithms.

Algorithm Parameter Value Popsize Iterations of Number

SMA z = 0.03 30 500
ESMA z = 0.03, selected elite proportion pr = 0.1 30 500
GWO Component of coefficient vectors: a = [2, 0] 30 500
WOA →

a value of coefficient vectors
→
A:
→
a = [2, 0] 30 500

ALO NA 30 500
SCA The value of constant a = 2 30 500
MFO b = 1 30 500

Table 2. Details Settings.

Classification Name Detailed Settings

Hardware

CPU Intel(R) Core(TM) i5-8625U
Frequency 1.60 GHz 1.80 GHz

RAM 8.00 GB
Hard drive 512 GB

Software
Operating system Windows 10

Language MATLAB R2018a

Table 3. Unimodal test functions.

Function D Range fopt

f1(x) = ∑n
i=1 x2

i 30 [−100, 100]n 0
f2(x) = ∑n

i=1|xi|+ ∏n
i=1|xi| 30 [−10, 10]n 0

f3(x) = ∑n
i=1 (∑

i
j=1 xj)

2 30 [−100, 100]n 0

f4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100]n 0
f5(x) = ∑n−1

i=1 (100(xi+1 − xi)
2) + (xi − 1)2 30 [−30, 30]n 0

f6(x) = ∑n
i=1 (xi + 0.5)2 30 [−100, 100]n 0

f7(x) = ∑n
i=1 ix4

i + random[0, 1) 30 [−1.28, 1.28]n 0
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Table 4. Multimodal test functions.

Function D Range fopt

f8(x) = ∑n
i=1 (xi sin(

√
|xi|)) 30 [−500, 500]n −12,569.5

f9(x) = ∑n
i=1 (x2

i − 10 cos(2πxi) + 10)2 30 [−5.12, 5.12]n 0

f10(x) = −20 exp(−0.2
√

1
n ∑n

i=1 x2
i )− exp( 1

n ∑n
i=1 cos 2πxi) + 20 + e 30 [−32, 32]n 0

f11(x) = 1
4000 ∑n

i=1 (xi − 100)2 −∏n
i=1 cos( xi−100√

i
) + 1 30 [−600, 600]n 0

f12(x) = π
n 10 sin 2(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin 2(πyi + 1)]
+(yn − 1)2 + ∑30

i=1 u(xi, 10, 100, 4)
30 [−50, 50]n 0

f13(x) = 0.1 sin 2(3πx1) + ∑29
i=1 (xi − 1)2 p[1 + sin 2(3πxi+1)]

+(xn − 1)2[1 + sin 2(2πx30)] + ∑30
i=1 u(xi, 5, 10, 4)

30 [−50, 50]n 0

Table 5. Fixed-dimensional multimodal test functions.

Function D Range fopt

f14(x) =
[

1
500 + ∑25

j=1
1

j+∑2
j=1 (xi−aij)

6

]−1
2 [−65.536, 65.536]n 0.998

f15(x) = ∑11
i=1

∣∣∣ai −
x1(b2

i +bi x2)

b2
i +bi x3+x4

∣∣∣2 4 [−5, 5]n 3.075 × 10−4

f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5]n −1.0316

f17(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1− 1

8π ) cos x1 + 10 2 [−5, 5]n 0.398

f18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 + 1− 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

2 [−2, 2]n 3

f19(x) = −∑4
i=1 exp[−∑3

j=1 aij(xj − pij)
2] 3 [0, 1]n −3.86

f20(x) = −∑4
i=1 exp[−∑6

j=1 aij(xj − pij)
2] 6 [0, 1]n −3.322

f21(x) = −∑5
i=1

∣∣∣(xi − ai)(xi − ai)
T + ci

∣∣∣−1 4 [0, 10]n −10.1532

f22(x) = −∑7
i=1

∣∣∣(xi − ai)(xi − ai)
T + ci

∣∣∣−1 4 [0, 10]n −10.4028

f23(x) = −∑10
i=1

∣∣∣(xi − ai)(xi − ai)
T + ci

∣∣∣−1 4 [0, 10]n −10.5363

Table 6. Results of the ESMA and other optimization algorithms.

Algorithms

GWO WOA ALO SCA MFO SMA ESMA

F1

Best 4.31E-29 7.16E-82 2.00E-4 4.41E-3 7.01E-1 0 0
Worst 6.38E-27 7.28E-75 5.01E-3 4.52E+1 2.00E+4 0 0
Mean 1.48E-27 9.44E-76 1.57E-3 1.09E+1 3.03E+3 0 0

Std 2.01E-27 1.84E-75 1.21E-3 1.32E+1 5.70E+3 0 0
Rank 3 2 4 5 6 1 1

F2

Best 3.37E-17 2.71E-55 2.3137 7.20E-6 4.07E-1 1.54E-284 0
Worst 4.36E-16 3.54E-50 1.20E+2 6.19E-2 8.00E+1 3.58E-151 0
Mean 1.31E-16 1.87E-51 4.73E+1 1.23E-2 3.04E+1 1.79E-152 0

Std 1.09E-16 7.88E-51 4.72E+1 1.78E-2 2.44E+1 8.04E-152 0
Rank 4 3 7 5 6 2 1

F3

Best 2.84E-9 1.49E+4 1.22E+3 2.74E+3 1.72E+3 0 0
Worst 5.78E-4 5.90E+4 9.89E+3 2.28E+4 5.39E+4 6.47E-295 0
Mean 3.37E-5 3.75E+4 4.12E+3 9.45E+3 2.08E+4 3.24E-296 0

Std 1.28E-4 1.07E+4 2.03E+3 5.15E+3 1.25E+4 0 0
Rank 3 7 4 5 6 2 1

F4

Best 9.21E-8 1.6832 7.3298 1.99E+1 5.56E+1 3.82E-288 0
Worst 2.10E-6 8.93E+1 2.71E+1 5.30E+1 8.48E+1 4.17E-156 0
Mean 6.73E-7 5.18E+1 1.68E+1 3.74E+1 6.76E+1 2.09E-157 0

Std 5.89E-7 2.81E+1 5.1065 9.5060 8.9481 9.33E-157 0
Rank 3 6 4 5 7 2 1
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Table 6. Cont.

Algorithms

GWO WOA ALO SCA MFO SMA ESMA

F5

Best 2.61E+1 2.77E+1 2.70E+1 1.00E+2 2.36E+1 4.30E-1 2.48E-2
Worst 2.87E+1 2.88E+1 2.05E+3 1.10E+5 8.00E+7 2.83E+1 6.2473
Mean 2.73E+1 2.82E+1 3.24E+2 1.69E+4 7.80E+6 8.8490 1.0764

Std 8.32E-1 1.61E-1 2.99E+5 7.23E+8 5.75E+14 1.30E+2 2.0468
Rank 3 4 5 6 7 2 1

F6

Best 8.26E-5 1.19E-1 2.68E-4 4.9784 3.56E-1 1.64E-3 3.53E-4
Worst 1.5139 1.0976 4.22E-3 1.68E+2 1.01E+4 2.08E-2 1.01E-2
Mean 6.72E-1 3.68E-1 1.10E-3 1.96E+1 1.00E+3 6.67E-3 4.01E-3

Std 1.44E-1 6.18E-2 1.45E-6 1.32E+3 9.47E+6 1.59E-5 6.64E-6
Rank 5 4 1 6 7 3 2

F7

Best 8.91E-4 2.37E-4 1.56E-1 1.36E-2 9.39E-2 1.01E-05 1.95E-6
Worst 6.99E-3 4.02E-3 4.93E-1 1.8531 2.8949 6.07E-4 1.86E-4
Mean 2.56E-3 1.54E-3 2.79E-1 1.98E-1 7.07E-1 2.23E-4 7.38E-5

Std 1.34E-3 1.14E-3 8.70E-2 3.97E-1 9.82E-1 1.46E-4 5.19E-5
Rank 4 3 6 5 7 2 1

F8

Best −7729.0907 −12568.933 −7095.6123 −4391.8124 −9972.9113 −12,569.38 −12,569.49
Worst −3476.3214 −8256.6973 −5417.6748 −3425.6876 −7105.0606 −12,568.52 −12,568.31
Mean −5941.1712 −10,238.026 −5556.2584 −3851.2001 −8482.0979 −12,569.01 −12,569.11

Std 1.07E+6 2.91E+6 1.37E+5 8.53E+4 5.48E+5 5.59E-2 1.38E-1
Rank 5 3 6 7 4 2 1

F9

Best 5.68E-14 0 4.38E+1 4.51E-1 1.04E+2 0 0
Worst 1.44E+1 0 1.17E+2 1.06E+1 2.52E+2 0 0
Mean 3.6616 0 7.91E+1 4.59E+1 1.62E+2 0 0

Std 4.1227 0 1.84E+1 2.84E+1 3.33E+1 0 0
Rank 2 1 4 3 5 1 1

F10

Best 7.55E-14 8.88E-16 1.7783 1.41E-2 1.3811 8.88E-16 8.88E-16
Worst 1.22E-13 7.99E-15 9.7666 2.04E+1 2.00E+1 8.88E-16 8.88E-16
Mean 9.93E-14 3.91E-15 4.8695 1.52E+1 1.38E+1 8.88E-16 8.88E-16

Std 1.33E-14 3.11E-15 2.5083 8.5952 7.7738 0 0
Rank 3 2 4 6 5 1 1

F11

Best 0 0 3.55E-3 4.36E-1 6.15E-1 0 0
Worst 4.11E-2 1.10E-1 1.27E-1 1.3327 1.81E+2 0 0
Mean 9.28E-3 7.82E-3 5.47E-2 8.52E-1 1.90E+1 0 0

Std 1.33E-2 2.62E-2 2.87E-2 2.60E-1 4.71E+1 0 0
Rank 3 2 4 5 6 1 1

F12

Best 1.93E-2 8.79E-3 7.8128 1.2833 3.4831 4.07E-5 1.38E-6
Worst 1.05E-1 4.51E-2 3.69E+1 1.28E+6 2.60E+1 1.51E-2 9.67E-3
Mean 4.25E-2 2.13E-2 1.56E+1 6.44E+4 1.00E+1 4.91E-3 1.29E-3

Std 5.75E-4 1.18E-4 5.44E+1 8.25E+10 5.31E+1 2.23E-5 5.61E-6
Rank 4 3 6 7 5 2 1

F13

Best 4.46E-1 5.88E-2 8.49E-2 3.0307 9.4540 4.91E-4 2.30E-5
Worst 1.1132 1.1252 5.44E+1 2.25E+5 3.62E+2 7.06E-2 1.41E-2
Mean 7.66E-1 4.68E-1 2.29E+1 1.24E+4 4.13E+1 1.14E-2 3.79E-3

Std 3.57E-2 8.03E-2 3.64E+2 2.50E+9 5.83E+3 2.64E-4 1.41E-5
Rank 4 3 5 7 6 2 1

F14

Best 0.998 0.998 0.998 0.998 0.998 0.998 0.998
Worst 12.6705 10.7632 6.9033 10.7632 7.874 0.998 0.998
Mean 5.3046 3.7499 2.7291 2.0828 3.1201 0.998 0.998

Std 1.95E+1 1.11E+1 3.0575 5.0233 5.3292 7.86E-24 3.30E-25
Rank 7 6 4 3 5 2 1

F15

Best 3.075E-4 3.078E-4 6.404E-4 4.884E-4 7.295E-4 3.075E-4 3.077E-4
Worst 2.036E-2 2.194E-3 2.036E-2 1.535E-3 1.655E-3 1.227E-3 1.231E-3
Mean 2.51E-3 8.72E-4 1.94E-3 9.78E-4 1.02E-3 5.93E-4 5.29E-4

Std 3.74E-5 3.46E-7 1.89E-5 1.27E-7 1.32E-7 1.25E-7 7.58E-8
Rank 7 3 6 4 5 2 1
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Table 6. Cont.

Algorithms

GWO WOA ALO SCA MFO SMA ESMA

F16

Best −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Worst −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Mean −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

Std 5.53E-16 5.53E-19 5.94E-27 2.37E-9 5.19E-32 1.25E-18 3.97E-19
Rank 6 4 2 7 1 5 3

F17

Best 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Worst 0.39791 0.39792 0.39789 0.40907 0.39789 0.39789 0.39789
Mean 0.39789 0.39789 0.39789 0.40037 0.39789 0.39789 0.39789

Std 2.62E-11 1.00E-10 1.17E-26 1.11E-5 0 9.22E-16 5.23E-16
Rank 5 6 2 7 1 4 3

F18

Best 3 3 3 3 3 3 3
Worst 3 3.0006 3 3.0004 3 3 3
Mean 3 3.0001 3 3.0001 3 3 3

Std 1.66E-9 2.04E-8 6.35E-26 1.62E-8 7.71E-30 1.16E-20 1.84E-21
Rank 5 7 4 6 1 3 2

F19

Best −3.8628 −3.8626 −3.8628 −3.8549 −3.8628 −3.8628 −3.8628
Worst −3.8549 −3.8215 −3.8628 −3.8518 −3.8628 −3.8628 −3.8628
Mean −3.8611 −3.852 −3.8628 −3.854 −3.8628 −3.8628 −3.8628

Std 7.17E-6 1.70E-4 3.18E-26 1.08E-6 5.19E-30 2.43E-13 6.37E-15
Rank 5 7 2 6 1 4 3

F20

Best −3.322 −3.3216 −3.322 −3.1454 −3.322 −3.322 −3.322
Worst −3.1365 −2.4512 −3.2018 −1.9187 −3.1327 −3.1974 −3.1997
Mean −3.2502 −3.1889 −3.2683 −2.9488 −3.2347 −3.2559 −3.2142

Std 5.84E-3 4.05E-2 3.70E-3 7.15E-2 3.68E-3 3.76E-3 1.36E-3
Rank 3 6 1 7 5 2 4

F21

Best −10.1528 −10.1502 −10.1532 −7.7535 −10.1532 −10.1532 −10.1532
Worst −2.6826 −2.6271 −2.6305 −0.4982 −2.6305 −10.152 −10.1521
Mean −7.632 −7.4809 −6.3745 −3.155 −5.1376 −10.1527 −10.1529

Std 8.6401 9.6374 1.09E+1 4.1255 9.8474 1.17E-7 1.30E-7
Rank 3 4 5 7 6 2 1

F22

Best −10.4028 −10.4016 −10.4029 −6.555 −10.4029 −10.4029 −10.4029
Worst −10.3969 −3.7181 −1.8376 −0.5239 −2.7519 −10.402 −10.4017
Mean −10.4012 -8.197 −5.9837 −3.1307 −7.5086 −10.4025 −10.4026

Std 1.73E-6 7.6414 1.17E+1 3.37 1.35E+1 6.59E-8 9.85E-8
Rank 3 4 6 7 5 2 1

F23

Best −10.5363 −10.5357 −10.5364 −6.7648 −10.5364 −10.5364 −10.5364
Worst −2.4217 −2.4173 −1.6766 −0.94237 −2.8711 −10.5354 −10.5351
Mean −9.8612 −7.3348 −7.2174 −3.6007 −8.1616 −10.5360 −10.5361

Std 4.4991 8.9562 1.47E+1 3.3493 1.12E+1 9.72E-8 8.31E-8
Rank 3 5 6 7 4 2 1

Mean Rank 4.0435 4.1304 4.2609 5.7826 4.8261 2.2174 1.4783

Result 3 4 5 7 6 2 1

As shown in Table 6, for the unimodal test functions, namely, F1–F7, the ESMA
can accurately obtain the optimal value of the test functions on both F1–F4, showing
good optimization performance. The ESMA is slightly inferior to ALO on function F6,
but obviously superior to it on other unimodal test functions. For the multimodal test
functions, namely, F8–F13, the ESMA can also accurately obtain the optimal value of the
test functions on F9 and F11, and it is obviously better than other algorithms on other
test functions. For the low-dimensional multimodal test functions, the ESMA can also
accurately obtain the optimal value of the test functions on F14, F16, and F18, and the
optimization results of the seven algorithms on F16 and F18 are basically the same. On
function F16–F19, the mean value of the ESMA and MFO algorithm is the same, but the
standard deviation of the ESMA is slightly lower than that of the MFO algorithm. The
ESMA is obviously better than other algorithms in other low dimensional multimodal test
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functions. Considering all the test functions, the standard deviation of the ESMA is small,
so it is relatively stable on the test functions. According to the final ranking, the ESMA
performs well in the 23 benchmark test functions.

Wilcoxon rank sum test, as a nonparametric test, can effectively evaluate the significant
differences between the two optimizers. Table 7 shows the values of p obtained by the
Wilxocon rank sum test for the other six algorithms under the condition of significance
level α = 0.05 and taking the ESMA as the benchmark. In order to avoid Type I error,
the p-value is corrected using Holm–Bonferroni correction method, and the process is as
follows: First, the p-value of six comparison algorithms are sorted from small to large, if
the sorting result is assumed to be p1 < p2 < p3 < p4 < p5 < p6, if p1 < 0.05/6 ≈ 0.0083,
p2 < 0.05/5 = 0.01, p3 < 0.05/4 = 0.0125, p4 < 0.05/3 ≈ 0.0167, p5 < 0.05/2 = 0.025,
p6 < 0.05, it is considered that there are significant differences between the ESMA and
the comparison algorithms. If a p-value is greater than the corresponding value, there
is no significant difference between this algorithm corresponding to this p-value and the
ESMA, and the subsequent comparison algorithm also has no significant difference from
the ESMA whether the p-value is smaller than the corresponding value or not. The bold
data in Table 7 are p-value data with no significant difference between the ESMA and its
comparison algorithms. Combined with the data in Table 6, p-value are marked accordingly,
where “+” means that the comparison algorithm is significantly better than the ESMA, “=“
means that the comparison algorithm has no significant difference with the ESMA, and “-”
means that the comparison algorithm is significantly inferior to the ESMA.

Table 7. The p-value of the Wilcoxon rank sum test, based on the ESMA.

Function ESMA vs. SMA ESMA vs. GWO ESMA vs. WOA ESMA vs. ALO ESMA vs. SCA ESMA vs. MFO

F1 3.42E-1 = 8.01E-9 - 8.01E-9 - 8.01E-9 - 8.01E-9 - 8.01E-9 -
F2 8.01E-9 - 8.01E-9 - 8.01E-9 - 8.01E-9 - 8.01E-9 - 8.01E-9 -
F3 1.98E-2 - 8.01E-9 - 8.01E-9 - 8.01E-9 - 8.01E-9 - 8.01E-9 -
F4 8.01E-9 - 8.01E-9 - 8.01E-9 - 8.01E-9 - 8.01E-9 - 8.01E-9 -
F5 4.16E-4 - 6.80E-8 - 6.80E-8 - 6.80E-8 - 6.80E-8 - 6.80E-8 -
F6 8.35E-3 - 1.20E-6 - 6.80E-8 - 5.90E-5 - 6.80E-8 - 6.80E-8 -
F7 1.61E-4 - 6.80E-8 - 6.80E-8 - 6.80E-8 - 6.80E-8 - 6.80E-8 -
F8 1.48E-1 = 6.80E-8 - 1.66E-7 - 4.95E-8 - 6.80E-8 - 6.80E-8 -
F9 NaN = 7.93E-9 - NaN = 8.01E-9 - 8.01E-9 - 8.01E-9 -

F10 NaN = 7.68E-9 - 1.57E-4 - 8.01E-9 - 8.01E-9 - 8.01E-9 -
F11 NaN = 2.09E-3 - 1.63E-1 = 8.01E-9 - 8.01E-9 - 8.01E-9 -
F12 6.22E-4 - 6.80E-8 - 9.17E-8 - 6.80E-8 - 6.80E-8 - 6.80E-8 -
F13 4.39E-2 - 6.80E-8 - 6.80E-8 - 6.80E-8 - 6.80E-8 - 6.80E-8 -
F14 9.25E-1 = 6.80E-8 - 6.80E-8 - 3.13E-2 = 6.80E-8 - 1.06E-1 =
F15 9.46E-1 = 8.18E-1 = 1.44E-2 - 2.30E-5 - 4.68E-5 - 3.71E-5 -
F16 6.75E-1 = 1.06E-7 - 9.89E-1 = 6.80E-8 + 6.80E-8 - 8.01E-9 +
F17 9.68E-1 = 5.23E-7 - 8.35E-3 - 6.79E-8 + 6.80E-8 - 8.01E-9 +
F18 1.48E-1 = 6.80E-8 - 6.80E-8 - 9.13E-7 - 6.80E-8 - 5.71E-8 +
F19 1.40E-1 = 6.80E-8 - 6.80E-8 - 6.80E-8 + 6.80E-8 - 8.01E-9 +
F20 3.15E-2 = 5.61E-1 = 5.98E-1 = 6.56E-3 + 6.80E-8 - 1.29E-3 -
F21 8.10E-2 = 7.95E-7 - 6.80E-8 - 2.85E-1 = 6.80E-8 - 6.93E-3 -
F22 2.29E-1 = 1.10E-5 - 6.80E-8 - 1.08E-1 = 6.80E-8 - 2.83E-1 =
F23 2.50E-1 = 5.87E-6 - 9.17E-8 - 5.98E-1 = 6.80E-8 - 1.04E-1 =

+/=/- 0/15/8 0/2/21 0/4/19 4/4/15 0/0/23 4/3/16

From the last line of Table 7, the number of the SMA, GWO, WOA, ALO, SCA, and
MFO superior to/similar to/inferior to the ESMA is 0/15/8, 0/2/21, 0/4/19, 4/4/15,
0/0/23, and 4/3/16, this shows that the ESMA is significantly better than comparison
algorithm. Therefore, considering Tables 6 and 7, the ESMA shows good competitiveness.

Figures 1–3 are convergence curves plotted by the average fitness values obtained
by each algorithm running 20 times on the test functions. As shown in Figure 1, for
unimodal test functions, the ESMA is significantly better than other comparison algorithms
in terms of convergence speed and convergence precision, except for the convergence
precision of function F6, which is slightly inferior to the ALO algorithm. As shown in
Figure 2, for multimodal test functions, the ESMA is also significantly better than other
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comparison algorithms in terms of convergence speed and convergence precision, and
has good competitiveness. As shown in Figure 3, for the low-dimensional multimodal
test functions, in the test function F16–F19, the difference between the seven algorithms is
small, and they are basically close to the optimal value of the test function. For function
F20, the ESMA is slightly inferior to the WOA and GWO in terms of convergence accuracy,
while for other low-dimensional multimodal test functions, the ESMA performs better
in terms of convergence speed and accuracy. In general, through the test of convergence
curves, the proposed ESMA has obvious improvement in the convergence characteristics
on the CEC-2005 benchmark functions.

4. The ESMA for Demand Estimation of Water Resources
4.1. Establishment of Water Resources Demand Estimation Model

In this section, the water resources demand forecasting model of Nanchang City,
China, is established. The water resources demand of a city is related to many factors,
such as ecological environment and economic development, so it is of great significance to
forecast the water resources demand of a city. Table 8 shows the data of the total city water
consumption, agricultural water consumption, industrial water consumption, residential
water consumption, and ecological water consumption in Nanchang from 2004 to 2019.

Table 8. Historical water use in Nanchang city from 2004 to 2019.

Year Total Water Use
(108 m3)

Industrial Water
Use (108 m3)

Agricultural Water Use
(108 m3)

Residential Water
Use (108 m3)

Ecological Water
Use (108 m3)

2004 26.22 8.72 14.47 2.75 0.28
2005 28.14 8.30 16.92 2.60 0.32
2006 27.71 8.11 16.73 2.52 0.35
2007 32.55 7.51 21.27 2.92 0.85
2008 30.42 6.90 19.73 2.94 0.85
2009 33.42 6.57 20.15 3.21 3.49
2010 30.87 7.51 17.37 3.49 2.50
2011 31.26 8.97 17.70 4.03 0.56
2012 28.82 9.20 14.68 4.36 0.58
2013 32.62 9.35 18.23 4.45 0.59
2014 31.42 8.92 17.35 4.54 0.61
2015 30.64 9.17 16.21 4.64 0.62
2016 31.44 9.21 16.9 4.7 0.53
2017 31.54 9.28 16.84 4.78 0.64
2018 32.02 9.13 17.45 4.8 0.64
2019 32.08 9.09 17.51 4.83 0.65
Total 491.17 135.94 (27.68%) 279.51 (56.92%) 61.56 (12.54%) 14.06 (2.86%)

In order to show the relationship between water resources and regional economic
development level, water consumption in different areas can be connected with the corre-
sponding economic indicators and population size. For agricultural and industrial water
consumption, the water is mainly used for crop irrigation and industrial production, re-
spectively. Therefore, the gross agricultural production, and gross industrial production
are appropriate indicators for agricultural and industrial water consumption. Residential
water consumption refers to the water that residents need for daily life, including drinking,
washing, and bathing, which is closely related to the population size of Nanchang City.
However, ecological water consumption is the total amount of water needed to maintain
the integrity of an ecosystem, which is not used as social and economic water. This factor
is not applicable to explain the relationship between water consumption and the national
economy. On the other hand, as shown in Figure 4, ecological water use occupies the small-
est proportion of the total water consumption, only 2.86%. Therefore, this paper ignores
the ecological water use when establishing the water resources estimation model, and
only considers the influence of industrial water use, agricultural water use, and residential
water use on the total water consumption.
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Table 8 summarizes population size, gross industrial production, and gross agricul-
tural production from 2004 to 2019, which are used to replace industrial water, agricultural
water, and residential water.

In view of the relationship between total water consumption and population, gross
industrial production, and gross agricultural production, the linear model, logarithmic
model, and exponential model for forecasting the water resource of Nanchang City are
respectively expressed as,

Linear model:
y′ = a1 · x1 + a2 · x2 + a3x3 + a4 (15)

Logarithmic model:

y′ = a1 · log(x1) + a2 · log(x2) + a3 log(x3) + a4 (16)

Exponential model:

y′ = a1 · xa2
1 + a3 · xa4

1 + a5xa6
1 + a7 (17)

In the above model, ai is the parameter in the model, x1, x2, and x3, respectively
represent the population, gross industrial production, and gross agricultural production of
Nanchang, and y′ is the water resources demand estimated by the model.

Hybrid model: By combining the above models, this paper obtains a hybrid water
resources demand forecasting model based on a linear model, logarithmic model, and
exponential model. The hybrid model is established as follows,

y′ = a11 · (a12 · x1 + a13 · x2 + a14x3 + a15) + a21 · (a22 · xa23
1 + a24 · xa25

2 + a26 · xa27
3 + a28)

+(1− a11 − a21) · (a31 · log(x1) + a32 · log(x2) + a33 · log(x3) + a34)
(18)

where, aij is the parameter to be estimated. x1, x2, x3 and y′ are consistent with
Equations (15)–(17).

4.2. Optimization of Water Resources Demand Estimation Model

There are uncertain parameters in the above four water demand estimation models.
The selection of parameters is closely related to the accuracy of model forecasting. Therefore,
how to determine the parameters in the model is the main issue discussed in this section.
The selection of model parameters can be regarded as an optimization problem. In order
to evaluate the strengths and weaknesses of parameters in the water resources demand
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forecasting model, the sum of the squares of errors between the real value and the predicted
value is used as the objective function, and its mathematical equation is as follows,

f (X) =
k

∑
i=1

(yi − y′ i)
2 (19)

where, X is the parameter in the water resource demand forecasting model, k is the number
of years used in the optimization model, yi is the real total water consumption in the i-th
year, and y′ i is the estimated total water consumption in the i-th year. The smaller the
value of the objective function is, the better the model parameters are, and the closer the
predicted value is to the real value. Therefore, the mathematical model of the optimization
problem of water demand estimation model can be defined as,{

min f (X)
s.t. l ≤ X ≤ u

(20)

where, X is the D-dimensional decision variable, D is the number of parameters in the
estimation model, and u, l ∈ RD are the upper and lower bounds of parameters.

4.3. The ESMA Solves the Parameters of Water Demand Estimation Model

Section 4.2 establishes a specific mathematical model for solving water resources
demand parameters. The following shows the specific steps of solving the model with the
ESMA.

Step1: Initialize some parameters related to the ESMA, and take Equation (20) as the
objective function;

Step2: Initialize the population randomly, and perform the opposition-based learning
operation;

Step3: When t < max_t, the fitness value of each individual is calculated, the best and
the worst fitness values are updated;

Step4: Update the value of weight W with Equation (6), update the minimum fitness
value as the optimal value best_fitness, and record the optimal individual Xb corresponding
to the optimal value;

Step5: Update parameters p, vb, and vc for each individual, and update population
position according to Equation (8);

Step6: Perform opposition-based learning operation, and then execute elite chaotic
searching strategy;

Step7: Let t = t + 1, if t < max_t, returns Step3, otherwise, outputs the optimal value
best_fitness and the optimal individual Xb.

Figure 5 shows the flow chart of the ESMA for solving water resources estimation
parameters.
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4.4. The Experiment and Analysis of Water Resources Demand Estimation Model

Based on the water resources data of Nanchang City from 2004 to 2019 in Table 9, dif-
ferent optimization algorithms are used to optimize the parameters in different forecasting
models, and the performance of different models and algorithms are obtained according to
the error analysis between the optimized forecasting values and the real data.

Table 9. The total water, population, gross industrial production, and gross agricultural production in Nanchang city from
2004 to 2019.

Year Total Water Use
(108 m3)

Industrial Water
Use (108 m3)

Agricultural Water Use
(108 m3)

Residential Water
Use (108 m3)

Ecological Water
Use (108 m3)

2004 26.22 8.72 14.47 2.75 0.28
2005 28.14 8.30 16.92 2.60 0.32
2006 27.71 8.11 16.73 2.52 0.35
2007 32.55 7.51 21.27 2.92 0.85
2008 30.42 6.90 19.73 2.94 0.85
2009 33.42 6.57 20.15 3.21 3.49
2010 30.87 7.51 17.37 3.49 2.50
2011 31.26 8.97 17.70 4.03 0.56
2012 28.82 9.20 14.68 4.36 0.58
2013 32.62 9.35 18.23 4.45 0.59
2014 31.42 8.92 17.35 4.54 0.61
2015 30.64 9.17 16.21 4.64 0.62
2016 31.44 9.21 16.9 4.7 0.53
2017 31.54 9.28 16.84 4.78 0.64
2018 32.02 9.13 17.45 4.8 0.64
2019 32.08 9.09 17.51 4.83 0.65
Total 491.17 135.94 (27.68%) 279.51 (56.92%) 61.56 (12.54%) 14.06 (2.86%)

4.4.1. Data Preprocessing

In order to eliminate the influence of magnitude among different data, the data in
Table 9 is preprocessed firstly, and the data is normalized as follows,

x∗ij =
xij − xjmin

xjmax − xjmin
(i = 1, 2, · · · , 16; j = 1, 2, 3, 4) (21)

In the formula, x∗ij is the normalized data, xij is the j-th index in the i-th year. i = 1, 2, ...,
16 corresponds to 2004–2019, j = 1, 2, 3, 4 corresponds to the total water use, the population,
the gross industrial production, and the gross agricultural production, and xjmin and xjmax
are the maximum and minimum value of the j-th index, respectively.

4.4.2. Algorithm Parameters Setting

For all algorithms, the population number n is 30, the number of iterations T is 1000,
and the dimension D is the number of parameters of the optimized model (Linear model
D = 4; Logarithmic model D = 4; Exponential model D = 7; Hybrid model D = 17). To
eliminate the influence of random factors, each algorithm is run 20 times independently on
different models.

Meanwhile, seven other algorithms are employed to compare with the ESMA in
solving the problem of water resources demand estimation. These comparison algorithms
are the salp swarm algorithm (SSA) [32], WOA [11], HHO [13], biogeography based
optimization (BBO) [33], multi-verse optimizer (MVO) [34], archimedes optimization
algorithm (AOA) [35], and SMA [17]. The parameters in these algorithms are set as
Table 10 shows.
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Table 10. The parameters in algorithms in solving the problem of water resource demand estimation.

Algorithm Parameter Value Popsize Iterations of Number

ESMA z = 0.03, selected elite proportion pr = 0.1 30 1000
WOA →

a value of coefficient vectors
→
A:
→
a = [2, 0] 30 1000

HHO E0 randomly changes inside the interval [−1, 1] 30 1000

BBO
The largest immigration rate is 1,

largest emigration rate is 1,
Mutation rate is 0.1.

30 1000

MVO Existence probability = [0.2, 1]
Exploitation accuracy = 6 30 1000

AOA C1 = 2, C2 = 6, C3 = 1, C4 = 2. 30 1000
SMA z = 0.03 30 1000

4.4.3. Performance Evaluation Criteria of the Algorithms

In this paper, the relative error (RE) and mean relative error (MRE) between the real
value and the predicted value are used to evaluate the performance of different algorithms
in handling different optimization models.

The relative error is calculated by the following formula,

RE =

∣∣∣∣y− y′

y

∣∣∣∣ (22)

where, y and y′ are the real value and estimated value of water resources demand, respectively.
And the calculation formula of mean relative error is as follows,

MRE =

k
∑

i=1

yi−y′ i
yi

k
(23)

where, yi is the real value of water resources demand in the i-th year, y′ i is the estimated
value of water resources demand in the i-th year, and k is the number of years used in the
optimization model.

4.4.4. Result and Analysis

Tables 11–14 present the average relative error data obtained by the ESMA and seven
other optimization algorithms on the four estimation models, including the optimal value,
average value, maximum value, and standard deviation after 20 independent runs. The
bold data represents the optimal data of all algorithms on the corresponding indexes.

Table 11. Results of the linear model.

Algorithm Best MRE Mean MRE Worst MRE Std

SSA 3.7057% 3.7842% 4.3348% 1.3766E-03
WOA 3.7830% 9.4189% 17.6245% 3.3848E-02
HHO 3.5682% 3.8091% 4.4485% 2.0942E-03
BBO 3.6662% 4.2208% 6.3299% 8.0511E-03
MVO 3.6962% 3.7246% 3.7450% 9.2270E-05
AOA 3.5694% 3.9084% 5.1945% 4.2159E-03
SMA 3.7204% 3.7363% 3.7643% 1.3514E-04

ESMA 3.7084% 3.7254% 3.7347% 5.3146E-05
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Table 12. Results of the logarithmic model.

Algorithm Best MRE Mean MRE Worst MRE Std

SSA 2.8369% 2.8381% 2.8576% 1.6084E-04
WOA 2.7940% 10.6478% 24.2942% 6.1449E-02
HHO 2.8149% 3.2130% 4.0381% 3.5587E-03
BBO 2.8210% 2.9604% 3.4912% 1.4766E-03
MVO 2.8132% 2.8374% 2.8862% 1.8078E-04
AOA 2.8630% 3.3421% 4.3456% 4.5821E-03
SMA 2.8249% 2.8394% 2.8503% 6.0100E-05

ESMA 2.8309% 2.8378% 2.8489% 4.9756E-05

Table 13. Results of the exponential model.

Algorithm Best MRE Mean MRE Worst MRE Std

SSA 2.3868% 3.1596% 5.8017% 7.8594E-03
WOA 2.9855% 9.8939% 17.1511% 4.5313E-02
HHO 2.5645% 2.9217% 3.3943% 2.0079E-03
BBO 2.4364% 3.0591% 4.2006% 4.2337E-03
MVO 2.4067% 2.9647% 3.5502% 3.1345E-03
AOA 2.5685% 3.0042% 3.6609% 2.5527E-03
SMA 2.3783% 2.6942% 3.0273% 1.6634E-03

ESMA 2.3803% 2.6488% 2.8450% 1.3262E-03

Table 14. Results of the hybrid model.

Algorithm Best MRE Mean MRE Worst MRE Std

SSA 2.8528% 5.0161% 9.6486% 2.1377E-02
WOA 4.2606% 16.3721% 50.7506% 1.2419E-01
HHO 2.4567% 3.5252% 4.5646% 6.5378E-03
BBO 2.4485% 3.4070% 5.9116% 1.0518E-02
MVO 2.9034% 5.3989% 12.8579% 2.5195E-02
AOA 2.6473% 5.7096% 12.6856% 3.1945E-02
SMA 2.4802% 3.1261% 4.7669% 6.7312E-03

ESMA 2.2954% 3.1235% 5.7619% 8.3033E-03

From the perspective of the algorithm, the ESMA performs better on different models.
In the linear model (Table 11), the worst value and standard deviation solved by the ESMA
are small. In the logarithmic model (Table 12) and exponential model (Table 13), the mean
value, maximum value, and standard deviation solved by the ESMA are all small, and
the minimum value and mean value solved by the ESMA in the hybrid model (Table 14)
are superior to other algorithms. This shows that the ESMA can solve the parameters to
minimize the prediction error well in different models. At the same time, the smaller mean
value and standard deviation can reflect that the algorithm has good stability when solving
the optimization problem and is not easy to be affected by other factors. The worst value
and standard deviation of the HHO in the hybrid model (Table 14) are small, indicating
that the stability of the algorithm is good, but the results of solving the mean value and
the optimal value are not ideal. Overall, the results of the ESMA are better than those of
other algorithms.

From the perspective of the forecasting model, the minimum error of the hybrid water
demand estimation model in the experimental is 2.2954%, which is better than the error
value of other models, indicating that this model can reasonably solve the problem of
water resources forecasting, but its stability is slightly weaker than that of logarithmic and
exponential models.

Figure 6 shows the comparison between the forecasting data obtained by substituting
the average value of model parameters obtained from 20 runs of different algorithms into
the four prediction models and the actual value. The red curve in the figure represents the
forecasting data of the ESMA, which is close to the actual data.
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Figure 6. Comparison between actual and estimated values for water demand in Nanchang city: (a) Linear model;
(b) Logarithmic model; (c) Exponential model; (d) Hybrid model.

4.5. Forecast of Water Resources Demand for 2020–2024

In order to forecast the demand for water resources in Nanchang in 2020–2024, the
population, gross industrial production, and gross agricultural production of the above five
years are first estimated based on the average annual growth rate. The results are shown
in Table 15. Then, by using the parameters of different water demand estimation models
obtained by the eight optimization algorithms, the predicted value of water resource
demands in 2020–2024 can be obtained. The predicted results are shown in Table 16.

Figure 7 shows the forecast graph of water demand by different algorithms on the
four models. Obviously, the prediction curves of the ESMA on each model are located
between the results predicted by other algorithms, which may be more in line with the
actual use of water resources.

Table 15. Estimates of the population, industrial production, and agricultural production in
2020−2024.

Year Population Gross Industrial Production
(108 yuan)

Gross Agricultural
Production (108 yuan)

2020 5656114 2023.08 404.92
2021 5712223 2161.82 454.77
2022 5768888 2310.07 510.75
2023 5826116 2468.48 573.63
2024 5883911 2637.76 644.25
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Table 16. Prediction of the total water consumption (108 m3) based on four models.

Algorithm SSA WOA HHO BBO MVO AOA SMA ESMA

Method Linear Model

2020 37.09 42.38 35.85 38.17 36.67 33.63 36.59 36.71
2021 40.68 49.25 38.50 42.26 39.97 34.77 39.88 40.05
2022 44.82 57.20 41.55 47.00 43.78 36.06 43.68 43.91
2023 49.58 66.37 45.06 52.45 48.16 37.54 48.04 48.35
2024 55.05 76.93 49.08 58.73 53.19 39.22 53.04 53.44

Method Logarithmic Model

2020 31.96 31.44 31.42 31.53 31.78 32.29 31.89 31.92
2021 32.18 31.38 31.42 31.59 31.95 32.61 32.09 32.13
2022 32.41 31.33 31.43 31.65 32.12 32.93 32.29 32.35
2023 32.63 31.28 31.44 31.72 32.29 33.25 32.49 32.56
2024 32.86 31.23 31.45 31.79 32.46 33.57 32.69 32.78

Method Exponential Model

2020 32.77 29.18 31.80 32.71 32.59 31.76 31.91 31.91
2021 33.32 24.53 31.85 33.15 33.16 31.84 32.11 32.06
2022 33.77 15.13 31.86 33.64 33.65 31.92 32.26 32.16
2023 34.13 −3.23 31.82 34.22 34.07 31.98 32.36 32.19
2024 34.40 −38.35 31.73 34.89 34.42 32.02 32.42 32.19

Method Hybrid Model

2020 33.06 28.01 32.80 31.58 33.09 33.47 32.31 30.68
2021 34.07 26.86 33.34 30.35 33.26 34.59 32.31 29.39
2022 35.08 25.67 33.93 28.20 32.27 35.87 32.19 27.54
2023 36.05 24.44 34.57 24.82 29.42 37.31 31.97 25.08
2024 36.96 23.14 35.29 19.82 23.64 38.95 31.63 21.95
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2024 55.05 76.93 49.08 58.73 53.19 39.22 53.04 53.44 

Method Logarithmic Model  
2020 31.96 31.44 31.42 31.53 31.78 32.29 31.89 31.92 
2021 32.18 31.38 31.42 31.59 31.95 32.61 32.09 32.13 
2022 32.41 31.33 31.43 31.65 32.12 32.93 32.29 32.35 
2023 32.63 31.28 31.44 31.72 32.29 33.25 32.49 32.56 
2024 32.86 31.23 31.45 31.79 32.46 33.57 32.69 32.78 

Method Exponential Model  
2020 32.77 29.18 31.80 32.71 32.59 31.76 31.91 31.91 
2021 33.32 24.53 31.85 33.15 33.16 31.84 32.11 32.06 
2022 33.77 15.13 31.86 33.64 33.65 31.92 32.26 32.16 
2023 34.13 −3.23 31.82 34.22 34.07 31.98 32.36 32.19 
2024 34.40 −38.35 31.73 34.89 34.42 32.02 32.42 32.19 

Method Hybrid Model  
2020 33.06 28.01 32.80 31.58 33.09 33.47 32.31 30.68 
2021 34.07 26.86 33.34 30.35 33.26 34.59 32.31 29.39 
2022 35.08 25.67 33.93 28.20 32.27 35.87 32.19 27.54 
2023 36.05 24.44 34.57 24.82 29.42 37.31 31.97 25.08 
2024 36.96 23.14 35.29 19.82 23.64 38.95 31.63 21.95 

Figure 7 shows the forecast graph of water demand by different algorithms on the 
four models. Obviously, the prediction curves of the ESMA on each model are located 
between the results predicted by other algorithms, which may be more in line with the 
actual use of water resources. 
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Figure 7. Comparison for predicting water demand from 2020–2024 based on four models: (a) Linear
model; (b) Logarithmic model; (c) Exponential model; (d) Hybrid model.

5. Conclusions

In this paper, the ESMA is proposed to estimate the water demand of Nanchang
City. In the ESMA, the opposition-based learning strategy is adopted to enhance the
diversity of the population and improve the convergence accuracy of the algorithm. The
implementation of the elite chaos searching strategy enhances the exploitation ability
of the algorithm, which enables the ESMA to better approach the theoretical optimal
value of the 23 benchmark functions. According to the relationship between the total
water consumption, and the population, the gross industrial production, and the gross
agricultural production, four forecasting models of linear, exponential, logarithmic, and
hybrid prediction for the water resources in Nanchang City are put forward.

In the experiment, based on the water demand data of Nanchang City from 2004
to 2019, the ESMA is used to optimize the parameters in the estimation models, and the
models are tested. The water consumption from 2004 to 2019 is estimated by the ESMA, and
the performance of the ESMA is compared with the SMA, SSA, WOA, HHO, BBO, MVO,
and AOA. The experimental results show that the ESMA can predict the water consumption
with good accuracy on the four models, and it can achieve the highest accuracy in the
hybrid estimation model, which is 97.705%. At the end of the experiment, the prediction
data of the water demand of Nanchang from 2020 to 2024 by each algorithm are given.
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