
mathematics

Article

No-Idle Flowshop Scheduling for Energy-Efficient Production:
An Improved Optimization Framework

Chen-Yang Cheng 1,†, Shih-Wei Lin 2,3,4,†, Pourya Pourhejazy 1,† , Kuo-Ching Ying 1,*,† and Yu-Zhe Lin 1,5

����������
�������

Citation: Cheng, C.-Y.; Lin, S.-W.;

Pourhejazy, P.; Ying, K.-C.; Lin, Y.-Z.

No-Idle Flowshop Scheduling for

Energy-Efficient Production: An

Improved Optimization Framework.

Mathematics 2021, 9, 1335. https://

doi.org/10.3390/math9121335

Academic Editors: Chin-Chia Wu and

Win-Chin Lin

Received: 4 May 2021

Accepted: 7 June 2021

Published: 9 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Industrial Engineering and Management, National Taipei University of Technology,
Taipei 106, Taiwan; cycheng@ntut.edu.tw (C.-Y.C.); pourya@ntut.edu.tw (P.P.);
s86445710993@gmail.com (Y.-Z.L.)

2 Department of Information Management, Chang Gung University, Taoyuan 333, Taiwan;
swlin@mail.cgu.edu.tw

3 Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
4 Department of Industrial Engineering and Management, Ming Chi University of Technology,

New Taipei 243, Taiwan
5 Taiwan Semiconductor Manufacturing Company Limited, Hsinchu Science Park, Hsinchu 30078, Taiwan
* Correspondence: kcying@ntut.edu.tw
† These authors contributed equally to this work; Shih-Wei Lin is the co-first author.

Abstract: Production environment in modern industries, like integrated circuits manufacturing, fiber-
glass processing, steelmaking, and ceramic frit, is characterized by zero idle-time between inbound
and outbound jobs on every machine; this technical requirement improves energy efficiency, hence,
has implications for cleaner production in other production situations. An exhaustive review of
literature is first conducted to shed light on the development of no-idle flowshops. Considering
the intractable nature of the problem, this research also develops an extended solution method
for optimizing the Bi-objective No-Idle Permutation Flowshop Scheduling Problem (BNIPFSP).
Extensive numerical tests and statistical analysis are conducted to evaluate the developed method,
comparing it with the best-performing algorithm developed to solve the BNIPFSP. Overall, the
proposed extension outperforms in terms of solution quality at the expense of a longer computa-
tional time. This research is concluded by providing suggestions for the future development of this
understudied scheduling extension.

Keywords: production management; energy-efficiency; scheduling; no-idle flowshop; metaheuristics

1. Introduction

Ecological restoration and reduced carbon emission have become major global priori-
ties [1]. Local governments have put forward regulatory measures and policies to enforce
energy-saving initiatives. These measures are predominantly formed around emission
taxation and trading of emission credits, which help bring the overall emissions below the
target baseline [2]. The Australian carbon reduction policy, the so-called safeguard mecha-
nism, and the EU Emission Trading System are prime examples of reducing the negative
impacts of business activities from electricity generation and mining to transportation,
construction, and manufacturing.

The manufacturing sector is one of the primary energy consumers and the largest
polluter with its share being more than 31 percent of the overall energy consumption and
36 percent of carbon dioxide emissions [3]. To address this issue, supply chain sustainability,
in particular, the green process design practices, has been mainly focused on reducing
energy consumption in logistics [4], production, and consumption phases as well as the use
of renewable energies [5]. Providing on-site energy production, like solar panels and biogas
fuel cells, reducing facilities’ carbon footprint by replacing lighting and energy control
systems, applying energy efficiency standards in the construction of new buildings, and

Mathematics 2021, 9, 1335. https://doi.org/10.3390/math9121335 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1207-3587
https://orcid.org/0000-0002-9549-5290
https://doi.org/10.3390/math9121335
https://doi.org/10.3390/math9121335
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9121335
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9121335?type=check_update&version=2

Mathematics 2021, 9, 1335 2 of 18

the installation of modern supplements for the use of sustainable resources is the primary
green practices reported in the literature [6].

Minimizing the costs associated with the machines’ energy consumption and the
resulting pollutants have been at the center of the green manufacturing studies. Consid-
ering non-processing and processing energy consumption in the production facilities [7],
energy-efficiency has been explored from the operational management perspective, i.e.,
how to cluster jobs to minimize non-value-adding operations [8] and when to turn on/off
to reduce machines idle-time, which speed level to operate, and how to plan peak and
off-peak production process to save energy [9]; Production scheduling as an operational
strategic tool is complex and requires additional measures to account for less tangible
operational aspects.

The operations-related performance measures, more particularly those pertinent to
processing energy consumption, have been the subject of many scheduling studies to
account for sustainability in the production management context. Piroozfard et al. [10]
introduced a multi-objective flexible job-shop scheduling problem, minimizing carbon foot-
print and the total late work criterion. Minimizing the makespan and total carbon emission
in production environments with unrelated parallel machines was examined by Zheng and
Wang [11]. Safarzadeh and Niaki [12] addressed the total green cost and the makespan find-
ing the Pareto optimal solutions in uniform parallel machine environments. The trade-off
between makespan and energy consumption in two-machine flowshop [13], hybrid flow-
shop [14], and unrelated parallel machine [15], and job-shop scheduling environments [16]
are among the other notable contributions at the intersection of energy-efficiency and
production schedule. These studies aimed to improve energy efficiency through a soft
optimization approach focusing on minimizing processing costs and energy consumption.
That is, a trade-off enables the decision-makers to choose between cost-effectiveness or
responsiveness and energy efficiency. Although such a flexible approach is suitable in
the current regulatory situation, plausibly more restricted regulations in the future urge
optimization approaches that minimize non-processing energy consumption considering
operational strategic measures and energy cost strategies [17]. Li et al. [18] suggested
defining a limitation on the energy consumption of each machine while minimizing the
makespan and the total completion time. Scheduling problems with the no-idle time
between the in-coming and out-going jobs on the machines is an alternative solution to
effectively reduce energy wastage in the production sector. On the other hand, the technical
characteristics of modern industries, like steelmaking [19], integrated circuits manufactur-
ing, fiberglass processing, and ceramic frit [20] require a no-idle situation. Given flowshop
production as the most common process model in the manufacturing sector [21] and the
significance of energy costs in the flowshops, no-idle flowshop scheduling has received
recent recognition among production management scholars.

The successful implementation of policy-driven mechanisms for mandating carbon
emissions depends on the effective consideration of the corporate priorities, like cost-
effectiveness and responsiveness, to ensure the firms’ competitiveness [22]. This situation
is of high significance to address conflicting operational objectives within the no-idle
production scheduling agenda that enforces maximal energy efficiency. To the best of
the author’s knowledge, no published journal papers have addressed the bi-objective
optimization of no-idle flowshops. This study extends the energy-efficient production
scheduling literature by a two-fold contribution. First, an exhaustive review of the no-
idle flowshop scheduling literature is conducted to explore the developments and gaps
in modern industry scheduling. Second, a Hybrid Iterated Greedy (HIG) algorithm is
developed to effectively solve the bi-objective variant of no-idle flowshops while ensuring
the robustness of the outcomes. The three-field α| β|γ notation of Graham et al. [23] is
used for referring to the Bi-objective No-Idle Permutation Flowshop Scheduling Problem
(BNIPFSP) as Fm

∣∣prmu, no− idle
∣∣α · Cmax + β ·∑ Fj in the remainder of this article. In this

notation system, Fm shows the flowshop production environment with the set of given jobs
being processed by a set of available machines in the same order. In the second part of

Mathematics 2021, 9, 1335 3 of 18

the notation, prmu determines the permutation setting to show that the sequence of jobs
is the same on all machines, and specifies that there is no idle time between inbound and
outbound jobs on every machine. Finally, α · Cmax + β ·∑ Fj determines the weighted sum
of makespan and total flowtime criteria.

The rest of this manuscript is organized into four sections. A comprehensive re-
view of the literature is provided in Section 2. The methodology, including the extended
mathematical formulation and the solution algorithm, is elaborated in Section 3. The
numerical analysis comes next, in Section 4, to analyze the effectiveness of the developed
solution approach. Finally, concluding remarks and directions for future research on no-idle
scheduling close this research work in Section 5.

2. Literature Review

Considering the recent surge in the number of articles, a comprehensive review on
no-idle flowshop scheduling and its solution methods is timely. This section reviews the
published works indexed in Google Scholar. For this purpose, searching the keywords
“no-idle” and “Flowshop” resulted in a total of 33 articles among which, 25 were perceived
as relevant; of the relevant items, five conference papers [24–28] and two theses [29,30]
were found. The journal articles are then analyzed considering the number of machines,
the studied performance indicator, and the proposed solution approach suggested by
Ribas et al. [31] and Neufeld et al. [32].

Computers and Operations Research and Expert Systems with Applications con-
tributed the most to this extension of scheduling problems with two published works.
With five contributions, Tasgetiren is the most prominent author, followed by Rossi with
three published works. Notably, half of the contributions in no-idle flowshop scheduling
are published in or after 2019, all of which are explored in the production context. A
summary of the published works is provided in Appendix A with the detailed review
elaborated below.

No-idle scheduling was the first time introduced by Cepek et al. [33,34] to minimize
total completion time in a two-machine flowshop production environment. This seminal
scheduling problem inspired more than 20 research contributions thus far, contributing to
solution algorithms and/or new mathematical extensions to No-Idle Permutation Flow-
shop Scheduling Problem (NIPFSP). Narain and Bagga [35] developed a Branch and Bound
solution method to minimize the average flowtime in a two-machine flowshop environ-
ment. Wang et al. [36] incorporated no-wait job-related constraints into the no-idle flexible
flowshops. Later studies were focused on flowshop settings with m machines. Tasge-
tiren et al. [37] and [38] developed Differential Evolution and Discrete Artificial Bee Colony
algorithms, respectively, to minimize total tardiness in NIPFSP. Tabu Search algorithm was
later adopted by Ren et al. [39] to minimize the maximum completion time (makespan).
Tasgetiren et al. [40] proposed a hybrid Differential Evolution and variable local search,
which improved the makespan values obtained by the earlier studies.

More recent studies are rather focused on proposing novel methods and variants
in the scheduling procedure. Lu [41] explored the time-dependent learning effect and
deteriorating jobs in NIPFSP, minimizing the makespan criterion. Pagnozzi and Stützle [42]
developed an automatic algorithm configuration approach for solving single-objective
permutation flowshops. The mixed-no-idle flowshop variant was introduced by Pan and
Ruiz [43] to minimize makespan using a basic Iterated Greedy (IG) algorithm. Rossi and
Nagano [44,45] explored the mixed-no-idle and sequence-dependent setup time settings
and minimized total flowtime using Beam Search algorithms. The same authors developed
a constructive heuristic for mixed-NIPFSP with sequence-dependent setup times [46]. In a
similar contribution, Nagano et al. [47] developed a constructive heuristic to solve the basic
NIPFSP considering total flowtime. Zhao et al. [48] and Riahi et al. [49] developed Discrete
Water Wave Optimization (DWWO) and IG, respectively, for minimizing total tardiness
in NIPFSP. Benders decomposition was also tested to solve mixed-no-idle flowshops
considering the makespan criterion [20]. Most recently, Zhao et al. [50] proposed a new

Mathematics 2021, 9, 1335 4 of 18

variant to the DWWO algorithm to solve distributed assembly no-idle flowshop scheduling
problems considering maximum assembly completion time. Despite its usefulness, no
published journal papers are found that addresses the bi-objective variant of NIPFSPs.
Motivated by this gap, we propose a new formulation and solution algorithm to contribute
to energy-efficient production scheduling using bi-objective no-idle flowshops.

3. Methods
3.1. Mathematical Formulation

This study extends the Mixed-Integer Programming (MIP) formulation developed
by Ruiz and Stützle [51] to account for two conflicting optimization objectives, i.e., max-
imum completion time (makespan) and total flowtime. The former is a measure to en-
hance resource utilization, while the latter measure minimizes work-in-process inventory.
The indices, parameters, and decision variables listed in Table 1 are used to model the
Fm
∣∣prmu, no− idle

∣∣α · Cmax + β ·∑ Fj scheduling problem.

Table 1. Mathematical notations.

Symbol Definition

n Number of jobs at hand
m Number of available machines
j, k Job tag and its position index in the sequence vector, i.e., π[j]; j, k ∈ {0, 1, 2, . . . , n}
i Machine tag; i ∈ {1, 2, . . . , m}

Pj,i Processing time of job j on machine i
Xj,k Binary decision variable, = 1 if job j is positioned at index k of the vector; = 0, otherwise
Ck,i Integer decision variable, the completion time of the job assigned to position k on machine i
Fj The total flowtime of job j

We now elaborate on the MIP formulation of the Fm
∣∣prmu, no− idle

∣∣α · Cmax + β ·∑ Fj
problem. The objective function in

Minimize z = α · Cmax + β ·
n

∑
j=0

Fj (1)

minimizes the weighted sum of the makespan and total flowtime values, which are com-
mensurable. The former part of the objective function, Cmax, will be calculated using the
no-idle calculation mechanism presented in the following sub-section, and the latter part,
∑n

j=0 Fj, is determined through the constraint calculations. The objective function is subject
to the constraints below. Binary decision variables are used in:

n

∑
k=1

Xj,k = 1, ∀j ∈ {1, 2, . . . , n} (2)

where index k represents π[j] for the sake of readability. This constraint is defined to restrict
the jobs from being assigned to more than one machine. Besides, each job should occupy
one and only one position in the job sequence, as demonstrated in:

n

∑
j=1

Xj,k = 1, ∀k ∈ {1, 2, . . . , n} (3)

The completion time of the job in position k on the machine i must be greater than
or equal to the completion time of the job on the previous machine, i.e., i − 1, plus the
processing time of the same job on the machine i. These are modeled in:

Ck,1 ≥
n

∑
j=1

Xj,k · Pj,1, ∀k ∈ {1, 2, . . . , n} (4)

Mathematics 2021, 9, 1335 5 of 18

Ck,i ≥ Ck,i−1 +
n

∑
j=1

Xj,k · Pj,i, ∀k ∈ {1, 2, . . . , n}, i ∈ {2, . . . , m} (5)

where the former equation refers to the first machine, and the latter equation is defined for
the rest of the machinery. Similarly, the completion time of a job should correspond to that
of the earlier job on the same machine in:

Ck,i ≥ Cl,i +
n

∑
j=1

Xj,k · Pj,i; i ∈ {1, 2, . . . , m}, ∀k ∈ {2, . . . , n}, ∀l ∈ {1, . . . , k− 1} (6)

where the time of the job placed at the position k of the job sequence vector on machine i
corresponds to that of its immediate earlier job at the position k− 1 on machine i. On this
basis, the completion time of the job processed on the last machine considering its flowtime
is defined in:

n

∑
k=1

Ck,i · Xj,k = Fj, ∀i = m, ∀j ∈ {1, 2, . . . , n} (7)

where the flowtime value in the objective function is defined. Finally, the variable types are
demonstrated in:

Xj,k ∈ {0, 1}, ∀j, k ∈ {1, 2, . . . , n}
Ck,i ≥ 0, ∀k ∈ {1, 2, . . . , n}, i ∈ {1, 2, . . . , m}

Fj ≥ 0, ∀j ∈ {1, 2, . . . , n}
(8)

where the completion and total flowtime variables cannot accept negative values, and the
job position variable only accepts binary values.

3.2. No-Idle Calculation Mechanism

To ensure that there is zero idle time throughout the production process, one should
regulate each machine’s first job’s commencement. For this purpose, each machine’s start
time, Si, is defined in:

Si = Si−1 + max
h=1:n

(
h

∑
j=1

Pπ[j],i−1−
h−1

∑
k=1

Pπ[j],i

)
, i ∈ {1, . . . , m}, S1 = 0 (9)

where Pπ[j],i represents the processing time of the job assigned to the position j of the
sequence vector π on machine i. Si−1 determines the start time on the previous machine.
Once the start time of every machine is known, the completion time of the first job on the
machine i can be calculated using:

Cπ[1],i = Si + Pπ[1],i, i ∈ {1, . . . , m} (10)

where it equals the summation of the corresponding start time of the machine i and the
processing time of the first job in the job sequence vector, Pπ[1],i. Next, the completion time
of the job assigned to the position j of the sequence vector π, which is processed on the
machine i, is defined in:

Cπ[j],i = Cπ[j−1],i + Pπ[j],i, j ∈ {2, . . . , n}, i ∈ {1, . . . , m} (11)

where Cπ[j],i is equal to the completion time of job position in j− 1 of job sequence vector
π on machine i, Cπ[j−1],i, plus the processing time of the job positioned in j, Pπ[j],i. Finally,
the makespan value is calculated using:

Cmax = Cπ[n],m (12)

where Cπ[n],m represents the completion time of the last job in sequence vector π, which is
processed on the last machine. Therefore, Cmax = Sm + ∑n

k=1 Pk,m. An illustrative example

Mathematics 2021, 9, 1335 6 of 18

is provided in Figure 1 to clarify the computational steps of calculating the completion
time in the no-idle flowshop.

Figure 1. Illustrative example on the calculation of the completion time in no-idle flowshops.

3.3. Solution Algorithm

The IG algorithm was introduced by Ruiz and Stützle [52] to solve permutation
flowshops. The computational procedure of IG is inspired by human behavior when
wanting a lot more of something in a greedy manner. The successful track record of
the IG algorithms in solving flowshop problems inspired us to extend it for solving the
Fm
∣∣prmu, no− idle

∣∣α · Cmax + β ·∑ Fj problem. The pseudocode of the HIG algorithm
is provided in Figure 2, followed by the details on the major computational elements.
It is worthwhile mentioning that the proposed modifications are adjustable and can be
effectively adapted for other application areas.

3.3.1. Solution Initialization and Decoding

Solutions are decoded as a permutation of n numbers, each of which represent a
job, with the processing sequence being similar on m machines. Taking the job sequence
3− 6− 2− 4− 5− 1 as an example, the solution is symbolized by a vector, (3 6 2 4 5 1),
where six jobs should be processed following the specified order on every machine. To
generate the initial solution, the well-known constructive heuristic algorithm introduced
by Nawaz, Enscore, Ham (NEH; [53]), which is known as one of the best constructive
heuristics for solution initialization of the flowshop problems, is preferred to random
solution generation to ensure a better initial approximation. The NEH considers average
processing time as a priority rule for arranging the jobs. The destruction and construction
module presented in the next sub-section uses the outcomes of NEH to improve the
solution quality.

Mathematics 2021, 9, 1335 7 of 18

Figure 2. Pseudocode of the Hybrid Iterated Greedy.

3.3.2. Destruction and Construction Methods

This study applies a random destruction method with no limits to facilitate a greater
level of disturbance in the search procedure. The randomly extracted jobs, which equals
the destruction count (d), will then be saved in a separate array to be considered in the
construction procedure. A customized construction method for sorting and inserting the
removed jobs is developed to improve the effectiveness of the search procedure while
ensuring the feasibility of the resulting new solution. This approach is explained below
with an illustrative example of this procedure provided in Figure 3.

Step 1. Remove the last job from Π and name it a.
Step 2. Insert a into Π before the last job. Name the jobs before and after a as a− k and
a + k, respectively.
Step 3. Remove job a− k and rename it to b.
Step 4. Insert b next to the first job in a and name the jobs before and after b as b− k and
b + k, respectively.
Step 5. Insert b− k right before a.
Step 6. Select b + k and move it to the position before a− k.
Step 7. Select a + k and move it to the position after b.

Mathematics 2021, 9, 1335 8 of 18

Figure 3. The customized construction method for no-idle permutation flowshops considering k = 1.

3.3.3. Local Search Method

After a new solution has resulted from the iterative and greedy construction proce-
dure, a local search mechanism should be applied to search for further improvements.
For this purpose, a pre-determined number of non-repetitive random job extraction and
insertion, named as the local search count (γ), is used to find fitter solutions. If there is
an improvement as a result of applying the local search procedure, the procedure will be
continued; otherwise, it will be terminated. The pseudocode of the local search procedure
is provided in Figure 4.

3.3.4. Acceptance and Stopping Conditions

Once the current best solution (Πbest) and the new solution (Πnew) are known, the
search algorithm should determine if there is an improvement in the fitness value. If the
new solution is of better quality than the current best solution, i.e., a smaller weighted sum
of the total flowtime and makespan values f itness(Πnew) < f itness(Πbest) has resulted, the
new solution becomes the current-best solution, Πbest = Πnew. Otherwise, a mechanism is
required to decide whether or not to accept a new solution that is worse or similar to the
current best solution.

Inspired by the Simulated Annealing algorithm [54], the cooling mechanism is used
to regulate the acceptance condition. In the approach suggested by Ruiz and Stützle [52],
the fitness values associated with the current and best solutions are considered to calculate
the relative change in the solution quality, i.e., ∆ = f itness(Πnew)− f itness(Πbest). Given
∆ and the initial temperature, T0, as the algorithm parameter, the current temperature T
decreases proportionately to the cooling coefficient, i.e., T ← δ× T , where 0 < δ < 1 is the
cooling rate. Finally, the acceptance probability, calculated using P = exp(−∆E/T), should
be compared with a random number to determine whether to accept a poor-performing
solution. This mechanism is particularly useful to avoid premature convergence and

Mathematics 2021, 9, 1335 9 of 18

getting trapped in the local optima. Unchanged fitness value, i.e., ∆ = 0, for a certain
number of iterations, signals the termination of the algorithm. The algorithm terminates
when the current best solution remains do not improve for a certain number of iterations.

Figure 4. Pseudocode of the local search procedure.

4. Results

This section begins with an elaboration on the configuration of the test bank and
the algorithm calibration experiment. Numerical results and statistical analysis are then
provided to compare the HIG performance with Hybrid Tabu Search (HTS; [25]). It consists
of short- and long-term phases, with the short-term phase focusing on a local search and
the long-term phase improving concentration and diversification and help escape the local
best solutions. HTS applies the NEH [53] for solution initialization, and the ‘swap’ and
‘insert’ moves as the disturbance mechanism. Besides, three other variants of IG, denoted
by the IG1, IG2, and IG3 algorithms, are included to enrich the numerical experiments
and provide insights into the impact of various computational elements in solving the
problem. It helps explore what element of the proposed extension contributes most to the
possible breakthrough. IG1 and IG2 apply the basic construction method, while IG3 uses
the customized construction method developed in our study. On the other hand, IG1 and
IG3 do not have a local search mechanism, while IG2 applies a perturbation mechanism
similar to HIG. All the algorithms are coded and compiled using a personal computer
with the following specs; Intel (R) Core (TM) i7 CPU 3.4 GHz, 8 GB RAM, and Windows 7
operating system.

The widely-used scheduling dataset developed by Tillard [55] is used to bench-
mark HIG against the best-performing algorithms in the literature developed to solve
the Fm

∣∣prmu, no− idle
∣∣α.Cmax + β.∑ Fj problem. This dataset consists of 12 job/machine

combinations considering three configuration groups: (1) n ∈ {20, 50, 100} jobs and
m ∈ {5, 10, 20} machines; (2) n = 200 jobs and m ∈ {10, 20} machines; (3) n = 500
jobs and m = 20 machines. Ten distinct instances for each combination make a total of
120 instances for the final experiments.

The calibration experiment is conducted in two phases using random test instances.
First, the best configuration is determined considering a limited set of alternatives. Next,
the set of parameters adjacent to the selected configuration in the first phase will be
explored to check if a better combination of parameters can be found. For this purpose, the
Relative Percentage Deviation (RPD) shown in Equation (13) is considered to compare the

Mathematics 2021, 9, 1335 10 of 18

resulting fitness values where smaller values are preferred, and RPD = 0 demonstrates the
best solution. In this equation, Fitness∗ refers to the fitness value obtained by each of the
solution algorithms and Fitnessbest is the best result.

RPD =
Fitnessbest − Fitness∗

Fitness∗
× 100 (13)

Random instances are used to determine the parameters of the IG1, IG2, IG3, and
HIG algorithms. The calibration test results are summarized in Table 2 for these algo-
rithms. On this basis, the algorithm parameters are set to d = 2, γ = 20, and δ = 0.9
to conduct the final experiments. To ensure a fair comparison, a termination condition
similar to that of the HTS algorithm, which is applied by Ren et al. [25], is considered.
That is, the algorithm terminates when the current best solution remains unchanged for
100 consecutive iterations.

Table 2. Calibration results analysis (best in bold).

Algorithm Parameter Phase I Phase II

IG1

I II III I IV V
d 2 4 6 2 1 3
γ 20 40 60 20 10 30
δ 0.9 0.8 0.7 0.9 0.95 0.85

ARPD 0.56 1.35 1.61 0.78 2.78 1.26

IG2

I II III I IV V
d 2 4 6 2 1 3
γ 20 40 60 20 10 30
δ 0.9 0.8 0.7 0.9 0.95 0.85

ARPD 0.48 0.65 0.78 0.68 0.90 1.15

IG3

I II III I IV V
d 2 4 6 2 1 3
γ 20 40 60 20 10 30
δ 0.9 0.8 0.7 0.9 0.95 0.85

ARPD 0.32 0.99 1.02 0.38 3.92 0.88

HIG

I II III I IV V
d 2 4 6 2 1 3
γ 20 40 60 20 10 30
δ 0.9 0.8 0.7 0.9 0.95 0.85

ARPD 0.33 0.48 0.87 0.44 4.99 0.49

Considering the calibrated parameter values and an equal importance weight
(α = β = 0.5) within a priori performance articulation scheme, the best-found solutions of
the instances solved using HTS [25] are compared to those of the HTS, IG1, IG2, and IG1
algorithms. The results are summarized in Tables 3 and 4. Except for the instance with
20 machines and 10 jobs (20× 10), where HTS performs slightly better than HIG, the rest
of the best solutions are yielded by HIG.

We first analyze the results considering various workloads and operating scales.
Considering different numbers of jobs in the first set of instances, Table 3 shows that HIG
performs better than HTS. The difference in performance becomes more significant with an
increase in the workload. The IG2 algorithm is also superior to the HTS, considering the
first set of test instances, showing that integrating the local search mechanism contributes
significantly to the success of the developed algorithm. The solutions obtained by the IG1,
IG2, IG3, and HIG algorithms across all test instances are then compared separately in
Table 4, considering all test instances where HIG yields the best results in all cases.

Mathematics 2021, 9, 1335 11 of 18

Table 3. Best-found solutions considering the first set of test instances (best in bold).

Instance (m × n) HTS IG1 IG2 IG3 HIG

20× 5 9437.0 9549.5 9401.0 9566.5 9324.5
20× 10 17,456.0 17,716.5 17,616.5 17,539.0 17,472.5
20× 20 29,319.0 29,412.5 29,149.5 29,724.5 29,148.5
50× 5 47,719.0 46,597.0 46,717.5 47,199.5 45,895.5

50× 10 58,610.0 61,247.0 58,375.5 58,445.0 57,582.5
50× 20 107,007.0 110,308.0 105,657.0 108,775.5 105,555.0
100× 5 160,401.5 162,367.0 157,927.0 158,705.5 155,420.0

100× 10 214,438.5 206,815.5 202,818.0 207,382.5 201,117.5
100× 20 337,888.5 335,717.0 330,472.0 330,243.5 324,920.5
200× 10 685,369.5 690,565.5 657,372.5 671,582.5 656,480.0
200× 20 1,003,945.5 1,006,795.0 991,009.0 1,011,902.5 989,277.5
500× 20 4,456,166.0 4,540,516.5 4,449,380.0 4,494,197.5 4,448,496.5

Table 4. Best-found solutions across all test instances (updates in bold).

Instance (m× n) IG1 IG2 IG3 HIG

20× 5 9239.05 9088.05 9111.90 9031.65
20× 10 15,238.65 15,054.10 15,065.25 14,999.45
20× 20 29,966.20 29,591.90 29,628.70 29,422.00
50× 5 43,076.70 42,166.05 42,448.70 41,957.35

50× 10 62,506.85 60,375.95 60,962.05 59,921.50
50× 20 111,451.80 108,472.15 109,087.45 107,926.95
100× 5 144,552.95 141,478.15 142,699.50 140,742.30
100× 10 209,197.70 204,574.05 207,545.50 203,718.20
100× 20 327,279.80 320,069.55 320,393.40 316,219.80
200× 10 697,101.30 674,801.50 684,276.40 674,297.30
200× 20 990,265.30 965,298.95 974,714.40 962,675.70
500× 20 4,764,325.25 4,687,959.00 4,704,317.20 4,680,702.80

In an overall analysis, Tables 5 and 6 provide the Average Relative Percentage Devia-
tion (ARPD) values for different workloads and machines, respectively. The RPD analysis
shows the overall impact of the number of machinery and workload on the performance
of the algorithm. It is evident that HIG obtains meaningfully better solutions than the
HTS, IG1, IG2, and IG3 algorithms when solving the Fm

∣∣prmu, no− idle
∣∣α · Cmax + β ·∑ Fj

problem across different operational situations. Given the RPD analysis, it is expected
that HIG’s superiority to the current-best-performing algorithm, HTS, will be even more
significant for industry-scale applications.

A statistical test is conducted to check whether the resulting improvement in the
best-found solutions is significant. The null hypothesis is that the HIG algorithm does
not outperform the HTS algorithm when solving the Fm

∣∣prmu, no− idle
∣∣α · Cmax + β ·∑ Fj

problem. The t-test results are summarized in Table 7. Considering 120 test instances, the
p-value is supportive of rejecting the null hypothesis. That is, with 95 percent of confidence,
we can claim that HIG is superior to the current-best-performing algorithm in the literature
of BNIPFSP, i.e., the HTS algorithm. It is also observed that the proposed extension shows
a significant improvement in the performance of the algorithm when compared to all three
variants of the IGs.

Mathematics 2021, 9, 1335 12 of 18

Table 5. The Relative Performance Deviation considering various workloads (best in bold).

Workload (n) Machinery (m) HTS IG1 IG2 IG3 HIG

20

5 1.21 2.41 0.82 2.60 0.00
10 0.00 1.49 0.92 0.48 0.09
20 0.58 0.91 0.00 1.98 0.00

Overall 0.60 1.60 0.58 1.68 0.03

50

5 3.97 1.53 1.79 2.84 0.00
10 1.78 6.36 1.38 1.50 0.00
20 1.38 4.50 0.10 3.05 0.00

Overall 2.38 4.13 1.09 2.46 0.00

100

5 3.21 4.47 1.61 2.11 0.00
10 6.62 2.83 0.85 3.12 0.00
20 3.99 3.32 1.71 1.64 0.00

Overall 4.61 3.54 1.39 2.29 0.00

200
10 4.40 5.19 0.14 2.30 0.00
20 1.48 1.77 0.18 2.29 0.00

Overall 2.94 3.48 0.16 2.29 0.00

500 20 0.17 2.07 0.02 1.03 0.00

Table 6. Average Relative Performance Deviation considering operating scale (best in bold).

Machinery (m) Workload (n) HTS IG1 IG2 IG3 HIG

5

20 1.21 2.41 0.82 2.60 0.00
50 3.97 1.51 1.79 2.84 0.00

100 3.21 4.47 1.61 2.11 0.00

Overall 2.79 2.80 1.40 2.51 0.00

10

20 0.00 1.49 0.92 0.48 0.09
50 1.78 6.36 1.38 1.50 0.00

100 6.62 2.83 0.85 3.12 0.00
200 4.40 5.19 0.14 2.30 0.00

Overall 3.20 3.97 0.81 1.84 0.02

100

20 0.58 0.91 0.00 1.98 0.00
50 1.38 4.50 0.10 3.05 0.00

100 3.99 3.32 1.71 1.64 0.00
200 1.48 1.77 0.18 2.29 0.00
500 0.17 2.07 0.02 1.03 0.00

Overall 1.26 2.09 0.33 1.66 0.00

Table 7. Paired t-test analysis of the performance differences under 0.95 confidence interval.

Instance Average StD DoF T Stat
One-Tail Two-Tail

t-Critical p-Value t-Critical p-Value

HIG Vs. HTS 7255.58 8435.13 11 2.86 1.79 0.0078 2.20 0.0157

StD: Standard Deviation, S.E.: Standard Error of the Mean, DoF: Degree of Freedom.

As a final step to the numerical analysis, the best-found solutions to all 120 test
instances are recorded in Appendix B. The updated values are highlighted in bold font.
Notably, 119 out of 120 best-found solutions are yielded by the HIG algorithm. The resulting
values can be used in future studies to benchmark the prospect solution algorithms for
solving the Fm

∣∣prmu, no− idle
∣∣α · Cmax + β ·∑ Fj problem.

Mathematics 2021, 9, 1335 13 of 18

5. Conclusions

Energy efficiency in the production sector requires well-informed operations manage-
ment decisions in addition to the use of modern equipment, smart lighting and control
systems, and the standard construction of facilities. Production scheduling is a prime
example of planning tools that facilitate the successful implementation of green initia-
tives for reducing the carbon footprint. This study contributes to the energy-efficient
production scheduling literature developing a mathematical model and a solution algo-
rithm to address the gap identified in the comprehensive literature review. Extensive
numerical analysis using a well-known dataset showed that almost all of the best-found
solutions are yielded by the HIG algorithm. The statistical test of significance confirmed
that HIG performs significantly better than the benchmark algorithm when solving the
Fm
∣∣prmu, no− idle

∣∣α · Cmax + β ·∑ Fj problem.
Despite its effectiveness in solving the BNIPFSPs, the proposed solution algorithm is

limited in that it applies a priori preference articulation approach for reconciliation of the
makespan and total flowtime. To address this limitation, the following directions can be
pursued. First, one can extend the Iterated Greedy algorithm to work with the Pareto Front
approach to provide a comprehensive set of optimum solutions and trade-offs. Second,
other multi-objective optimization algorithms can be adapted to solve this intractable
scheduling extension. The third suggestion for future research includes adopting the
Concept of Stratification and Incremental Enlargement to solve the problem’s dynamic
variant. In doing so, one can also account for operational parameter uncertainties and
the possibility of rejecting a job or partially accepting a batch of jobs. Finally, the no-
idle setting needs more attention in other production settings to contribute to energy
efficiency literature.

Author Contributions: C.-Y.C.: Conceptualization, Methodology, Software. S.-W.L.: Conceptual-
ization, Methodology, Software, Funding acquisition. P.P.: Investigation, Writing—Original draft,
Writing—Revision. K.-C.Y.: Supervision, Conceptualization, Methodology. Y.-Z.L.: Formal analysis.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the Ministry of Science and Technology, Taiwan,
under Grant MOST 109-2221-E-027-073/Most-109-2410-H-182-009-MY3, and in part by the Linkou
Chang Gung Memorial Hospital under Grant BMRPA19.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Summary of the No-Idle Flowshop Scheduling Literature.

Title Authors (Year) Publication Scheduling Extension Objective Function

Note: On the Two-Machine
No-Idle Flowshop Problem Cepek et al. (2000) Naval Research

Logistics
No-idle permutation

flowshop Total completion time

Flowshop/no-idle
scheduling to minimize the

mean flowtime

Narain and Bagga
(2005)

Australia and New
Zealand Industrial

and Applied
Mathematics
(ANZIAM)

No-idle permutation
flowshop Average flowtime

No-wait flexible flowshop
scheduling with
no-idle machines

Wang et al. (2005) Operations Research
Letters

No-wait flexible
flowshop with no-idle

machines
Makespan

Mathematics 2021, 9, 1335 14 of 18

Table A1. Cont.

Title Authors (Year) Publication Scheduling Extension Objective Function

A differential evolution
algorithm for the no-idle

flowshop scheduling
problem with total
tardiness criterion

Tasgetiren et al.
(2011)

International Journal
of Production

Research

No-idle permutation
flowshop Total tardiness

Tabu search algorithm for
no-idle flowshop

scheduling problems
Ren et al. (2010)

Computer
Engineering and

Design

No-idle permutation
flowshop Makespan

A DE Based Variable
Iterated Greedy Algorithm

for the No-Idle
Permutation Flowshop

Scheduling Problem with
Total Flowtime Criterion

Tasgetiren et al.
(2011) Conference No-idle permutation

flowshop Total flowtime

Hybrid Tabu Search
Algorithm for bi-criteria
no-idle permutation flow
shop scheduling problem

Ren et al. (2011) Conference Bi-objective no-idle
permutation flowshop

Makespan and total
flowtime

A new heuristic method for
minimizing the makespan
in a no-idle permutation

flowshop

Nagano & Branco
(2012) Conference No-idle permutation

flowshop Makespan

A discrete artificial bee
colony algorithm for the

no-idle permutation
flowshop scheduling

problem with the total
tardiness criterion

Tasgetiren et al.
(2013b)

Applied Mathematical
Modelling

No-idle permutation
flowshop Total tardiness

A variable iterated greedy
algorithm with differential

evolution for the no-idle
permutation flowshop

scheduling problem

Tasgetiren et al.
(2013a)

Computers &
Operations Research

No-idle permutation
flowshop Makespan

Metaheuristics for the
no-idle permutation
flowshop scheduling

problem

Büyükdağlı (2013) Thesis No-idle permutation
flowshop -

An effective iterated
greedy algorithm for the

mixed no-idle permutation
flowshop scheduling

problem

Pan and Ruiz (2014) OMEGA Mixed no-idle
permutation flowshop Makespan

Research on no-idle
permutation flowshop

scheduling with
time-dependent learning
effect and deteriorating

jobs

Lu (2016) Applied Mathematical
Modelling

No-idle permutation
flowshop scheduling
with time-dependent

learning effect and
deteriorating jobs

Makespan

Heuristics for the mixed
no-idle flowshop with

sequence-dependent setup
times and total flowtime

criterion

Rossi and Nagano
(2019a)

Expert Systems with
Applications

Mixed no-idle
permutation flowshop

with SDST
Total flowtime

Mathematics 2021, 9, 1335 15 of 18

Table A1. Cont.

Title Authors (Year) Publication Scheduling Extension Objective Function

Heuristics for the mixed
no-idle flowshop with

sequence-dependent setup
times

Rossi and Nagano
(2019b)

Journal of the
Operational Research

Society

Mixed no-idle
permutation flowshop

with SDST
Makespan

High-performing heuristics
to minimize flowtime in

no-idle permutation
flowshop

Nagano et al. (2019) Engineering
Optimization

No-idle permutation
flowshop Total flowtime

A Variable Iterated Local
Search Algorithm for

Energy-Efficient No-idle
Flowshop Scheduling

Problem

Tasgetiren et al.
(2019) Conference Bi-objective no-idle

permutation flowshop
Makespan and total
energy consumption

A contribution for the
mixed no-idle flowshop

scheduling problem with
sequence-dependent setup

times: analysis and
solutions procedures

Rossi (2020) Thesis

Mixed no-idle
flowshop with

sequence-dependent
setup times

-

A hybrid discrete water
wave optimization

algorithm for the no-idle
flowshop scheduling
problem with total
tardiness criterion

Zhao et al. (2020) Expert Systems with
Applications

No-idle permutation
flowshop Total tardiness

A new iterated greedy
algorithm for no-idle

permutation flowshop
scheduling with the total

tardiness criterion

Riahi et al. (2020) Computers &
Operations Research

No-idle permutation
flowshop Total tardiness

Benders decomposition for
the mixed no-idle

permutation flowshop
scheduling problem

Bektaş et al. (2020) Journal of Scheduling Mixed no-idle
permutation flowshop Makespan

Heuristics and
metaheuristics for the

mixed no-idle flowshop
with sequence-dependent

setup times and total
tardiness minimization

Rossi and Nagano
(2020)

Swarm and
Evolutionary
Computation

Mixed no-idle
permutation flowshop

with
sequence-dependent

setup times

Total tardiness

A Novel General Variable
Neighborhood Search

through Q-Learning for
No-Idle Flowshop

Scheduling

Oztop et al. (2020) Conference No-idle permutation
flowshop Makespan

Automatic design of
hybrid stochastic local
search algorithms for

permutation flowshop
problems with additional

constraints

Pagnozzi and Stützle
(2021)

Operations Research
Perspectives

No-idle permutation
flowshop Makespan

A cooperative water wave
optimization algorithm

with reinforcement
learning for the distributed
assembly no-idle flowshop

scheduling problem

Zhao et al. (2021) Computers &
Industrial Engineering

Distributed assembly
no-idle flow-shop

scheduling problem

Maximum assembly
completion time

Mathematics 2021, 9, 1335 16 of 18

Appendix B

Table A2. Best-Found Solutions (BFS) across All Test Instances (Updates in Bold).

Inst.
(m×n) BFS Inst.

(m×n) BFS Inst.
(m×n) BFS Inst.

(m×n) BFS Inst.
(m×n) BFS

1

20× 5 9324.5

2

20× 5 8768.5

3

20× 5 9004.0

4

20× 5 9201.0

5

20× 5 9840.0
20× 10 17,456.0 20× 10 15,359.5 20× 10 15,311.0 20× 10 15,060.5 20× 10 12,932.0
20× 20 29,148.5 20× 20 27,458.5 20× 20 29,330.0 20× 20 27,500.5 20× 20 30,123.5
50× 5 45,895.5 50× 5 40,849.5 50× 5 39,540.0 50× 5 40,900.0 50× 5 46,931.0
50× 10 57,582.5 50× 10 56,394.5 50× 10 55,894.5 50× 10 60,125.5 50× 10 53,752.0
50× 20 105,555.0 50× 20 119,208.5 50× 20 95984.5 50× 20 113,445.5 50× 20 97,119.0
100× 5 155,420.0 100× 5 134,879.0 100× 5 133,638.0 100× 5 133,875.5 100× 5 147,159.0
100× 10 201,117.5 100× 10 178,403.0 100× 10 212,533.0 100× 10 191,444.5 100× 10 195,680.5
100× 20 324,920.5 100× 20 297,506.0 100× 20 310,170.5 100× 20 345,987.0 100× 20 355,364.0
200× 10 656,480.0 200× 10 752,145.0 200× 10 729,595.0 200× 10 618,158.0 200× 10 667,624.5
200× 20 989,277.5 200× 20 962,653.5 200× 20 944,299.5 200× 20 903,733.0 200× 20 987,579.5
500× 20 4,448,496.5 500× 20 4,550,718 500× 20 4,927,311 500× 20 4,443,889 500× 20 485,7293

6

20× 5 9974.0

7

20× 5 7746.5

8

20× 5 8809.5

9

20× 5 9435.5

10

20× 5 8213.0
20× 10 15,218.5 20× 10 13,795.0 20× 10 15,206.0 20× 10 15,190.0 20× 10 14,449.5
20× 20 30,508.0 20× 20 28,473.5 20× 20 29,676.5 20× 20 29,177.0 20× 20 32,824.0
50× 5 40,562.5 50× 5 43,979.0 50× 5 41,450.0 50× 5 39,433.0 50× 5 40,033.0
50× 10 67,395.5 50× 10 61,381.0 50× 10 65,124.5 50× 10 59,999.0 50× 10 61,566.0
50× 20 116,283.0 50× 20 113,469.0 50× 20 102,066.0 50× 20 104,491.5 50× 20 111,647.5
100× 5 135,117.0 100× 5 158,846.0 100× 5 130,140.5 100× 5 138,971.0 100× 5 139,377.0
100× 10 198,459.5 100× 10 216,278.5 100× 10 214,725.5 100× 10 21,8945.0 100× 10 201,118.0
100× 20 294,212.0 100× 20 310,486.0 100× 20 300,453.0 100× 20 321,981.0 100× 20 301,118.0
200× 10 698,950.5 200× 10 6,123,41.5 200× 10 705,257.0 200× 10 601,637.0 200× 10 700,784.5
200× 20 976,708.0 200× 20 1,025,032 200× 20 1,003,762 200× 20 919,347.5 200× 20 914,365.5
500× 20 446,0524 500× 20 4,829,931 500× 20 4,979,367 500× 20 4,414,894 500× 20 489,4606

References
1. Zhu, Z.-S.; Liao, H.; Cao, H.-S.; Wang, L.; Wei, Y.-M.; Yan, J. The differences of carbon intensity reduction rate across 89 countries

in recent three decades. Appl. Energy 2014, 113, 808–815. [CrossRef]
2. Sutherland, B.R. Tax Carbon Emissions and Credit Removal. Joule 2019, 3, 2071–2073. [CrossRef]
3. Agency, I.E. Tracking Industrial Energy Efficiency and CO2 Emissions; OECD: Paris, France, 2007; ISBN 9789264030169.
4. Pourhejazy, P.; Kwon, O.K.; Lim, H. Integrating Sustainability into the Optimization of Fuel Logistics Networks. KSCE J. Civ. Eng.

2019, 23, 1369–1383. [CrossRef]
5. Zhang, H.C.; Kuo, T.C.; Lu, H.; Huang, S.H. Environmentally conscious design and manufacturing: A state-of-the-art survey. J.

Manuf. Syst. 1997, 16, 352–371. [CrossRef]
6. Pourhejazy, P.; Kwon, O.K. A Practical Review of Green Supply Chain Management: Disciplines and Best Practices. J. Int. Logist.

Trade 2016, 14, 156–164. [CrossRef]
7. Peng, C.; Peng, T.; Zhang, Y.; Tang, R.; Hu, L. Minimising non-processing energy consumption and tardiness fines in a mixed-flow

shop. Energies 2018, 11, 3382. [CrossRef]
8. Cheng, C.-Y.; Pourhejazy, P.; Ying, K.-C.; Lin, C.-F. Unsupervised Learning-based Artificial Bee Colony for minimizing non-value-

adding operations. Appl. Soft Comput. 2021, 105, 107280. [CrossRef]
9. Wu, X.; Sun, Y. A green scheduling algorithm for flexible job shop with energy-saving measures. J. Clean. Prod. 2018,

172, 3249–3264. [CrossRef]
10. Piroozfard, H.; Wong, K.Y.; Wong, W.P. Minimizing total carbon footprint and total late work criterion in flexible job shop

scheduling by using an improved multi-objective genetic algorithm. Resour. Conserv. Recycl. 2018, 128, 267–283. [CrossRef]
11. Zheng, X.-L.; Wang, L. A collaborative multiobjective fruit fly optimization algorithm for the resource constrained unrelated

parallel machine green scheduling problem. IEEE Trans. Syst. Man Cybern. Syst. 2016, 48, 790–800. [CrossRef]
12. Safarzadeh, H.; Niaki, S.T.A. Bi-objective green scheduling in uniform parallel machine environments. J. Clean. Prod. 2019,

217, 559–572. [CrossRef]
13. Mansouri, S.A.; Aktas, E.; Besikci, U. Green scheduling of a two-machine flowshop: Trade-off between makespan and energy

consumption. Eur. J. Oper. Res. 2016, 248, 772–788. [CrossRef]
14. Zhang, B.; Pan, Q.; Gao, L.; Li, X.; Meng, L.; Peng, K. A multiobjective evolutionary algorithm based on decomposition for hybrid

flowshop green scheduling problem. Comput. Ind. Eng. 2019, 136, 325–344. [CrossRef]
15. Cota, L.P.; Coelho, V.N.; Guimarães, F.G.; Souza, M.J.F. Bi-criteria formulation for green scheduling with unrelated parallel

machines with sequence-dependent setup times. Int. Trans. Oper. Res. 2021, 28, 996–1017. [CrossRef]

http://doi.org/10.1016/j.apenergy.2013.07.062
http://doi.org/10.1016/j.joule.2019.08.024
http://doi.org/10.1007/s12205-019-1373-7
http://doi.org/10.1016/S0278-6125(97)88465-8
http://doi.org/10.24006/jilt.2016.14.2.156
http://doi.org/10.3390/en11123382
http://doi.org/10.1016/j.asoc.2021.107280
http://doi.org/10.1016/j.jclepro.2017.10.342
http://doi.org/10.1016/j.resconrec.2016.12.001
http://doi.org/10.1109/TSMC.2016.2616347
http://doi.org/10.1016/j.jclepro.2019.01.166
http://doi.org/10.1016/j.ejor.2015.08.064
http://doi.org/10.1016/j.cie.2019.07.036
http://doi.org/10.1111/itor.12566

Mathematics 2021, 9, 1335 17 of 18

16. Jiang, T.; Zhang, C.; Sun, Q.-M. Green job shop scheduling problem with discrete whale optimization algorithm. IEEE Access
2019, 7, 43153–43166. [CrossRef]

17. Aghelinejad, M.; Ouazene, Y.; Yalaoui, A. Complexity analysis of energy-efficient single machine scheduling problems. Oper. Res.
Perspect. 2019, 6, 100105. [CrossRef]

18. Li, K.; Zhang, X.; Leung, J.Y.-T.; Yang, S.-L. Parallel machine scheduling problems in green manufacturing industry. J. Manuf. Syst.
2016, 38, 98–106. [CrossRef]

19. Niu, S.; Song, S.; Chiong, R. A Distributionally Robust Scheduling Approach for Uncertain Steelmaking and Continuous Casting
Processes. IEEE Trans. Syst. Man Cybern. Syst. 2021. [CrossRef]

20. Bektaş, T.; Hamzadayı, A.; Ruiz, R. Benders decomposition for the mixed no-idle permutation flowshop scheduling problem. J.
Sched. 2020, 23, 513–523. [CrossRef]

21. Ding, J.-Y.; Song, S.; Gupta, J.N.D.; Wang, C.; Zhang, R.; Wu, C. New block properties for flowshop scheduling with blocking and
their application in an iterated greedy algorithm. Int. J. Prod. Res. 2016, 54, 4759–4772. [CrossRef]

22. Foumani, M.; Smith-Miles, K. The impact of various carbon reduction policies on green flowshop scheduling. Appl. Energy 2019,
249, 300–315. [CrossRef]

23. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.H.G.R. Optimization and Approximation in Deterministic Sequencing and
Scheduling: A Survey. In Annals of Discrete Mathematics; Elsevier: Amsterdam, The Netherlands, 1979; Volume 5, pp. 287–326.

24. Tasgetiren, M.F.; Pan, Q.-K.; Wang, L.; Chen, A.H.-L. A DE based variable iterated greedy algorithm for the no-idle permutation
flowshop scheduling problem with total flowtime criterion. In Proceedings of the International Conference on Intelligent
Computing, Zhengzhou, China, 11–14 August 2011; pp. 83–90.

25. Ren, W.-J.; Duan, J.-H.; Zhang, F.; Han, H.; Zhang, M. Hybrid Tabu Search Algorithm for bi-criteria No-idle permutation flow
shop scheduling problem. In Proceedings of the 2011 Chinese Control and Decision Conference (CCDC), Mianyang, China, 23–25
May 2011; pp. 1699–1702.

26. Nagano, M.S.; Branco, F.J.C. A new heuristic method for minimizing the makespan in a no-idle permutation flowshop. In
Proceedings of the Simposio Brasileiro de Pesquisa Operacional, Rio de Janeiro, Brazil, 24–28 September 2012.

27. Fatih Tasgetiren, M.; Öztop, H.; Gao, L.; Pan, Q.K.; Li, X. A Variable Iterated Local Search Algorithm for Energy-Efficient No-idle
Flowshop Scheduling Problem. Procedia Manuf. 2019, 39, 1185–1193. [CrossRef]

28. Oztop, H.; Tasgetiren, M.F.; Kandiller, L.; Pan, Q.K. A Novel General Variable Neighborhood Search through Q-Learning for
No-Idle Flowshop Scheduling. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK,
19–24 July 2020. [CrossRef]

29. Rossi, F.L. A Contribution for the Mixed No-Idle Flowshop Scheduling Problem with Sequence-Dependent Setup Times: Analysis
and Solutions Procedures. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2019.

30. Buyukdagli, O. Metaheuristics for the No-Idle Permutation Flowshop Scheduling Problem. Master Thesis, Yasar University,
Bornova, Turkey, 2013.

31. Ribas, I.; Leisten, R.; Framiñan, J.M. Review and classification of hybrid flow shop scheduling problems from a production system
and a solutions procedure perspective. Comput. Oper. Res. 2010, 37, 1439–1454. [CrossRef]

32. Neufeld, J.S.; Gupta, J.N.D.; Buscher, U. A comprehensive review of flowshop group scheduling literature. Comput. Oper. Res.
2016, 70, 56–74. [CrossRef]

33. Cepek, O.; Okada, M.; Vlach, M. Minimizing total completion time in a two-machine no-idle flowshop. Res. Rep. 1998, 98, 1–23.
34. Čepek, O.; Okada, M.; Vlach, M. Note: On the Two-Machine No-Idle Flowshop Problem. Nav. Res. Logist. 2000, 47, 353–358.

[CrossRef]
35. Narain, L.; Bagga, P.C. Flowshop/no-idle scheduling to minimise the mean flowtime. ANZIAM J. 2005, 47, 265–275. [CrossRef]
36. Wang, Z.; Xing, W.; Bai, F. No-wait flexible flowshop scheduling with no-idle machines. Oper. Res. Lett. 2005, 33, 609–614.

[CrossRef]
37. Tasgetiren, M.F.; Pan, Q.K.; Suganthan, P.N.; Jin Chua, T. A differential evolution algorithm for the no-idle flowshop scheduling

problem with total tardiness criterion. Int. J. Prod. Res. 2011, 49, 5033–5050. [CrossRef]
38. Fatih Tasgetiren, M.; Pan, Q.K.; Suganthan, P.N.; Oner, A. A discrete artificial bee colony algorithm for the no-idle permutation

flowshop scheduling problem with the total tardiness criterion. Appl. Math. Model. 2013, 37, 6758–6779. [CrossRef]
39. Ren, W.-J.; Pan, Q.-K.; Han, H.-Y. Tabu search algorithm for no-idle flowshop scheduling problems. Comput. Eng. Des. 2010,

31, 5071–5074.
40. Fatih Tasgetiren, M.; Pan, Q.K.; Suganthan, P.N.; Buyukdagli, O. A variable iterated greedy algorithm with differential evolution

for the no-idle permutation flowshop scheduling problem. Comput. Oper. Res. 2013, 40, 1729–1743. [CrossRef]
41. Lu, Y.Y. Research on no-idle permutation flowshop scheduling with time-dependent learning effect and deteriorating jobs. Appl.

Math. Model. 2016, 40, 3447–3450. [CrossRef]
42. Pagnozzi, F.; Stützle, T. Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems with

additional constraints. Oper. Res. Perspect. 2021, 8, 100180.
43. Pan, Q.-K.; Ruiz, R. An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem.

Omega 2014, 44, 41–50. [CrossRef]
44. Rossi, F.L.; Nagano, M.S. Heuristics for the mixed no-idle flowshop with sequence-dependent setup times and total flowtime

criterion. Expert Syst. Appl. 2019, 125, 40–54. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2908200
http://doi.org/10.1016/j.orp.2019.100105
http://doi.org/10.1016/j.jmsy.2015.11.006
http://doi.org/10.1109/TSMC.2021.3079133
http://doi.org/10.1007/s10951-020-00637-8
http://doi.org/10.1080/00207543.2015.1076941
http://doi.org/10.1016/j.apenergy.2019.04.155
http://doi.org/10.1016/j.promfg.2020.01.351
http://doi.org/10.1109/CEC48606.2020.9185556
http://doi.org/10.1016/j.cor.2009.11.001
http://doi.org/10.1016/j.cor.2015.12.006
http://doi.org/10.1002/(SICI)1520-6750(200006)47:4<353::AID-NAV5>3.0.CO;2-U
http://doi.org/10.1017/S1446181100010026
http://doi.org/10.1016/j.orl.2004.10.004
http://doi.org/10.1080/00207543.2010.497781
http://doi.org/10.1016/j.apm.2013.02.011
http://doi.org/10.1016/j.cor.2013.01.005
http://doi.org/10.1016/j.apm.2015.09.081
http://doi.org/10.1016/j.omega.2013.10.002
http://doi.org/10.1016/j.eswa.2019.01.057

Mathematics 2021, 9, 1335 18 of 18

45. Rossi, F.L.; Nagano, M.S. Heuristics and metaheuristics for the mixed no-idle flowshop with sequence-dependent setup times
and total tardiness minimisation. Swarm Evol. Comput. 2020, 55, 100689. [CrossRef]

46. Rossi, F.L.; Nagano, M.S. Heuristics for the mixed no-idle flowshop with sequence-dependent setup times. J. Oper. Res. Soc.
2019, 1–27. [CrossRef]

47. Nagano, M.S.; Rossi, F.L.; Martarelli, N.J. High-performing heuristics to minimize flowtime in no-idle permutation flowshop.
Eng. Optim. 2019, 51, 185–198. [CrossRef]

48. Zhao, F.; Zhang, L.; Zhang, Y.; Ma, W.; Zhang, C.; Song, H. A hybrid discrete water wave optimization algorithm for the no-idle
flowshop scheduling problem with total tardiness criterion. Expert Syst. Appl. 2020, 146, 113166. [CrossRef]

49. Riahi, V.; Chiong, R.; Zhang, Y. A new iterated greedy algorithm for no-idle permutation flowshop scheduling with the total
tardiness criterion. Comput. Oper. Res. 2020, 117, 104839. [CrossRef]

50. Zhao, F.; Zhang, L.; Cao, J.; Tang, J. A cooperative water wave optimization algorithm with reinforcement learning for the
distributed assembly no-idle flowshop scheduling problem. Comput. Ind. Eng. 2021, 153, 107082. [CrossRef]

51. Ruiz, R.; Vallada, E.; Fernandez-Martinez, C. Scheduling in flowshops with no-idle machines. In Computational Intelligence in Flow
Shop and Job Shop Scheduling; Springer: Berlin/Heidelberg, Germany, 2009; pp. 21–51.

52. Ruiz, R.; Stützle, T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J.
Oper. Res. 2007, 177, 2033–2049. [CrossRef]

53. Nawaz, M.; Enscore, E.E., Jr.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983,
11, 91–95. [CrossRef]

54. Osman, I.; Potts, C. Simulated annealing for permutation flow-shop scheduling. Omega 1989, 17, 551–557. [CrossRef]
55. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [CrossRef]

http://doi.org/10.1016/j.swevo.2020.100689
http://doi.org/10.1080/01605682.2019.1671149
http://doi.org/10.1080/0305215X.2018.1444163
http://doi.org/10.1016/j.eswa.2019.113166
http://doi.org/10.1016/j.cor.2019.104839
http://doi.org/10.1016/j.cie.2020.107082
http://doi.org/10.1016/j.ejor.2005.12.009
http://doi.org/10.1016/0305-0483(83)90088-9
http://doi.org/10.1016/0305-0483(89)90059-5
http://doi.org/10.1016/0377-2217(93)90182-M

	Introduction
	Literature Review
	Methods
	Mathematical Formulation
	No-Idle Calculation Mechanism
	Solution Algorithm
	Solution Initialization and Decoding
	Destruction and Construction Methods
	Local Search Method
	Acceptance and Stopping Conditions

	Results
	Conclusions
	
	
	References

