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Abstract: A refined beam theory that takes the thickness-stretching into account is presented in this
study for the bending vibratory behavior analysis of thick functionally graded (FG) beams. In this
theory, the number of unknowns is reduced to four instead of five in the other approaches. Transverse
displacement is expressed through a hyperbolic function and subdivided into bending, shear, and
thickness-stretching components. The number of unknowns is reduced, which involves a decrease in
the number of the governing equation. The boundary conditions at the top and bottom FG beam
faces are satisfied without any shear correction factor. According to a distribution law, effective
characteristics of FG beam material change continuously in the thickness direction depending on
the constituent’s volume proportion. Equations of motion are obtained from Hamilton’s principle
and are solved by assuming the Navier’s solution type, for the case of a supported FG beam that
is transversely loaded. The numerical results obtained are exposed and analyzed in detail to verify
the validity of the current theory and prove the influence of the material composition, geometry,
and shear deformation on the vibratory responses of FG beams, showing the impact of normal
deformation on these responses which is neglected in most of the beam theories. The obtained results
are compared with those predicted by other beam theories. It can be concluded that the present
theory is not only accurate but also simple in predicting the bending and free vibration responses of
FG beams.

Keywords: refined beam-theory; functionally graded beam; thickness stretching; composites; vibra-
tion; frequency response

1. Introduction

Functionally graded materials (FGMs) are new types of composites obtained by mixing
ceramic and metallic constituents [1–4]. Material properties vary continuously through the
beam-thickness in function of the mixing proportion. This avoids the stress concentration
observed in laminate composites. FGMs are reserved for specific uses, for example, coatings
of thermal barriers for turbine blades, shielding for military applications, automotive, space
and aerospace industries, biomedical materials.

In the past decades, studied on functionally graded material (FGM) beams [5–10],
plates [11–19] and shells [20–22] have received substantial attention, and an extensive
spectrum of beam and plate theories has been introduced, based on the classical and the
shear deformation theories of beams and plates.

FGMs are currently in great demand by industries, requiring very specific models
to analyze their behavior and predict their responses. Many researchers have been inter-
ested in different FGM structures analyses because of their wide application areas. Both
main beam models, the Euler–Bernoulli model (CBT) for thin beams and the Timoshenko
model (SDT) for thick beams, were introduced. The CBT model ignores the transverse
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shear deformation effect. It was modified to take into account the shear deformation into
consideration, resulting in the SDT model. Nevertheless, this second model requires a
shear correction to satisfy the top and bottom beams faces’ boundary conditions, which
influences the results. The higher-order SDT aims to eliminate the failure of CBT and
the first-order SDT by assuming a higher-order variation through FG beam thickness for
transverse displacement without providing any shear correction.

Multiple models with various shear stress shapes have been proposed, e.g., the Reddy
model [23]. Thai and Vo [24] have presented several refined theories of HSDT beams. They
have shown that these models are very effective in the static and dynamic studies of FG and
laminates beams. Recently, Ebrahimi et al. [25] analyzed thermo-mechanical vibration of
temperature-dependent FGM Beams with porosities by using an HSDT. Aydogdu et al. [26]
used the Euler–Bernoulli model and parabolic and exponential shear functions to examine
the bending vibration-responses of a simply supported FG Beams. Ben Oumrane et al. [7]
used different beam theories to investigate an FG thick Timoshenko-beam’s static behavior.
A numerical solution for (TBT) and (HSDT) is presented by Simsek [27] using the Ritz
method. The finite element method and HSDT are used by Rakesh et al. [28] to analyze
the bending vibration responses of the thick FG beams. An analytical solution for the can-
tilevered thick FG beams is provided by Zhong and Yu [29] for various types of mechanical
loads. Based on the neutral surface concept, Ould Larbi et al. [30,31] presented an efficient
theory to study the bending free vibration of thick FG beams. Similarly, a new first order
of SDT theory is developed by Bouremana et al. [32], based on the position of the neutral
surface for thick FG beams.

The thickness-stretching impact was introduced first in analyzing the vibrational
behavior of thick FG plates [33]. Osofero et al. [34] provided an analysis method of
buckling in bending of FG sandwich beams, considering thickness-stretching and shear
effects. Meradjah et al. [35] also integrated the thickness-stretching effects in a new shear
strain theory to analyze the bending vibration of FG beams.

From the literature mentioned above, it is evident that there is no published work
considering the impact of thickness-stretching on the mechanical vibration of thick FG
beams. This problem is not well-investigated and there is a need for further studies. In this
work, a refined theory is presented to analyze the bending vibration of the thick FG beam,
with supported ends and under transverse loading. This theory provides a constant trans-
verse displacement and higher-order variation of axial displacement through the depth of
the beam so that there is no need for any shear correction factors. By superimposing the
deflection on the bending, shear and thickness-stretching parts, the governing equations
are derived from Hamilton’s principle. The equations system obtained is solved by using
Navier’s solutions. The material characteristics are presumed to change through the beam
thickness following the law of dosing. Detailed mathematical formulations are provided,
and example results are proposed to show the relevance of the present theory and to verify
this accuracy. Our approach presents the advantage of using less variables in comparation
to other theories and it also proves the effects of thickness-stretching and the influences
of many parameters such as material index and slenderness ratio on frequency response
and stresses. The proposed higher-order normal deformation and shear theory is not only
accurate, but also provides an elegant and easy-to-implement approach to simulating the
bending and vibration behaviors of thick FG beams.

2. Theoretical Formulation
2.1. Model Definition

Figure 1 shows the proposed model for this study. It is a thick FG beam with length (L),
rectangular cross-section, width (b) and height (h).
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Figure 1. The geometry of the FG beam.

The FG beam is composed of a combination of metal and ceramics whose combination
changes from the top surface purely ceramic to the bottom surface completely metallic.
The beam material effective characteristic P is assumed to changes through the FG beam
thickness about the volume ratio and the characteristics of the constituent materials. It is
formulated by the law of mixing as follow:

PPmϑm + Pcϑc, P = (E, ρ, ν . . . . . .) (1)

E, ρ, ν are Young’s modulus, mass density and Poisson’s coefficient, respectively.
Variation of ν is generally small, so it remains constant ϑc and ϑm are ceramic and metal
volume proportions respectively, defined by [36]:

ϑm + ϑc = 1, ϑc =
(

0.5 +
z
h

)p
, p ≥ 0 (2)

The gradient index (p), with p ≥ 0 determines the profile of the material in the FG
beam thickness direction. It can be modified to obtain the optimum component materials
distribution. The plot in Figure 2 shows the distribution of ceramic volume proportion
across the FG beam thickness for various material indexes.
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Figure 2. Ceramic volume proportion profile across the FG beam thickness, for different mate-
rial indexes.

Each effective characteristic of the FG beam can be expressed as follows:

P(z) = (Pc −Pm)
(

0.5 +
z
h

)p
+ Pm, P = E, ρ (3)
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2.2. Displacement and Strain Fields

Transverse and axial displacements of the FG beam are expressed, according to the
quasi-3D theory [35,37] as follow:{

U(x, z) = u0(x)− z∂wb/∂x−
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⎩⎪⎪⎨
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(7)

2.3. Calculation of Energies 
• Strain energy: 

⎩⎪⎨
⎪⎧ 𝛿𝒰 = (𝜎 𝛿𝜀 + 𝜏 𝛿𝛾 + 𝜎 𝛿𝜀 )𝑑𝑧 𝑑𝑦𝑑𝑥
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where, 𝒩 , ℳ ,  ℳ , 𝒬  and  𝒩  are the stress resultants, specified as: 

⎩⎪⎪
⎨⎪
⎪⎧(𝒩 , ℳ , ℳ ) = 1, 𝑧, 𝒻(𝑧) 𝜎/

/ 𝑏𝑑𝑧
𝒬 = 𝜏 ℊ(𝑧)𝑏𝑑𝑧/

/𝒩 = 𝜎/
/ 𝑑ℊ(𝑧)𝑑𝑧 𝑏𝑑𝑧

 (9)

(z)∂ws/∂x
W(x, z) = wb(x) + ws(x) + wst(x)

(4)

with,
wst(x) =
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(z)φ(x),
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(z)/dz (5)

u0: Axial displacement;
wb: Bending transverse displacement;
ws: Shear transverse displacement;
wst: Thickness-stretching displacement;
u0, wb, ws and φ are four unknowns to be determined;
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(z) are the shape functions.

The strains are as follows:
εx = ∂u0/∂x− z∂2wb/∂x2 −
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(z)∂2ws/∂x2

εz = (d
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γxz =
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τxz

 = E(z)

 1 ν 0
ν 1 0
0 0 1

2(1+ν)




εx
εz

γxz

 = E(z)
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∂x − z ∂2wb

∂x2 −
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dz φ

1
2(1+ν)

(
∂wb
∂x + ∂ws

∂x

)
 (7)

2.3. Calculation of Energies

• Strain energy: δU =
∫ L

0

∫ b
0

[∫ h
2
− h

2
(σxδεx + τxzδγxz + σzδεz)dz

]
dydx

=
∫ L

0

(
Nx

∂δu0
∂x −M

b
x

∂2δwb
∂x2 −Ms

x
∂2δws

∂x2 +Qxz

(
∂δws

∂x + ∂δφ
∂x

)
+Nzδφ

)
dx

(8)

where, Nx, Mb
x, Ms

x, Qxz and Nz are the stress resultants, specified as:
(
Nx,Mb

x,Ms
x

)
=
∫ h/2
−h/2

[
1, z,
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σxbdz

Qxz =
∫ h/2
−h/2 τxz
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∫ h/2
−h/2 σz

d

Mathematics 2021, 9, x FOR PEER REVIEW 4 of 17 
 

 

 

2.2. Displacement and Strain Fields 
Transverse and axial displacements of the FG beam are expressed, according to the 

quasi-3D theory [35,37] as follow: 𝑈(𝑥, 𝑧) = 𝑢 (𝑥) − 𝑧 𝜕𝑤 𝜕𝑥⁄ − 𝒻(𝑧) 𝜕𝑤 𝜕𝑥⁄𝑊(𝑥, 𝑧) = 𝑤 (𝑥) + 𝑤 (𝑥) + 𝑤 (𝑥)  (4)

with, 𝑤 (𝑥) = ℊ(𝑧)𝜙(𝑥), ℊ(𝑧) = 1 − 𝑑𝒻(𝑧) 𝑑𝑧⁄  (5)𝑢 : Axial displacement; 𝑤 : Bending transverse displacement; 𝑤 : Shear transverse displacement; 𝑤 : Thickness-stretching displacement; 𝑢 , 𝑤 , 𝑤  and 𝜙 are four unknowns to be determined; 𝒻(z) and ℊ(z) are the shape functions. 

The strains are as follows: 𝜀  = 𝜕𝑢 𝜕𝑥⁄ − 𝑧 𝜕 𝑤 𝜕𝑥⁄ − 𝒻(𝑧) 𝜕 𝑤 𝜕𝑥⁄𝜀  = (𝑑ℊ(𝑧) 𝑑𝑧⁄ )𝜙𝛾 = ℊ(𝑧) 𝜕𝑤 𝜕𝑥⁄ + 𝜕𝜙 𝜕𝑥⁄  (6)

The FG beam material follows Hooke’s law. So, linear elastic equation can be ex-
pressed as: σστ = E(z) 1 ν 0ν 1 00 0 12(1 + ν)

εεγ
= 𝐸(𝑧)

⎩⎪⎪⎨
⎪⎪⎧ 𝜕𝑢𝜕𝑥 − 𝑧 𝜕 𝑤𝜕𝑥 − 𝒻(𝑧) 𝜕 𝑤𝜕𝑥 + 𝜈 𝑑ℊ(𝑧)𝑑𝑧 𝜙𝜈 𝜕𝑢𝜕𝑥 − 𝜈𝑧 𝜕 𝑤𝜕𝑥 − 𝜈𝒻(𝑧) 𝜕 𝑤𝜕𝑥 + 𝑑ℊ(𝑧)𝑑𝑧 𝜙12(1 + 𝜈) 𝜕𝑤𝜕𝑥 + 𝜕𝑤𝜕𝑥 ⎭⎪⎪⎬

⎪⎪⎫
 

(7)

2.3. Calculation of Energies 
• Strain energy: 

⎩⎪⎨
⎪⎧ 𝛿𝒰 = (𝜎 𝛿𝜀 + 𝜏 𝛿𝛾 + 𝜎 𝛿𝜀 )𝑑𝑧 𝑑𝑦𝑑𝑥

= 𝒩 𝜕𝛿𝑢𝜕𝑥 − ℳ 𝜕 𝛿𝑤𝜕𝑥 − ℳ 𝜕 𝛿𝑤𝜕𝑥 +𝒬 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝛿𝜙𝜕𝑥 + 𝒩 𝛿𝜙 𝑑𝑥 (8)

where, 𝒩 , ℳ ,  ℳ , 𝒬  and  𝒩  are the stress resultants, specified as: 

⎩⎪⎪
⎨⎪
⎪⎧(𝒩 , ℳ , ℳ ) = 1, 𝑧, 𝒻(𝑧) 𝜎/
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(z)
dz bdz

(9)

By using Equation (7), the stress resultants given in Equation (9) can be expressed as:
Nx
Mb

x
Ms

x
Qxz
Nz

 =


A B Bs X 0
B D Ds Y 0
Bs Ds Hs Ys 0
X Y Ys Z 0
0 0 0 0 As




∂u0
∂x

− ∂2wb
∂x2

− ∂2ws
∂x2(

∂ws
∂x + ∂φ

∂x

)
 (10)

(A, B,D,Bs,Ds,Hs,X ,Y ,Ys,Z ,As) are the FG beam stiffness expressed, and are
given by the Appendix A.
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• Potential energy due the external transverse load applied:

δV = −
∫ L

0
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where (𝐼 , 𝐼 , 𝐼 , 𝐽 , 𝐽 , 𝐽 , 𝐾 , 𝐾 ) are mass inertias, and are given by the Appendix A. 

2.4. Governing Equation 
To obtain the beam governing-equation, the Hamilton principle is applied as fol-

lows: (δ𝒰 + δ𝒱 − δ𝒦)dt = 0 (13)

Substituting the expressions for 𝛿𝒰, 𝛿𝒱 and 𝛿𝒦 from Equations (8), (11) and (12) 
into Equation (13), the following system is obtained by integrating the parts and bring-
ing together the coefficients of 𝛿𝑢 , 𝛿𝑤 , 𝛿𝑤  and 𝛿𝜙: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 𝛿𝑢 : 𝜕𝒩𝜕𝑥 = 𝐼 𝑢 − 𝐼 𝜕𝑤𝜕𝑥 − 𝐽 𝜕𝑤𝜕𝑥𝛿𝑤 : 𝜕 ℳ𝜕𝑥 + 𝓆 = 𝐼 (𝑤 + 𝑤 ) + 𝐼 𝜕𝑢𝜕𝑥 − 𝐼 𝜕 𝑤𝜕𝑥 − 𝐽 𝜕 𝑤𝜕𝑥 + 𝐽 𝜙𝛿𝑤 : 𝜕 ℳ𝜕𝑥 + 𝜕𝒬𝜕𝑥 + 𝓆 = 𝐼 (𝑤 + 𝑤 ) + 𝐽 𝜕𝑢𝜕𝑥 − 𝐽 𝜕 𝑤𝜕𝑥 − 𝐾 𝜕 𝑤𝜕𝑥 + 𝐽 𝜙 δϕ: ∂𝒬∂x  − 𝒩 = J (w + w ) + K ϕ

 (14)

Equation (14) can be expressed in terms of displacement of 𝑢 , 𝑤 , 𝑤  and 𝜙 by 
using Equation (10) as follows: 

(x)δWdx = −
∫ L

0
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2.4. Governing Equation 
To obtain the beam governing-equation, the Hamilton principle is applied as fol-

lows: (δ𝒰 + δ𝒱 − δ𝒦)dt = 0 (13)

Substituting the expressions for 𝛿𝒰, 𝛿𝒱 and 𝛿𝒦 from Equations (8), (11) and (12) 
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Equation (14) can be expressed in terms of displacement of 𝑢 , 𝑤 , 𝑤  and 𝜙 by 
using Equation (10) as follows: 

(x)δ(wb + ws + wst)dx (11)
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/ 𝑑𝑧 𝑑𝑦𝑑𝑥
= 𝐼 𝑢 𝛿𝑢 + (𝑤 + 𝑤 )(𝛿𝑤 + 𝛿𝑤 ) +𝐽 (𝑤 + 𝑤 )𝛿𝜙 + 𝜙𝛿(𝑤 + 𝑤 ) 𝑑𝑥

− 𝐼 𝑢 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝑤𝜕𝑥 𝛿𝑢 + 𝐼 𝜕𝑤𝜕𝑥 𝜕𝛿𝑤𝜕𝑥 + 𝐽 𝑢 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝑤𝜕𝑥 𝛿𝑢 𝑑𝑥
− 𝐾 𝜕𝑤𝜕𝑥 𝜕𝛿𝑤𝜕𝑥 − 𝐽 𝜕𝑤𝜕𝑥 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝑤𝜕𝑥 𝜕𝛿𝑤𝜕𝑥 + 𝐾 𝜙𝛿𝜙 𝑑𝑥

 (12)

where (𝐼 , 𝐼 , 𝐼 , 𝐽 , 𝐽 , 𝐽 , 𝐾 , 𝐾 ) are mass inertias, and are given by the Appendix A. 

2.4. Governing Equation 
To obtain the beam governing-equation, the Hamilton principle is applied as fol-

lows: (δ𝒰 + δ𝒱 − δ𝒦)dt = 0 (13)

Substituting the expressions for 𝛿𝒰, 𝛿𝒱 and 𝛿𝒦 from Equations (8), (11) and (12) 
into Equation (13), the following system is obtained by integrating the parts and bring-
ing together the coefficients of 𝛿𝑢 , 𝛿𝑤 , 𝛿𝑤  and 𝛿𝜙: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 𝛿𝑢 : 𝜕𝒩𝜕𝑥 = 𝐼 𝑢 − 𝐼 𝜕𝑤𝜕𝑥 − 𝐽 𝜕𝑤𝜕𝑥𝛿𝑤 : 𝜕 ℳ𝜕𝑥 + 𝓆 = 𝐼 (𝑤 + 𝑤 ) + 𝐼 𝜕𝑢𝜕𝑥 − 𝐼 𝜕 𝑤𝜕𝑥 − 𝐽 𝜕 𝑤𝜕𝑥 + 𝐽 𝜙𝛿𝑤 : 𝜕 ℳ𝜕𝑥 + 𝜕𝒬𝜕𝑥 + 𝓆 = 𝐼 (𝑤 + 𝑤 ) + 𝐽 𝜕𝑢𝜕𝑥 − 𝐽 𝜕 𝑤𝜕𝑥 − 𝐾 𝜕 𝑤𝜕𝑥 + 𝐽 𝜙 δϕ: ∂𝒬∂x  − 𝒩 = J (w + w ) + K ϕ

 (14)

Equation (14) can be expressed in terms of displacement of 𝑢 , 𝑤 , 𝑤  and 𝜙 by 
using Equation (10) as follows: 

(x): External transverse loading.
• Kinetic energy:



δK =
∫ L

0

∫ b
0

[∫ h/2
−h/2 ρ(z)

( .
Uδ

.
U +

.
Wδ

.
W
)

dz
]
dydx

=
∫ L

0

(
I0
[ .
u0δ

.
u0 +

( .
wb +

.
ws
)(

δ
.

wb + δ
.

ws
)]

+ J0

[( .
wb +

.
ws
)
δ

.
φ +

.
φδ
( .
wb +

.
ws
)])

dx

−
∫ L

0

(
I1

[ .
u0

∂δ
.

wb
∂x + ∂

.
wb
∂x δ

.
u0

]
+ I2

∂
.

wb
∂x

∂δ
.

wb
∂x + J1

[ .
u0

∂δ
.

ws
∂x + ∂

.
ws
∂x δ

.
u0

])
dx

−
∫ L

0

(
K2

∂
.

ws
∂x

∂δ
.

ws
∂x − J2

[
∂

.
wb
∂x

∂δ
.

ws
∂x + ∂

.
ws
∂x

∂δ
.

wb
∂x

]
+ K0

.
φδ

.
φ
)

dx

(12)

where (I0, I1, I2, J0, J1, J2, K0, K2) are mass inertias, and are given by the Appendix A.

2.4. Governing Equation

To obtain the beam governing-equation, the Hamilton principle is applied as follows:∫ t2

t1
(δU + δV − δK)dt = 0 (13)

Substituting the expressions for δU , δV and δK from Equations (8), (11) and (12) into
Equation (13), the following system is obtained by integrating the parts and bringing
together the coefficients of δu0, δwb, δws and δφ:

δu0 : ∂Nx
∂x = I0

..
u0 − I1

∂
..
wb
∂x − J1

∂
..
ws
∂x

δwb : ∂2Mb
x

∂x2 +
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 (10)

(𝒜, ℬ, 𝒟, ℬ , 𝒟 , ℋ , 𝒳, 𝒴, 𝒴 , 𝒵, 𝒜 ) are the FG beam stiffness expressed, and are 
given by the Appendix A. 
• Potential energy due the external transverse load applied: 

𝛿𝒱 = − 𝓆(𝑥)𝛿𝑊𝑑𝑥  = − 𝓆(𝑥)𝛿(𝑤 + 𝑤 + 𝑤 )𝑑𝑥 (11)𝓆(𝑥): External transverse loading. 
• Kinetic energy: 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 𝛿𝒦 = 𝜌(𝑧) 𝑈𝛿𝑈 + 𝑊𝛿𝑊/

/ 𝑑𝑧 𝑑𝑦𝑑𝑥
= 𝐼 𝑢 𝛿𝑢 + (𝑤 + 𝑤 )(𝛿𝑤 + 𝛿𝑤 ) +𝐽 (𝑤 + 𝑤 )𝛿𝜙 + 𝜙𝛿(𝑤 + 𝑤 ) 𝑑𝑥

− 𝐼 𝑢 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝑤𝜕𝑥 𝛿𝑢 + 𝐼 𝜕𝑤𝜕𝑥 𝜕𝛿𝑤𝜕𝑥 + 𝐽 𝑢 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝑤𝜕𝑥 𝛿𝑢 𝑑𝑥
− 𝐾 𝜕𝑤𝜕𝑥 𝜕𝛿𝑤𝜕𝑥 − 𝐽 𝜕𝑤𝜕𝑥 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝑤𝜕𝑥 𝜕𝛿𝑤𝜕𝑥 + 𝐾 𝜙𝛿𝜙 𝑑𝑥

 (12)

where (𝐼 , 𝐼 , 𝐼 , 𝐽 , 𝐽 , 𝐽 , 𝐾 , 𝐾 ) are mass inertias, and are given by the Appendix A. 

2.4. Governing Equation 
To obtain the beam governing-equation, the Hamilton principle is applied as fol-

lows: (δ𝒰 + δ𝒱 − δ𝒦)dt = 0 (13)

Substituting the expressions for 𝛿𝒰, 𝛿𝒱 and 𝛿𝒦 from Equations (8), (11) and (12) 
into Equation (13), the following system is obtained by integrating the parts and bring-
ing together the coefficients of 𝛿𝑢 , 𝛿𝑤 , 𝛿𝑤  and 𝛿𝜙: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 𝛿𝑢 : 𝜕𝒩𝜕𝑥 = 𝐼 𝑢 − 𝐼 𝜕𝑤𝜕𝑥 − 𝐽 𝜕𝑤𝜕𝑥𝛿𝑤 : 𝜕 ℳ𝜕𝑥 + 𝓆 = 𝐼 (𝑤 + 𝑤 ) + 𝐼 𝜕𝑢𝜕𝑥 − 𝐼 𝜕 𝑤𝜕𝑥 − 𝐽 𝜕 𝑤𝜕𝑥 + 𝐽 𝜙𝛿𝑤 : 𝜕 ℳ𝜕𝑥 + 𝜕𝒬𝜕𝑥 + 𝓆 = 𝐼 (𝑤 + 𝑤 ) + 𝐽 𝜕𝑢𝜕𝑥 − 𝐽 𝜕 𝑤𝜕𝑥 − 𝐾 𝜕 𝑤𝜕𝑥 + 𝐽 𝜙 δϕ: ∂𝒬∂x  − 𝒩 = J (w + w ) + K ϕ

 (14)

Equation (14) can be expressed in terms of displacement of 𝑢 , 𝑤 , 𝑤  and 𝜙 by 
using Equation (10) as follows: 

= I0
( ..
wb +

..
ws
)
+ I1

∂
..
u0

∂x − I2
∂2 ..

wb
∂x2 − J2

∂2 ..
ws

∂x2 + J0
..
φ

δws : ∂2Ms
x

∂x2 + ∂Qxz
∂x +
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 (10)

(𝒜, ℬ, 𝒟, ℬ , 𝒟 , ℋ , 𝒳, 𝒴, 𝒴 , 𝒵, 𝒜 ) are the FG beam stiffness expressed, and are 
given by the Appendix A. 
• Potential energy due the external transverse load applied: 

𝛿𝒱 = − 𝓆(𝑥)𝛿𝑊𝑑𝑥  = − 𝓆(𝑥)𝛿(𝑤 + 𝑤 + 𝑤 )𝑑𝑥 (11)𝓆(𝑥): External transverse loading. 
• Kinetic energy: 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 𝛿𝒦 = 𝜌(𝑧) 𝑈𝛿𝑈 + 𝑊𝛿𝑊/

/ 𝑑𝑧 𝑑𝑦𝑑𝑥
= 𝐼 𝑢 𝛿𝑢 + (𝑤 + 𝑤 )(𝛿𝑤 + 𝛿𝑤 ) +𝐽 (𝑤 + 𝑤 )𝛿𝜙 + 𝜙𝛿(𝑤 + 𝑤 ) 𝑑𝑥

− 𝐼 𝑢 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝑤𝜕𝑥 𝛿𝑢 + 𝐼 𝜕𝑤𝜕𝑥 𝜕𝛿𝑤𝜕𝑥 + 𝐽 𝑢 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝑤𝜕𝑥 𝛿𝑢 𝑑𝑥
− 𝐾 𝜕𝑤𝜕𝑥 𝜕𝛿𝑤𝜕𝑥 − 𝐽 𝜕𝑤𝜕𝑥 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝑤𝜕𝑥 𝜕𝛿𝑤𝜕𝑥 + 𝐾 𝜙𝛿𝜙 𝑑𝑥

 (12)

where (𝐼 , 𝐼 , 𝐼 , 𝐽 , 𝐽 , 𝐽 , 𝐾 , 𝐾 ) are mass inertias, and are given by the Appendix A. 

2.4. Governing Equation 
To obtain the beam governing-equation, the Hamilton principle is applied as fol-

lows: (δ𝒰 + δ𝒱 − δ𝒦)dt = 0 (13)

Substituting the expressions for 𝛿𝒰, 𝛿𝒱 and 𝛿𝒦 from Equations (8), (11) and (12) 
into Equation (13), the following system is obtained by integrating the parts and bring-
ing together the coefficients of 𝛿𝑢 , 𝛿𝑤 , 𝛿𝑤  and 𝛿𝜙: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 𝛿𝑢 : 𝜕𝒩𝜕𝑥 = 𝐼 𝑢 − 𝐼 𝜕𝑤𝜕𝑥 − 𝐽 𝜕𝑤𝜕𝑥𝛿𝑤 : 𝜕 ℳ𝜕𝑥 + 𝓆 = 𝐼 (𝑤 + 𝑤 ) + 𝐼 𝜕𝑢𝜕𝑥 − 𝐼 𝜕 𝑤𝜕𝑥 − 𝐽 𝜕 𝑤𝜕𝑥 + 𝐽 𝜙𝛿𝑤 : 𝜕 ℳ𝜕𝑥 + 𝜕𝒬𝜕𝑥 + 𝓆 = 𝐼 (𝑤 + 𝑤 ) + 𝐽 𝜕𝑢𝜕𝑥 − 𝐽 𝜕 𝑤𝜕𝑥 − 𝐾 𝜕 𝑤𝜕𝑥 + 𝐽 𝜙 δϕ: ∂𝒬∂x  − 𝒩 = J (w + w ) + K ϕ

 (14)

Equation (14) can be expressed in terms of displacement of 𝑢 , 𝑤 , 𝑤  and 𝜙 by 
using Equation (10) as follows: 

= I0
( ..
wb +

..
ws
)
+ J1

∂
..
u0

∂x − J2
∂2 ..

wb
∂x2 − K2

∂2 ..
ws

∂x2 + J0
..
φ

δφ : ∂Qxz
∂x −Nz = J0

( ..
wb +

..
ws
)
+ K0

..
φ

(14)

Equation (14) can be expressed in terms of displacement of u0, wb, ws and φ by using
Equation (10) as follows:

δu0 : A ∂2u0
∂x2 −B ∂3wb

∂x3 −Bs
∂3ws
∂x4 +X ∂φ

∂x = I0
..
u0 − I1

∂
..
wb
∂x − J1

∂
..
ws
∂x

δwb : B ∂3u0
∂x3 −D ∂4wb

∂x4 −Ds
∂4ws
∂x4 + Y ∂2φ

∂x2 +
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 (10)

(𝒜, ℬ, 𝒟, ℬ , 𝒟 , ℋ , 𝒳, 𝒴, 𝒴 , 𝒵, 𝒜 ) are the FG beam stiffness expressed, and are 
given by the Appendix A. 
• Potential energy due the external transverse load applied: 

𝛿𝒱 = − 𝓆(𝑥)𝛿𝑊𝑑𝑥  = − 𝓆(𝑥)𝛿(𝑤 + 𝑤 + 𝑤 )𝑑𝑥 (11)𝓆(𝑥): External transverse loading. 
• Kinetic energy: 
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 (12)

where (𝐼 , 𝐼 , 𝐼 , 𝐽 , 𝐽 , 𝐽 , 𝐾 , 𝐾 ) are mass inertias, and are given by the Appendix A. 

2.4. Governing Equation 
To obtain the beam governing-equation, the Hamilton principle is applied as fol-

lows: (δ𝒰 + δ𝒱 − δ𝒦)dt = 0 (13)

Substituting the expressions for 𝛿𝒰, 𝛿𝒱 and 𝛿𝒦 from Equations (8), (11) and (12) 
into Equation (13), the following system is obtained by integrating the parts and bring-
ing together the coefficients of 𝛿𝑢 , 𝛿𝑤 , 𝛿𝑤  and 𝛿𝜙: 
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⎨⎪
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 (14)

Equation (14) can be expressed in terms of displacement of 𝑢 , 𝑤 , 𝑤  and 𝜙 by 
using Equation (10) as follows: 

= I1
∂

..
u0

∂x + I0
( ..
wb +

..
ws
)
− I2

∂2 ..
wb

∂x2 − J2
∂2 ..

ws
∂x2 + J0

..
φ

δws : Bs
∂3u0
∂x3 −Ds

∂4wb
∂x4 −Hs

∂4ws
∂x4 +As

∂2ws
∂x2 + (As + Ys)

∂2φ
∂x2 +
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Equation (14) can be expressed in terms of displacement of 𝑢 , 𝑤 , 𝑤  and 𝜙 by 
using Equation (10) as follows: 

= J1
∂

..
u0

∂x + I0
( ..
wb +

..
ws
)

−J2

..
wb
∂x2 − K2

..
ws
∂x2 + J0

..
φ

δφ : X ∂u0
∂x −Y

∂2wb
∂x2 + (As + Ys)

∂2ws
∂x2 −As

∂2φ

∂x2 +Zφ = J0
( ..
wb +

..
ws
)
+ K0

..
φ

(15)

2.5. Analytical Solution for a Simple Supported Functionally Graded Beam (S-S FG Beam)

In this section, the analytical solution is given for the case of Simply Supported
Functionally Graded beam presented in Figure 3 (S-S FG beam) under the uniform load
distributed over its entire length.

Analytical solutions of the motion equations are provided, based on Navier type
solutions. The following displacements u0, wb, ws and φ are assumed to be combinations
of known trigonometric functions which satisfy the boundary conditions and unknown
coefficients to be determined for each value of “n”.

u0(x, t)
wb(x, t)
ws(x, t)
φ(x, t)

 =
∞

∑
n=1


Un cos(λx)eiωnt

Wbn sin(λx)eiωnt

Wsn sin(λx)eiωnt

φn sin(λx)eiωnt

 (16)
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ωn is the eigenfrequency associated with the nth eigenmode, λ = nπ/L, and Un, Wbn,
Wsn and φn are the unknown coefficients.
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In this section, the analytical solution is given for the case of Simply Supported Func-

tionally Graded beam presented in Figure 3 (S-S FG beam) under the uniform load dis-
tributed over its entire length. 

 
Figure 3. Simply Supported Functionally Graded beam (S-S FG beam) under uniform load. 

Analytical solutions of the motion equations are provided, based on Navier type so-
lutions. The following displacements 𝑢 , 𝑤 , 𝑤  and 𝜙 are assumed to be combinations of 
known trigonometric functions which satisfy the boundary conditions and unknown co-
efficients to be determined for each value of “𝑛”. 

⎣⎢⎢
⎡𝑢 (𝑥, 𝑡)𝑤 (𝑥, 𝑡)𝑤 (𝑥, 𝑡)𝜙(𝑥, 𝑡) ⎦⎥⎥

⎤ = ⎣⎢⎢⎢
⎡ 𝑈 𝑐𝑜𝑠(𝜆𝑥)𝑒𝑊 𝑠𝑖𝑛(𝜆𝑥)𝑒𝑊 𝑠𝑖𝑛(𝜆𝑥)𝑒𝜙 𝑠𝑖𝑛(𝜆𝑥)𝑒 ⎦⎥⎥⎥

⎤
 (16)

𝜔  is the eigenfrequency associated with the nth eigenmode, 𝜆 = 𝑛𝜋 𝐿⁄ , and 𝑈 ,  𝑊 , 𝑊  and 𝜙  are the unknown coefficients. 
The following boundary conditions are imposed for a beam with two ends simply 

supported. 𝑈 = 𝑊 = ℳ = ℳ = 0  (17)

The assumed mechanical transverse load 𝓆(𝑥) is developed in a sinusoidal Fourier 
series as: 

𝓆(𝑥) = 𝒬 𝑠𝑖𝑛(𝜆𝑥) (18)

The coefficients 𝒬  are provided below for some loads. 
• Sinusoidal distribution case: 

Figure 3. Simply Supported Functionally Graded beam (S-S FG beam) under uniform load.

The following boundary conditions are imposed for a beam with two ends sim-
ply supported.

U = W =Mb
x =Ms

x = 0 (17)

The assumed mechanical transverse load
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Equation (14) can be expressed in terms of displacement of 𝑢 , 𝑤 , 𝑤  and 𝜙 by 
using Equation (10) as follows: 

(x) is developed in a sinusoidal Fourier
series as:
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Equation (14) can be expressed in terms of displacement of 𝑢 , 𝑤 , 𝑤  and 𝜙 by 
using Equation (10) as follows: 

(x) =
∞

∑
n=1
Qnsin(λx) (18)

The coefficients Qn are provided below for some loads.

• Sinusoidal distribution case:

n = 1⇒ Q1 =
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⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 𝛿𝒦 = 𝜌(𝑧) 𝑈𝛿𝑈 + 𝑊𝛿𝑊/

/ 𝑑𝑧 𝑑𝑦𝑑𝑥
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 (12)
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⎩⎪⎪⎪
⎨⎪
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 (14)

Equation (14) can be expressed in terms of displacement of 𝑢 , 𝑤 , 𝑤  and 𝜙 by 
using Equation (10) as follows: 

0 (19)

• Uniform distribution case:

Qn =
4q0

nπ
, (n = 1, 3, 5) (20)

So, analytical solutions may be reached from the eigenvalues system below for any
fixed value of “n”: (

[K]−ω2
n[M]

)
{∆} = {F} (21)

In the static problem case, Equation (24) becomes:

[K]{∆} = {F} (22)

[K] =
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racy. The FG beam material is composed by 𝐴𝑙 𝑂  (alumina) and 𝐴𝑙 (aluminum). The 
material characteristics of the corresponding components are listed in Table 1. 

Table 1. Material characteristics of 𝐴𝑙 𝑂  and 𝐴𝑙 [38]. 

Components 𝝂 𝑬 (𝐆𝐏𝐚) 𝝆 (𝐤𝐠/𝐦𝟑) 
Ceramic (alumina 𝑨𝒍𝟐𝑶𝟑) 0.3 380 3960 

Metal (aluminium 𝑨𝒍) 0.3 70 2702 

The dimensionless form is used as follows: 𝑈 = 100 𝑈 0, − ; 𝑊 = 100 𝑊 , , 𝜎 = 𝜎 , ; 𝜎 = 𝜎 (0, 0); 𝜎 = 𝜎 , ;  𝜔 = (𝜔𝐿 /ℎ)  (24)

A numerical example set out in Table 2 is performed for various material indexes 
(p) and slenderness ration (L/h) to validate the present model. The results obtained by 
this theory concerning displacements and the stresses for (L/h = 5, 20) are compared with 
those of the analytical solution provided by Li et al. [39]. The following shape function 
based on Reddy beam theory is used: 𝑓(𝑧) = 4𝑧3ℎ  (25)
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(p) and slenderness ration (L/h) to validate the present model. The results obtained by 
this theory concerning displacements and the stresses for (L/h = 5, 20) are compared with 
those of the analytical solution provided by Li et al. [39]. The following shape function 
based on Reddy beam theory is used: 𝑓(𝑧) = 4𝑧3ℎ  (25)
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3. Numerical Results and Discussion

In this part, a uniform transverse load is applied to the S-S FG beam. Numerical
examples are proposed first to validate the model presented above and assess its accuracy.
The FG beam material is composed by Al2O3 (alumina) and Al (aluminum). The material
characteristics of the corresponding components are listed in Table 1.
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Table 1. Material characteristics of Al2O3 and Al [38].

Components ν E (GPa) ρ (kg/m3)

Ceramic (alumina Al2O3) 0.3 380 3960
Metal (aluminium Al) 0.3 70 2702

The dimensionless form is used as follows:

U = 100
(

Emh3

q0L4

)
U
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0,− h
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)
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)
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)
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)
;

σxz =
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h
q0L

)
σxz(0, 0); σz =

(
h

q0L

)
σz

(
L
2 , h

2

)
; ω =

(
ωL2/h

)√ ρm
Em

(24)

A numerical example set out in Table 2 is performed for various material indexes (p)
and slenderness ration (L/h) to validate the present model. The results obtained by this
theory concerning displacements and the stresses for (L/h = 5, 20) are compared with those
of the analytical solution provided by Li et al. [39]. The following shape function based on
Reddy beam theory is used:

f (z) =
4z3

3h2 (25)

Table 2. Comparison of non-dimensional transverseand axial displacements, axial and shear stresses of S-S FG beam for
various material indexes and slenderness ratio (L/h).

p Theory
L/h=5 L/h=20

¯
W

¯
U

¯
σx

¯
σxz

¯
W

¯
U

¯
σx

¯
σxz

0
Li et al. [39] 3.1657 0.9402 3.8020 0.7500 2.8962 0.2306 15.0130 0.7500

CBT 2.8783 0.9211 3.7500 - 2.8783 0.2303 15.0000 -
Present 3.1681 0.9406 3.7919 0.7503 2.8962 0.2306 15.0129 0.7429

0.5
Li et al. [39] 4.8292 1.6603 4.9925 0.7676 4.4645 0.4087 19.7005 0.7676

CBT 4.4401 1.6331 4.9206 - 4.4401 0.4083 19.6825 -
Present 4.8202 1.6653 4.9893 0.7674 4.4644 0.4087 19.7003 0.7599

1
Li et al. [39] 6.2599 2.3045 5.8837 0.7500 5.8049 0.5686 23.2054 0.7500

CBT 5.7746 2.2722 5.7959 - 5.7746 0.5680 23.1834 -
Present 6.2475 2.2903 5.8797 0.7503 5.8049 0.5685 23.2052 0.7429

5
Li et al. [39] 9.7802 3.7089 8.1030 0.5790 8.8151 0.9133 31.8112 0.5790

CBT 8.7508 3.6496 8.1329 - 8.7508 0.9124 31.7711 -
Present 9.7787 3.6955 8.1099 0.5867 8.8181 0.9134 31.8127 0.5998

10
Li et al. [39] 10.8979 3.8860 9.7063 0.6436 9.6879 0.9536 38.1372 0.6436

CBT 9.6072 3.8097 9.5228 - 9.6072 0.9524 38.0913 -
Present 10.8847 3.8780 9.7086 0.6645 9.6905 0.9536 38.1383 0.6572

3.1. Static Analysis

Table 2 reveals that the present theory is with good agreement compared to the results
obtained by Li et al. [39] and thus confirm the validation of the proposed method. It can
also be seen that the CBT model, which omits shear deformation effects under-estimates
displacements and stresses of the thick FG beams.

The impact of the material index (p) and slenderness ratio (L/h) on transverse W and
axial U displacements, axial σx and shear σxz stresses of S-S FG beam under uniform load
are illustrated in Tables 2 and 3. In general, all shear deformation beam models give almost
identical results, except for the case of transverse shear stress σxz. It can be explained by
the different transverse shear strain shape functions g(z) used in each models. It can be
seen that those both displacements and axial stress of S-S FGB increases with increasing the
power-law exponent (p). This is due to the fact that higher values of power law index (p)
correspond to high portion of metal in comparison with the ceramic part, thus makes such
FG beams more flexible. In fact, when p = 0, beam is made from fully ceramic and has the
smallest displacements. By increasing the exponent (p) of the power law, the constitution
of the FGB changes from an all-metal beam to a beam mixing ceramic and metal, then to an
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all-metallic beam (p→∞). Therefore, the percentage of metal phase increases and the beam
becomes more flexible, which leads to increased displacements. However, the effect of the
material index on the shear stress is negligible since the value of this stress is negligible
compared to the axial stress.

Table 3. Effect of slenderness ratio (L/h) and material index (p) on non-dimensional transverse and axial displacements,
axial and shear stresses of S-S FG beam.

p
L/h=2 L/h=7 L/h=12

¯
W

¯
U

¯
σx

¯
σxz

¯
W

¯
U

¯
σx

¯
σxz

¯
W

¯
U

¯
σx

¯
σxz

0 4.7289 2.5728 1.6588 0.7452 3.0406 0.6703 5.2947 0.7504 2.9408 0.3888 9.0248 0.7507
0.5 6.9470 4.4740 2.1876 0.7625 4.6618 1.1865 6.9507 0.7674 4.5269 0.6890 11.8440 0.7677
1 8.9036 6.1551 2.5866 0.7452 6.0522 1.6492 8.1898 0.7504 5.8838 0.9583 13.9523 0.7507
5 15.667 10.0137 3.6884 0.6009 9.3520 2.6521 11.2654 0.6070 8.9777 1.5398 19.1450 0.6073

10 18.146 10.6328 4.3860 0.6581 10.345 2.7727 13.4960 0.6648 9.8830 1.6082 22.9475 0.6652

To investigate again the effects of the thickness stretching on displacements, a compar-
ison between the non-dimensional displacements of the beam obtained from the present
model with and without thickness stretching is made in Figure 4a,b for the transverse and
axial displacements, respectively, for (L/h = 5) and (p = 5). The difference between the two
curves is seen. It is large out in the middle of the beam and becomes zero at the ends for
the transverse displacement and becomes zero out in the middle of the beam for the axial
displacement, unlike for the axial displacement, which is large at the ends and vanishes
out in the middle of the beam.

Effect of shear on the evolution of non-dimensional axial displacement along the beam
on the upper and lower beam faces is evaluated from Figure 5a,b for (L/h = 5) and (p = 5).
We notice that shear have a very slight effect on the axial displacement. It can also be seen
that shear is maximum at the ends and zero at the mid-span of the beam.

In the second examination and analysis example, effects of shear and thickness stretch-
ing on the non-dimensional axial and transverse displacements of the S-S FG beam are
evaluated in Figure 6, for (L/h = 5) and (p = 5). It is obvious from these figures that the
shear effect is more important on the two displacements, and it is greatest than the effect of
thickness stretching for the transverse displacement. It means that the inclusion of shear
deformation effect leads to an increase in the deflections and more pronounced for short
beams. So, the shear effect on the displacements cannot be neglected, especially for the
thick beams.
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Figure 6. Shear and stretching effects on the transverse displacement.

In Figure 7a,b, the evolution of non-dimensional (a) in-plane displacement at the end
U(0) and (b) transverse displacement W(L/2) at mid-span through the FG beam thickness
under uniform load is presented for (L/h = 5) and (p = 5). A slight difference appears for
this shortest beam. It is seen that the maximum displacement is at the bottom of the beam
for axial displacement and the median plane for transverse displacement. This is due to
the consideration of the thickness stretching (εz 6= 0).
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Figure 8a illustrates the evolution of the non-dimensional transverse shear stress and
Figure 8b shows the stress due to the thickness stretching versus the power-law index (p)
for (L/h = 5). All curves display the material index dependence of the stresses. It is clear
that stress due to the thickness stretching exhibits low but not negligible values compared
with those of the transverse shear stress.
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plane and the lower and upper faces. As a result, the conditions of non-shearing on both 
the lower and upper faces of the beam are satisfied. 
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Variations of the non-dimensional axial stress σx across the depth and versus non-
dimensional length of the FGB are presented in Figure 9a,b for (L/h = 5) and (p = 5). The
axial stress is zero at the end edges, but it is maximum at the middle of the beam, and the
upper beam face is stretched. On the other hand, the lower face is compressed. Extension
stress at the upper beam face is higher than the compressive stress at the lower face because
at the upper face, the beam is ceramic-rich, whereas, at the lower face, it is metal-rich. It
is observed that the neutral plan with zero axial stress is moved upwards relative to the
middle position. This is due to the non-homogeneous material of the FG beam (p = 5).

Figure 10a,b plots the distributions of the non-dimensional shear stress σxz through
thethickness and versus the non-dimensional length of the FG beam, respectively, for
(L/h = 5) and (p = 5). These figures reveal that the shear stress reaches its maximum value
at the beam ends but with opposite signs. It is cancelled in the middle of the beam on the
neutral plane and the lower and upper faces. As a result, the conditions of non-shearing on
both the lower and upper faces of the beam are satisfied.
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The thickness-stretching impact on the stresses is evaluated in Figure 11a,b for
(L/h = 5) and (p = 5). It may be seen that σz is equal to zero at both end edges. Its
highest value is reached in the middle of the beam. The upper beam face is stretched. On
the other hand, the lower face is compressed. Compressive stress at the FG beam’s lower
face is higher than extension stress at the upper face.
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3.2. Vibration Analysis

Table 4 summarizes dimensionless frequencies associated with the first, second and
third mode shapes of the S-S FG beam for various (L/h) ratio and material parameter (p).

Again, the results obtained by the present model, when the thickness-stretching is
neglected, correlate closely with these obtained by the HSDT solution [30]. HSDT model
under-estimates the frequencies of thick FG beams. This is due to the stretching of de
the beam thickness omitted by the HSDT formulation in the thick FG beams case. It is
emphasized that in the HSDT [30] formulation, the unknowns number is greater than this
provided by the present model.

The dimensionless frequency variation versus material parameter for an (L/h = 5) with
and without taking a count of the thickness stretching is plotted in Figure 12a. The plot
showed that increasing (p) leads to a decrease of the frequencies. The highest frequency
is achieved for (p = 0, completely ceramic beam), and the lowest for (p→∞, completely
metal beam). This can be explained by the fact that the increase in (p) leads to a decrease
in the amount of ceramic in the mixture, which is replaced by the metal, resulting in the
decrease of Young’s modulus that makes the beam more flexible. Additionally, in this kind
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of composition, the density of the metal is greater than the density of ceramic and the total
mass of the FG beam increases by increasing the metal proportion in the beam, which
makes it softer. Therefore, the frequency decreases by increasing the material index (p).

Table 4. Comparison of the S-S FG beam frequencies ωi for some values of (L/h) and (p).

L/h Mode Theory
p

0 0.5 1 5 10

5

1
HSDT [30] εz = 0 5.1530 4.4110 3.9900 3.4000 3.2810

Present
εz = 0 5.1527 4.4107 3.9904 3.4012 3.2816
εz 6= 0 5.1516 4.4230 4.0169 3.4310 3.2984

2
HSDT [30] εz = 0 17.8840 15.4610 14.0120 11.5350 11.0220

Present
εz = 0 17.8812 15.4588 14.0100 11.5431 11.0240
εz 6= 0 17.8900 15.5052 14.0978 11.6348 11.0785

3
HSDT [30] εz = 0 34.2250 29.8490 27.1080 21.6990 20.7530

Present
εz = 0 34.2097 29.8382 27.0979 21.7158 20.5561
εz 6= 0 34.2975 29.9670 27.2813 21.8884 20.6748

20

1
HSDT [30] εz = 0 5.4600 4.6510 4.2050 3.6480 3.5390

Present
εz = 0 5.4603 4.6511 4.2051 3.6485 3.5390
εz 6= 0 5.4602 4.6657 4.2351 3.6835 3.5595

2
HSDT [30] εz = 0 21.5730 18.3960 16.6340 14.3730 13.9260

Present
εz = 0 21.5732 18.3962 16.6344 14.3746 13.9263
εz 6= 0 21.5710 18.4520 16.7511 14.5094 14.0043

3
HSDT [30] εz = 0 47.5940 40.6530 36.7690 31.5720 30.5340

Present
εz = 0 47.5930 40.6526 36.7679 31.5780 30.5369
εz 6= 0 47.5841 40.7709 37.0192 31.8649 30.7005

The offset between both curves shows difference between the frequencies of both
models with and without thickness stretching is significant for higher modes and for
small slenderness ratios (L/h) (sees also Tables 4 and 5). This is due to the effects of
normal deformation. This effect leads to an increase of the vibration frequencies, and this
increase is amplified at higher vibration modes and for small slenderness ratios. It implies
that the normal deformation beam model should be employed for a better prediction
of the frequencies instead of the model which neglects the effects of transverse normal
deformation. It is seen that the frequencies are under-estimated when thickness stretching
is omitted.

Mathematics 2021, 9, x FOR PEER REVIEW 14 of 17 
 

 

 

  

(a) (b) 

Figure 12. Effect of (a) the material parameter and (b) slenderness ratio (L/h) on the dimensionless fundamental frequency 
of the S-S FG beam. 

The offset between both curves shows difference between the frequencies of both 
models with and without thickness stretching is significant for higher modes and for small 
slenderness ratios (L/h) (sees also Tables 4 and 5). This is due to the effects of normal de-
formation. This effect leads to an increase of the vibration frequencies, and this increase is 
amplified at higher vibration modes and for small slenderness ratios. It implies that the 
normal deformation beam model should be employed for a better prediction of the fre-
quencies instead of the model which neglects the effects of transverse normal defor-
mation. It is seen that the frequencies are under-estimated when thickness stretching is 
omitted. 

Table 5. Effect of slenderness ratio (L/h) on non-dimensional t fundamental frequency of the S-S FG beam for various 
material indexes. 𝑳 𝒉⁄  Mode Theory 

𝒑 𝟎 𝟎. 𝟓 𝟏 𝟓 𝟏𝟎 

𝟐 

1 Present 𝜀 = 0 4.1229 3.5811 3.2488 2.6369 2.5066 𝜀 ≠ 0 4.1288 3.5939 3.2697 2.6578 2.5199 

2 Present 𝜀 = 0 11.2755 9.9531 9.0776 7.0387 6.5825 𝜀 ≠ 0 11.3606 10.0311 9.1548 7.0986 6.6339 

3 Present 𝜀 = 0 18.8329 16.7556 15.3540 11.7045 10.8540 𝜀 ≠ 0 19.0593 16.9370 15.5040 11.8133 10.9627 

𝟕 

1 Present 𝜀 = 0 5.3051 4.5303 4.0972 3.5223 3.4072 𝜀 ≠ 0 5.3043 4.5436 4.1254 3.5545 3.4256 

2 Present 𝜀 = 0 19.5009 16.7623 15.1752 12.7469 12.2452 𝜀 ≠ 0 19.4986 16.8082 15.2720 12.8527 12.3049 

3 Present 𝜀 = 0 39.3228 34.0427 30.8609 25.3129 24.1409 𝜀 ≠ 0 39.3514 34.1495 31.0553 25.5131 24.2620 

𝟏𝟐 

1 Present 𝜀 = 0 5.4202 4.6199 4.1772 3.6156 3.5045 𝜀 ≠ 0 5.4198 4.6342 4.2068 3.6498 3.5244 

2 Present 𝜀 = 0 20.9836 17.9355 16.2232 13.8997 13.4318 𝜀 ≠ 0 20.9793 17.9871 16.3331 14.0246 13.5027 

3 Present 𝜀 = 0 44.9631 38.5796 34.9166 29.5118 28.4027 𝜀 ≠ 0 44.9542 38.6852 35.1425 29.7618 28.5434 

Figure 12. Effect of (a) the material parameter and (b) slenderness ratio (L/h) on the dimensionless fundamental frequency
of the S-S FG beam.



Mathematics 2021, 9, 1422 13 of 16

Table 5. Effect of slenderness ratio (L/h) on non-dimensional t fundamental frequency of the S-S FG
beam for various material indexes.

L/h Mode Theory
p

0 0.5 1 5 10

2

1 Present
εz = 0 4.1229 3.5811 3.2488 2.6369 2.5066
εz 6= 0 4.1288 3.5939 3.2697 2.6578 2.5199

2 Present
εz = 0 11.2755 9.9531 9.0776 7.0387 6.5825
εz 6= 0 11.3606 10.0311 9.1548 7.0986 6.6339

3 Present
εz = 0 18.8329 16.7556 15.3540 11.7045 10.8540
εz 6= 0 19.0593 16.9370 15.5040 11.8133 10.9627

7

1 Present
εz = 0 5.3051 4.5303 4.0972 3.5223 3.4072
εz 6= 0 5.3043 4.5436 4.1254 3.5545 3.4256

2 Present
εz = 0 19.5009 16.7623 15.1752 12.7469 12.2452
εz 6= 0 19.4986 16.8082 15.2720 12.8527 12.3049

3 Present
εz = 0 39.3228 34.0427 30.8609 25.3129 24.1409
εz 6= 0 39.3514 34.1495 31.0553 25.5131 24.2620

12

1 Present
εz = 0 5.4202 4.6199 4.1772 3.6156 3.5045
εz 6= 0 5.4198 4.6342 4.2068 3.6498 3.5244

2 Present
εz = 0 20.9836 17.9355 16.2232 13.8997 13.4318
εz 6= 0 20.9793 17.9871 16.3331 14.0246 13.5027

3 Present
εz = 0 44.9631 38.5796 34.9166 29.5118 28.4027
εz 6= 0 44.9542 38.6852 35.1425 29.7618 28.5434

The impact of the slenderness ratio (L/h) on the frequencies is shown in Figure 12b
and Tables 4 and 5. It is seen that an increase of slenderness ration (L/h) leads to an increase
of frequencies, and this increase is amplified at higher vibration modes. The frequencies
tend to increase when the beam becomes shorter (or thicker).

4. Conclusions

In this paper, a refined beam theory is performed for bending vibratory analysis
of the thick FG beams, taking into consideration thickness-stretching. The transverse
displacement is assumed to be the sum of three components, bending, shear and stretching
of the thickness. This leads to reducing the unknown’s number of parameters, therefore
the number of governing equations. According to a mixing law, the FG beam effective
material characteristics are supposed to change continuously along the thickness direction
depending on the volume proportion of the constituents. The governing equations are
obtained from Hamilton’s principle and are solved by using Navier-solutions.

Both the analytical and numerical results obtained in this article agree with those ob-
tained using other theories with more unknown parameters. Sensitivity analysis has been
performed for the thickness-stretching, the material parameter and the beam-slenderness.
For this investigation, the shortest beams exhibited the greatest thickness-stretching impact,
and this needs to be taken into consideration in more physically realistic simulations. Both
geometry and material parameters affect the vibrational responses of the FG beams. Finally,
it is observed that the proposed higher order shear and normal deformation theory is not
only accurate but also provides an elegant and easily implementable approach for simulat-
ing bending and vibration behaviors of FGM beams, of relevance for example in spacecraft
thermo-structural design. The formulation lends itself particularly well to finite element
simulations and also to other numerical methods employing symbolic computation for
beam bending problems, which will be considered in the near future. Further applications
of our refined FG beam are planned in another contribution to consolidate our approach.



Mathematics 2021, 9, 1422 14 of 16

Author Contributions: Conceptualization, Y.B. and N.L.; methodology, Y.B., N.L. and D.B.; software,
Y.B. and N.L.; validation, N.L. and D.B.; formal analysis, Y.B.; investigation, Y.B., N.L. and D.B.;
resources, Y.B. and N.L.; data curation, Y.B. and N.L.; writing—original draft preparation, Y.B. and
D.B.; writing—review and editing, D.B.; visualization, Y.B. and N.L.; supervision, N.L. and D.B.;
project administration, N.L. and D.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

(A : B : D : Bs : Ds : Hs) =
∫ h/2

−h/2

(
1, z, z2,
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⎪⎪⎫
 

(7)

2.3. Calculation of Energies 
• Strain energy: 

⎩⎪⎨
⎪⎧ 𝛿𝒰 = (𝜎 𝛿𝜀 + 𝜏 𝛿𝛾 + 𝜎 𝛿𝜀 )𝑑𝑧 𝑑𝑦𝑑𝑥

= 𝒩 𝜕𝛿𝑢𝜕𝑥 − ℳ 𝜕 𝛿𝑤𝜕𝑥 − ℳ 𝜕 𝛿𝑤𝜕𝑥 +𝒬 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝛿𝜙𝜕𝑥 + 𝒩 𝛿𝜙 𝑑𝑥 (8)

where, 𝒩 , ℳ ,  ℳ , 𝒬  and  𝒩  are the stress resultants, specified as: 

⎩⎪⎪
⎨⎪
⎪⎧(𝒩 , ℳ , ℳ ) = 1, 𝑧, 𝒻(𝑧) 𝜎/

/ 𝑏𝑑𝑧
𝒬 = 𝜏 ℊ(𝑧)𝑏𝑑𝑧/

/𝒩 = 𝜎/
/ 𝑑ℊ(𝑧)𝑑𝑧 𝑏𝑑𝑧

 (9)

(z), z
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(
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)
ρ(z)bdz
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(

Mathematics 2021, 9, x FOR PEER REVIEW 4 of 17 
 

 

 

2.2. Displacement and Strain Fields 
Transverse and axial displacements of the FG beam are expressed, according to the 

quasi-3D theory [35,37] as follow: 𝑈(𝑥, 𝑧) = 𝑢 (𝑥) − 𝑧 𝜕𝑤 𝜕𝑥⁄ − 𝒻(𝑧) 𝜕𝑤 𝜕𝑥⁄𝑊(𝑥, 𝑧) = 𝑤 (𝑥) + 𝑤 (𝑥) + 𝑤 (𝑥)  (4)

with, 𝑤 (𝑥) = ℊ(𝑧)𝜙(𝑥), ℊ(𝑧) = 1 − 𝑑𝒻(𝑧) 𝑑𝑧⁄  (5)𝑢 : Axial displacement; 𝑤 : Bending transverse displacement; 𝑤 : Shear transverse displacement; 𝑤 : Thickness-stretching displacement; 𝑢 , 𝑤 , 𝑤  and 𝜙 are four unknowns to be determined; 𝒻(z) and ℊ(z) are the shape functions. 

The strains are as follows: 𝜀  = 𝜕𝑢 𝜕𝑥⁄ − 𝑧 𝜕 𝑤 𝜕𝑥⁄ − 𝒻(𝑧) 𝜕 𝑤 𝜕𝑥⁄𝜀  = (𝑑ℊ(𝑧) 𝑑𝑧⁄ )𝜙𝛾 = ℊ(𝑧) 𝜕𝑤 𝜕𝑥⁄ + 𝜕𝜙 𝜕𝑥⁄  (6)

The FG beam material follows Hooke’s law. So, linear elastic equation can be ex-
pressed as: σστ = E(z) 1 ν 0ν 1 00 0 12(1 + ν)

εεγ
= 𝐸(𝑧)

⎩⎪⎪⎨
⎪⎪⎧ 𝜕𝑢𝜕𝑥 − 𝑧 𝜕 𝑤𝜕𝑥 − 𝒻(𝑧) 𝜕 𝑤𝜕𝑥 + 𝜈 𝑑ℊ(𝑧)𝑑𝑧 𝜙𝜈 𝜕𝑢𝜕𝑥 − 𝜈𝑧 𝜕 𝑤𝜕𝑥 − 𝜈𝒻(𝑧) 𝜕 𝑤𝜕𝑥 + 𝑑ℊ(𝑧)𝑑𝑧 𝜙12(1 + 𝜈) 𝜕𝑤𝜕𝑥 + 𝜕𝑤𝜕𝑥 ⎭⎪⎪⎬

⎪⎪⎫
 

(7)

2.3. Calculation of Energies 
• Strain energy: 

⎩⎪⎨
⎪⎧ 𝛿𝒰 = (𝜎 𝛿𝜀 + 𝜏 𝛿𝛾 + 𝜎 𝛿𝜀 )𝑑𝑧 𝑑𝑦𝑑𝑥

= 𝒩 𝜕𝛿𝑢𝜕𝑥 − ℳ 𝜕 𝛿𝑤𝜕𝑥 − ℳ 𝜕 𝛿𝑤𝜕𝑥 +𝒬 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝛿𝜙𝜕𝑥 + 𝒩 𝛿𝜙 𝑑𝑥 (8)

where, 𝒩 , ℳ ,  ℳ , 𝒬  and  𝒩  are the stress resultants, specified as: 

⎩⎪⎪
⎨⎪
⎪⎧(𝒩 , ℳ , ℳ ) = 1, 𝑧, 𝒻(𝑧) 𝜎/

/ 𝑏𝑑𝑧
𝒬 = 𝜏 ℊ(𝑧)𝑏𝑑𝑧/

/𝒩 = 𝜎/
/ 𝑑ℊ(𝑧)𝑑𝑧 𝑏𝑑𝑧

 (9)

,

Mathematics 2021, 9, x FOR PEER REVIEW 4 of 17 
 

 

 

2.2. Displacement and Strain Fields 
Transverse and axial displacements of the FG beam are expressed, according to the 

quasi-3D theory [35,37] as follow: 𝑈(𝑥, 𝑧) = 𝑢 (𝑥) − 𝑧 𝜕𝑤 𝜕𝑥⁄ − 𝒻(𝑧) 𝜕𝑤 𝜕𝑥⁄𝑊(𝑥, 𝑧) = 𝑤 (𝑥) + 𝑤 (𝑥) + 𝑤 (𝑥)  (4)

with, 𝑤 (𝑥) = ℊ(𝑧)𝜙(𝑥), ℊ(𝑧) = 1 − 𝑑𝒻(𝑧) 𝑑𝑧⁄  (5)𝑢 : Axial displacement; 𝑤 : Bending transverse displacement; 𝑤 : Shear transverse displacement; 𝑤 : Thickness-stretching displacement; 𝑢 , 𝑤 , 𝑤  and 𝜙 are four unknowns to be determined; 𝒻(z) and ℊ(z) are the shape functions. 

The strains are as follows: 𝜀  = 𝜕𝑢 𝜕𝑥⁄ − 𝑧 𝜕 𝑤 𝜕𝑥⁄ − 𝒻(𝑧) 𝜕 𝑤 𝜕𝑥⁄𝜀  = (𝑑ℊ(𝑧) 𝑑𝑧⁄ )𝜙𝛾 = ℊ(𝑧) 𝜕𝑤 𝜕𝑥⁄ + 𝜕𝜙 𝜕𝑥⁄  (6)

The FG beam material follows Hooke’s law. So, linear elastic equation can be ex-
pressed as: σστ = E(z) 1 ν 0ν 1 00 0 12(1 + ν)

εεγ
= 𝐸(𝑧)

⎩⎪⎪⎨
⎪⎪⎧ 𝜕𝑢𝜕𝑥 − 𝑧 𝜕 𝑤𝜕𝑥 − 𝒻(𝑧) 𝜕 𝑤𝜕𝑥 + 𝜈 𝑑ℊ(𝑧)𝑑𝑧 𝜙𝜈 𝜕𝑢𝜕𝑥 − 𝜈𝑧 𝜕 𝑤𝜕𝑥 − 𝜈𝒻(𝑧) 𝜕 𝑤𝜕𝑥 + 𝑑ℊ(𝑧)𝑑𝑧 𝜙12(1 + 𝜈) 𝜕𝑤𝜕𝑥 + 𝜕𝑤𝜕𝑥 ⎭⎪⎪⎬

⎪⎪⎫
 

(7)

2.3. Calculation of Energies 
• Strain energy: 

⎩⎪⎨
⎪⎧ 𝛿𝒰 = (𝜎 𝛿𝜀 + 𝜏 𝛿𝛾 + 𝜎 𝛿𝜀 )𝑑𝑧 𝑑𝑦𝑑𝑥

= 𝒩 𝜕𝛿𝑢𝜕𝑥 − ℳ 𝜕 𝛿𝑤𝜕𝑥 − ℳ 𝜕 𝛿𝑤𝜕𝑥 +𝒬 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝛿𝜙𝜕𝑥 + 𝒩 𝛿𝜙 𝑑𝑥 (8)

where, 𝒩 , ℳ ,  ℳ , 𝒬  and  𝒩  are the stress resultants, specified as: 

⎩⎪⎪
⎨⎪
⎪⎧(𝒩 , ℳ , ℳ ) = 1, 𝑧, 𝒻(𝑧) 𝜎/

/ 𝑏𝑑𝑧
𝒬 = 𝜏 ℊ(𝑧)𝑏𝑑𝑧/

/𝒩 = 𝜎/
/ 𝑑ℊ(𝑧)𝑑𝑧 𝑏𝑑𝑧

 (9)

(z), z

Mathematics 2021, 9, x FOR PEER REVIEW 4 of 17 
 

 

 

2.2. Displacement and Strain Fields 
Transverse and axial displacements of the FG beam are expressed, according to the 

quasi-3D theory [35,37] as follow: 𝑈(𝑥, 𝑧) = 𝑢 (𝑥) − 𝑧 𝜕𝑤 𝜕𝑥⁄ − 𝒻(𝑧) 𝜕𝑤 𝜕𝑥⁄𝑊(𝑥, 𝑧) = 𝑤 (𝑥) + 𝑤 (𝑥) + 𝑤 (𝑥)  (4)

with, 𝑤 (𝑥) = ℊ(𝑧)𝜙(𝑥), ℊ(𝑧) = 1 − 𝑑𝒻(𝑧) 𝑑𝑧⁄  (5)𝑢 : Axial displacement; 𝑤 : Bending transverse displacement; 𝑤 : Shear transverse displacement; 𝑤 : Thickness-stretching displacement; 𝑢 , 𝑤 , 𝑤  and 𝜙 are four unknowns to be determined; 𝒻(z) and ℊ(z) are the shape functions. 

The strains are as follows: 𝜀  = 𝜕𝑢 𝜕𝑥⁄ − 𝑧 𝜕 𝑤 𝜕𝑥⁄ − 𝒻(𝑧) 𝜕 𝑤 𝜕𝑥⁄𝜀  = (𝑑ℊ(𝑧) 𝑑𝑧⁄ )𝜙𝛾 = ℊ(𝑧) 𝜕𝑤 𝜕𝑥⁄ + 𝜕𝜙 𝜕𝑥⁄  (6)

The FG beam material follows Hooke’s law. So, linear elastic equation can be ex-
pressed as: σστ = E(z) 1 ν 0ν 1 00 0 12(1 + ν)

εεγ
= 𝐸(𝑧)

⎩⎪⎪⎨
⎪⎪⎧ 𝜕𝑢𝜕𝑥 − 𝑧 𝜕 𝑤𝜕𝑥 − 𝒻(𝑧) 𝜕 𝑤𝜕𝑥 + 𝜈 𝑑ℊ(𝑧)𝑑𝑧 𝜙𝜈 𝜕𝑢𝜕𝑥 − 𝜈𝑧 𝜕 𝑤𝜕𝑥 − 𝜈𝒻(𝑧) 𝜕 𝑤𝜕𝑥 + 𝑑ℊ(𝑧)𝑑𝑧 𝜙12(1 + 𝜈) 𝜕𝑤𝜕𝑥 + 𝜕𝑤𝜕𝑥 ⎭⎪⎪⎬

⎪⎪⎫
 

(7)

2.3. Calculation of Energies 
• Strain energy: 

⎩⎪⎨
⎪⎧ 𝛿𝒰 = (𝜎 𝛿𝜀 + 𝜏 𝛿𝛾 + 𝜎 𝛿𝜀 )𝑑𝑧 𝑑𝑦𝑑𝑥

= 𝒩 𝜕𝛿𝑢𝜕𝑥 − ℳ 𝜕 𝛿𝑤𝜕𝑥 − ℳ 𝜕 𝛿𝑤𝜕𝑥 +𝒬 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝛿𝜙𝜕𝑥 + 𝒩 𝛿𝜙 𝑑𝑥 (8)

where, 𝒩 , ℳ ,  ℳ , 𝒬  and  𝒩  are the stress resultants, specified as: 

⎩⎪⎪
⎨⎪
⎪⎧(𝒩 , ℳ , ℳ ) = 1, 𝑧, 𝒻(𝑧) 𝜎/

/ 𝑏𝑑𝑧
𝒬 = 𝜏 ℊ(𝑧)𝑏𝑑𝑧/

/𝒩 = 𝜎/
/ 𝑑ℊ(𝑧)𝑑𝑧 𝑏𝑑𝑧

 (9)

(z)
)

ρ(z)bdz

(K0, K2) =
∫ h/2

−h/2

(

Mathematics 2021, 9, x FOR PEER REVIEW 4 of 17 
 

 

 

2.2. Displacement and Strain Fields 
Transverse and axial displacements of the FG beam are expressed, according to the 

quasi-3D theory [35,37] as follow: 𝑈(𝑥, 𝑧) = 𝑢 (𝑥) − 𝑧 𝜕𝑤 𝜕𝑥⁄ − 𝒻(𝑧) 𝜕𝑤 𝜕𝑥⁄𝑊(𝑥, 𝑧) = 𝑤 (𝑥) + 𝑤 (𝑥) + 𝑤 (𝑥)  (4)

with, 𝑤 (𝑥) = ℊ(𝑧)𝜙(𝑥), ℊ(𝑧) = 1 − 𝑑𝒻(𝑧) 𝑑𝑧⁄  (5)𝑢 : Axial displacement; 𝑤 : Bending transverse displacement; 𝑤 : Shear transverse displacement; 𝑤 : Thickness-stretching displacement; 𝑢 , 𝑤 , 𝑤  and 𝜙 are four unknowns to be determined; 𝒻(z) and ℊ(z) are the shape functions. 

The strains are as follows: 𝜀  = 𝜕𝑢 𝜕𝑥⁄ − 𝑧 𝜕 𝑤 𝜕𝑥⁄ − 𝒻(𝑧) 𝜕 𝑤 𝜕𝑥⁄𝜀  = (𝑑ℊ(𝑧) 𝑑𝑧⁄ )𝜙𝛾 = ℊ(𝑧) 𝜕𝑤 𝜕𝑥⁄ + 𝜕𝜙 𝜕𝑥⁄  (6)

The FG beam material follows Hooke’s law. So, linear elastic equation can be ex-
pressed as: σστ = E(z) 1 ν 0ν 1 00 0 12(1 + ν)

εεγ
= 𝐸(𝑧)

⎩⎪⎪⎨
⎪⎪⎧ 𝜕𝑢𝜕𝑥 − 𝑧 𝜕 𝑤𝜕𝑥 − 𝒻(𝑧) 𝜕 𝑤𝜕𝑥 + 𝜈 𝑑ℊ(𝑧)𝑑𝑧 𝜙𝜈 𝜕𝑢𝜕𝑥 − 𝜈𝑧 𝜕 𝑤𝜕𝑥 − 𝜈𝒻(𝑧) 𝜕 𝑤𝜕𝑥 + 𝑑ℊ(𝑧)𝑑𝑧 𝜙12(1 + 𝜈) 𝜕𝑤𝜕𝑥 + 𝜕𝑤𝜕𝑥 ⎭⎪⎪⎬

⎪⎪⎫
 

(7)

2.3. Calculation of Energies 
• Strain energy: 

⎩⎪⎨
⎪⎧ 𝛿𝒰 = (𝜎 𝛿𝜀 + 𝜏 𝛿𝛾 + 𝜎 𝛿𝜀 )𝑑𝑧 𝑑𝑦𝑑𝑥

= 𝒩 𝜕𝛿𝑢𝜕𝑥 − ℳ 𝜕 𝛿𝑤𝜕𝑥 − ℳ 𝜕 𝛿𝑤𝜕𝑥 +𝒬 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝛿𝜙𝜕𝑥 + 𝒩 𝛿𝜙 𝑑𝑥 (8)

where, 𝒩 , ℳ ,  ℳ , 𝒬  and  𝒩  are the stress resultants, specified as: 

⎩⎪⎪
⎨⎪
⎪⎧(𝒩 , ℳ , ℳ ) = 1, 𝑧, 𝒻(𝑧) 𝜎/

/ 𝑏𝑑𝑧
𝒬 = 𝜏 ℊ(𝑧)𝑏𝑑𝑧/

/𝒩 = 𝜎/
/ 𝑑ℊ(𝑧)𝑑𝑧 𝑏𝑑𝑧

 (9)

(z)2,

Mathematics 2021, 9, x FOR PEER REVIEW 4 of 17 
 

 

 

2.2. Displacement and Strain Fields 
Transverse and axial displacements of the FG beam are expressed, according to the 

quasi-3D theory [35,37] as follow: 𝑈(𝑥, 𝑧) = 𝑢 (𝑥) − 𝑧 𝜕𝑤 𝜕𝑥⁄ − 𝒻(𝑧) 𝜕𝑤 𝜕𝑥⁄𝑊(𝑥, 𝑧) = 𝑤 (𝑥) + 𝑤 (𝑥) + 𝑤 (𝑥)  (4)

with, 𝑤 (𝑥) = ℊ(𝑧)𝜙(𝑥), ℊ(𝑧) = 1 − 𝑑𝒻(𝑧) 𝑑𝑧⁄  (5)𝑢 : Axial displacement; 𝑤 : Bending transverse displacement; 𝑤 : Shear transverse displacement; 𝑤 : Thickness-stretching displacement; 𝑢 , 𝑤 , 𝑤  and 𝜙 are four unknowns to be determined; 𝒻(z) and ℊ(z) are the shape functions. 

The strains are as follows: 𝜀  = 𝜕𝑢 𝜕𝑥⁄ − 𝑧 𝜕 𝑤 𝜕𝑥⁄ − 𝒻(𝑧) 𝜕 𝑤 𝜕𝑥⁄𝜀  = (𝑑ℊ(𝑧) 𝑑𝑧⁄ )𝜙𝛾 = ℊ(𝑧) 𝜕𝑤 𝜕𝑥⁄ + 𝜕𝜙 𝜕𝑥⁄  (6)

The FG beam material follows Hooke’s law. So, linear elastic equation can be ex-
pressed as: σστ = E(z) 1 ν 0ν 1 00 0 12(1 + ν)

εεγ
= 𝐸(𝑧)

⎩⎪⎪⎨
⎪⎪⎧ 𝜕𝑢𝜕𝑥 − 𝑧 𝜕 𝑤𝜕𝑥 − 𝒻(𝑧) 𝜕 𝑤𝜕𝑥 + 𝜈 𝑑ℊ(𝑧)𝑑𝑧 𝜙𝜈 𝜕𝑢𝜕𝑥 − 𝜈𝑧 𝜕 𝑤𝜕𝑥 − 𝜈𝒻(𝑧) 𝜕 𝑤𝜕𝑥 + 𝑑ℊ(𝑧)𝑑𝑧 𝜙12(1 + 𝜈) 𝜕𝑤𝜕𝑥 + 𝜕𝑤𝜕𝑥 ⎭⎪⎪⎬

⎪⎪⎫
 

(7)

2.3. Calculation of Energies 
• Strain energy: 

⎩⎪⎨
⎪⎧ 𝛿𝒰 = (𝜎 𝛿𝜀 + 𝜏 𝛿𝛾 + 𝜎 𝛿𝜀 )𝑑𝑧 𝑑𝑦𝑑𝑥

= 𝒩 𝜕𝛿𝑢𝜕𝑥 − ℳ 𝜕 𝛿𝑤𝜕𝑥 − ℳ 𝜕 𝛿𝑤𝜕𝑥 +𝒬 𝜕𝛿𝑤𝜕𝑥 + 𝜕𝛿𝜙𝜕𝑥 + 𝒩 𝛿𝜙 𝑑𝑥 (8)

where, 𝒩 , ℳ ,  ℳ , 𝒬  and  𝒩  are the stress resultants, specified as: 

⎩⎪⎪
⎨⎪
⎪⎧(𝒩 , ℳ , ℳ ) = 1, 𝑧, 𝒻(𝑧) 𝜎/

/ 𝑏𝑑𝑧
𝒬 = 𝜏 ℊ(𝑧)𝑏𝑑𝑧/

/𝒩 = 𝜎/
/ 𝑑ℊ(𝑧)𝑑𝑧 𝑏𝑑𝑧

 (9)

(z)2
)

ρ(z)bdz

Mathematics 2021, 9, x FOR PEER REVIEW 7 of 17 
 

 

 

𝑛 = 1 ⟹ 𝒬 = 𝓆   (19)

• Uniform distribution case: 𝒬 = 4𝑞  𝑛𝜋  , (𝑛 = 1, 3, 5) (20)

So, analytical solutions may be reached from the eigenvalues system below for any 
fixed value of “𝑛”: ( 𝐾 − 𝜔 𝑀 ) 𝛥 = 𝐹  (21)

In the static problem case, Equation (24) becomes: 𝐾 𝛥 = 𝐹  (22)

𝐾 = 𝓀𝓀𝓀𝓀
 𝓀 𝓀 𝓀 𝓀

 𝓀 𝓀 𝓀 𝓀
 𝓀 𝓀𝓀 𝓀 , 𝑀 = 𝓂𝓂𝓂0

 𝓂 𝓂𝓂 𝓂
 𝓂𝓂 𝓂 𝓂

 0 𝓂 𝓂 𝓂 , 𝛥 = 𝑈𝑊𝑊𝜙 , 𝐹 = 0 𝒬𝒬0  (23)

(𝓀 , 𝓀 , 𝓀 , 𝓀 , 𝓀 , 𝓀 , 𝓀 , 𝓀 , 𝓀 , 𝓀 ) and (𝓂 , 𝓂 , 𝓂 , 𝓂 , 𝓂 , 𝓂 , 𝓂 , 𝓂 , 𝓂  ) are given by the Appendix A. 

3. Numerical Results and Discussion 
In this part, a uniform transverse load is applied to the S-S FG beam. Numerical 

examples are proposed first to validate the model presented above and assess its accu-
racy. The FG beam material is composed by 𝐴𝑙 𝑂  (alumina) and 𝐴𝑙 (aluminum). The 
material characteristics of the corresponding components are listed in Table 1. 

Table 1. Material characteristics of 𝐴𝑙 𝑂  and 𝐴𝑙 [38]. 

Components 𝝂 𝑬 (𝐆𝐏𝐚) 𝝆 (𝐤𝐠/𝐦𝟑) 
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Metal (aluminium 𝑨𝒍) 0.3 70 2702 

The dimensionless form is used as follows: 𝑈 = 100 𝑈 0, − ; 𝑊 = 100 𝑊 , , 𝜎 = 𝜎 , ; 𝜎 = 𝜎 (0, 0); 𝜎 = 𝜎 , ;  𝜔 = (𝜔𝐿 /ℎ)  (24)

A numerical example set out in Table 2 is performed for various material indexes 
(p) and slenderness ration (L/h) to validate the present model. The results obtained by 
this theory concerning displacements and the stresses for (L/h = 5, 20) are compared with 
those of the analytical solution provided by Li et al. [39]. The following shape function 
based on Reddy beam theory is used: 𝑓(𝑧) = 4𝑧3ℎ  (25)
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A numerical example set out in Table 2 is performed for various material indexes 
(p) and slenderness ration (L/h) to validate the present model. The results obtained by 
this theory concerning displacements and the stresses for (L/h = 5, 20) are compared with 
those of the analytical solution provided by Li et al. [39]. The following shape function 
based on Reddy beam theory is used: 𝑓(𝑧) = 4𝑧3ℎ  (25)
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examples are proposed first to validate the model presented above and assess its accu-
racy. The FG beam material is composed by 𝐴𝑙 𝑂  (alumina) and 𝐴𝑙 (aluminum). The 
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A numerical example set out in Table 2 is performed for various material indexes 
(p) and slenderness ration (L/h) to validate the present model. The results obtained by 
this theory concerning displacements and the stresses for (L/h = 5, 20) are compared with 
those of the analytical solution provided by Li et al. [39]. The following shape function 
based on Reddy beam theory is used: 𝑓(𝑧) = 4𝑧3ℎ  (25)
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A numerical example set out in Table 2 is performed for various material indexes 
(p) and slenderness ration (L/h) to validate the present model. The results obtained by 
this theory concerning displacements and the stresses for (L/h = 5, 20) are compared with 
those of the analytical solution provided by Li et al. [39]. The following shape function 
based on Reddy beam theory is used: 𝑓(𝑧) = 4𝑧3ℎ  (25)
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3. Numerical Results and Discussion 
In this part, a uniform transverse load is applied to the S-S FG beam. Numerical 

examples are proposed first to validate the model presented above and assess its accu-
racy. The FG beam material is composed by 𝐴𝑙 𝑂  (alumina) and 𝐴𝑙 (aluminum). The 
material characteristics of the corresponding components are listed in Table 1. 
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Components 𝝂 𝑬 (𝐆𝐏𝐚) 𝝆 (𝐤𝐠/𝐦𝟑) 
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Metal (aluminium 𝑨𝒍) 0.3 70 2702 
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A numerical example set out in Table 2 is performed for various material indexes 
(p) and slenderness ration (L/h) to validate the present model. The results obtained by 
this theory concerning displacements and the stresses for (L/h = 5, 20) are compared with 
those of the analytical solution provided by Li et al. [39]. The following shape function 
based on Reddy beam theory is used: 𝑓(𝑧) = 4𝑧3ℎ  (25)
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