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Abstract: The present paper deals with a class of second-order PDE constrained controlled opti-
mization problems with application in Lagrange–Hamilton dynamics. Concretely, we formulate
and prove necessary conditions of optimality for the considered class of control problems driven by
multiple integral cost functionals involving second-order partial derivatives. Moreover, an illustrative
example is provided to highlight the effectiveness of the results derived in the paper. In the final part
of the paper, we present an algorithm to summarize the steps for solving a control problem such as
the one investigated here.

Keywords: multi-time controlled second-order Lagrangian; Euler–Lagrange equations; second-order
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1. Introduction

Calculus of Variations and Optimal Control Theory are two mathematical fields with
strong and important connections, with significant applications in applied sciences, engi-
neering, data analysis, and classification. Over time, many researchers have investigated
these areas and the connections between them, obtaining remarkable results. In this regard,
we mention only the works of Friedman [1], Hestenes [2], Kendall [3], Udrişte [4], Petrat
and Tumulka [5], Treanţă [6], Deckert and Nickel [7], and Olteanu and Treanţă [8]. In fact,
before, we wanted to specify in particular the research papers that dealt with problems
in several time variables. In the last decade, the study of multi-dimensional optimiza-
tion problems (with important applications in various branches of mathematical sciences,
engineering design, portfolio selection, game theory, decision problems in management
science, data analysis, web access problems, query optimization in databases, and so forth),
have been studied by Mititelu and Treanţă [9], Treanţă [10–17], Jayswal et al. [18], and
Treanţă [19–21]. More precisely, some classes of variational problems driven by multiple
and path-independent curvilinear integral cost functionals with isoperimetric and mixed
constraints involving PDEs of m-flow type and partial differential inequations have been
introduced and studied. In addition, the isoperimetric constrained optimization prob-
lems have been of particular interest to many researchers due to their importance in the
applied sciences. We mention, for example, the research works of Schmitendorf [22,23],
Forster and Long [24], and Treanţă [13]. More specifically, by using the Pontryagin’s
principle, Schmitendorf [22] studied the necessary conditions of optimality associated
with a class of control problems involving isoperimetric and inequality constraints at the
terminal time. Later, Forster and Long [24] (see also Schmitendorf [23]), by considering
an alternative transformation technique, established the associated necessary optimality
conditions for the same optimization problem. Quite recently, Treanţă [13] has focused on
the optimization of some simple, multiple or curvilinear integral functionals (governed by
second-order Lagrangians) subject to ODE, PDE or isoperimetric constraints. In addition,
Pascalis et al. [25] used genetic algorithms in order to theoretically design a range of
phononic media that can act to prevent or ensure antiplane elastic wave propagation over a
specific range of low frequencies, with each case corresponding to a specific pre-stress level.
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In the present paper, inspired by the previous research in this field, we investigate
a new class of PDE constrained optimization problems driven by multiple integral cost
functionals which involve second-order partial derivatives. More precisely, the proper
motivation for studying such issues is:

(i) Considering the bi-temporal optimal problem with pointwise state constraints:

min
x,v

1
2

∫
Ωt0,t1

(
x(t)− sin(2πt1t2)

)2
dt1dt2 +

α

2

∫
Ωt0,t1

v2(t)dt1dt2

subject to
−∆x(t) = v(t), t ∈ Ωt0,t1 ; x(t) = 0, t ∈ ∂Ωt0,t1 .

This optimization problem has also been studied in Udrişte and Matei [26] by applying
a simplified multi-time maximum principle.

(ii) (Neumann boundary control): Find a control function v ∈ L2(Γ) that minimizes the
cost functional

J(v(·)) = 1
2

∫
Ω
(z(t)− zd)

2dt1 · · · dtm +
β

2

∫
Γ

v2(t)ds,

where (z, v) satisfies −∆z + z = f in Ω and
∂z
∂n

= v on Γ, the function f is a given source

term, the function v is a control variable, and Ω is a bounded domain in Rm with a boundary

Γ of class C2. Since the term
β

2

∫
Γ

v2(t)ds (see β > 0) is proportional to the consumed energy,

the minimizing of J is a compromise between the energy consumption and finding v so
that the distribution z is close to the desired profile zd. We say that the control function is a
boundary control because the control acts on Γ.

The foregoing two examples of optimal control problems (involving second-order
partial derivatives) have been taken from the literature. For more details, other examples,
and different points of view, we refer to Raymond [27] and Udrişte and Matei [26].

The mathematical framework developed in this paper is more general than in
Hestenes [2], Schmitendorf [22], Udrişte and Ţevy [4], or Treanţă [13], both by the presence
of controlled multiple integrals and by the inclusion of the new proof associated with the
main result and the second-order partial derivatives. Therefore, this paper can be seen as a
fundamental work for researchers in the field of applied sciences, mechanics, data analysis,
and classification, where second-order PDEs (partial speed-acceleration constraints) are
involved. It should also be mentioned that a simplified language is used, specific to applied
mathematics, and readers of pure mathematics are referred to the bibliography. The main
purpose is to expose ideas stripped of excessive formalizations, which have a great im-
pact on the reader’s understanding of the natural phenomena encountered in engineering
and economics. In this sense, mathematical modeling must be only the scientific support
for the intelligent presentation of the real world and not the abstract notions specific to
pure mathematics.

The paper is organized as follows. In Section 2, we introduce the optimization prob-
lem under study and formulate the main result of this paper, that is, Theorem 1. This
theorem provides the necessary optimality conditions for the considered second-order
PDE-constrained control problem. Moreover, the final part of this section includes an
illustrative application and an algorithm. Finally, Section 3 presents the conclusions of
the paper.
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2. Second-Order PDE Constrained Controlled Optimization Problem

We consider a C3-class function L
(
s(t), sγ(t), sαβ(t), v(t), t

)
, called multi-time controlled

second-order Lagrangian, where t = (tα) = (t1, · · · , tm) ∈ Λt0,t1 ⊂ Rm
+, s = (si) =(

s1, · · · , sn
)

: Λt0,t1 → Rn is the state function of class C4, and v = (vϑ) =
(

v1, · · · , vk
)

:

Λt0,t1 → Rk is the control function (a piecewise continuous function). We also consider

sα(t) :=
∂s
∂tα

(t), sαβ(t) :=
∂2s

∂tα∂tβ
(t), α, β ∈ {1, ..., m}, and Λt0,t1 = [t0, t1] (multi-time inter-

val in Rm
+) is a hyper-parallelepiped generated by t0, t1 ∈ Rm

+ (diagonally opposite points).
Second-order PDE constrained controlled optimization problem. Find (s∗, v∗) that

minimizes the following multiple integral cost functional

L(s(·), v(·)) =
∫

Λt0,t1

L
(
s(t), sγ(t), sαβ(t), v(t), t

)
dt1 · · · dtm (1)

among all the functions (s, v) that satisfy

s(t0) = s0, s(t1) = s1, sγ(t0) = s̃γ0, sγ(t1) = s̃γ1,

or
s(t)|∂Λt0,t1

= given, sγ(t)|∂Λt0,t1
= given

and the controlled second-order PDE constraints (partial speed-acceleration constraints) defined
as follows:

ga
ζ

(
s(t), sγ(t), sαβ(t), v(t), t

)
= 0, a = 1, 2, · · · , r ≤ n, ζ = 1, 2, · · · , l ≤ m.

In order to investigate the above controlled optimization problem (1), associated with
the aforementioned controlled second-order PDE constraints, we introduce the Lagrange
multiplier b =

(
pζ

a(t)
)

and build a new multi-time controlled second-order Lagrangian
(see summation over the repeated indices, Einstein summation)

L1
(
s(t), sγ(t), sαβ(t), v(t), b(t), t

)
= L

(
s(t), sγ(t), sαβ(t), v(t), t

)
+pζ

a(t)ga
ζ

(
s(t), sγ(t), sαβ(t), v(t), t

)
,

that changes the initial controlled optimization problem (with second-order PDE con-
straints) into a partial speed–acceleration unconstrained controlled optimization problem

min
(s(·), v(·), b(·))

∫
Λt0,t1

L1
(
s(t), sγ(t), sαβ(t), v(t), b(t), t

)
dt1 · · · dtm (2)

s(tq) = sq, sγ(tq) = s̃γq, q = 0, 1.

In accordance with Lagrange theory, under suitable constraint qualifications, an
extreme point of (1) is found among the extreme points of (2).

To formulate the necessary optimality conditions associated with the aforementioned
controlled optimization problem, we shall introduce the Saunders’s multi-index notation
(see Saunders [28], Treanţă [29]).

The main result of this paper is provided by the following theorem. It formulates
the necessary optimality conditions for the second-order PDE constrained optimization
problem (1).

Theorem 1. If (s∗(·), v∗(·), b∗(·)) is a solution for (2), then

(s∗(·), v∗(·), b∗(·))
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is a solution of the following system of Euler-Lagrange PDEs

∂L1

∂si − Dγ
∂L1

∂si
γ

+
1

µ(α, β)
D2

αβ

∂L1

∂si
αβ

= 0, i = 1, n

∂L1

∂vϑ
− Dγ

∂L1

∂uϑ
γ

+
1

µ(α, β)
D2

αβ

∂L1

∂uϑ
αβ

= 0, ϑ = 1, k

∂L1

∂pζ
a
− Dγ

∂L1

∂pζ
a,γ

+
1

µ(α, β)
D2

αβ

∂L1

∂pζ
a,αβ

= 0, a = 1, r, ζ = 1, l,

where pζ
a,γ :=

∂pζ
a

∂tγ
, pζ

a,αβ :=
∂2 pζ

a

∂tα∂tβ
, uϑ

αβ :=
∂2vϑ

∂tα∂tβ
, α, β, γ ∈ {1, 2, ..., m}.

Proof. Consider that (s(t), v(t), b(t)) is a solution for (2). By considering the variations

s(t) + εh(t) , with h(t)|∂Λt0,t1
= 0, hη(t)|∂Λt0,t1

= 0, η ∈ {1, 2, ..., m} (see hη :=
∂h
∂tη ),

b(t) + εf(t), with f(t)|∂Λt0,t1
= 0, and v(t) + εm(t), with m(t)|∂Λt0,t1

= 0, the controlled
multiple integral cost functional becomes a function depending on ε. Consequently, it is a
controlled multiple integral with parameter

I(ε) =
∫

Λt0,t1

L1(s(t) + εh(t), sγ(t) + εhγ(t), sαβ(t) + εhαβ(t), v(t) + εm(t),

b(t) + εf(t), t)dt1 · · · dtm.

By using the hypothesis, we obtain

d
dε

I(ε)|ε=0 =
∫

Λt0,t1

(∂L1

∂sj hj +
∂L1

∂sj
γ

hj
γ +

1
µ(α, β)

∂L1

∂sj
αβ

hj
αβ +

∂L1

∂vϑ
mϑ (3)

+
∂L1

∂pζ
a
fa
ζ

)
dt1 · · · dtm

= BT +
∫

Λt0,t1

(∂L1

∂sj − Dγ
∂L1

∂sj
γ

+
1

µ(α, β)
D2

αβ

∂L1

∂sj
αβ

)
hjdt1 · · · dtm

+
∫

Λt0,t1

(∂L1

∂vϑ
− Dγ

∂L1

∂uϑ
γ

+
1

µ(α, β)
D2

αβ

∂L1

∂uϑ
αβ

)
mϑdt1 · · · dtm

+
∫

Λt0,t1

(∂L1

∂pζ
a
− Dγ

∂L1

∂pζ
a,γ

+
1

µ(α, β)
D2

αβ

∂L1

∂pζ
a,αβ

)
fa
ζ dt1 · · · dtm = 0.

In addition, by using the formula of integration by parts, it results that

∂L1

∂sj
γ

hj
γ = −hjDγ

∂L1

∂sj
γ

+ Dγ

(
∂L1

∂sj
γ

hj

)
,

1
µ(α, β)

∂L1

∂sj
αβ

hj
αβ =

1
µ(α, β)

hjD2
αβ

∂L1

∂sj
αβ

− Dα

hjDβ
∂L1

∂sj
αβ

+ Dβ

 ∂L1

∂sj
αβ

hj
α


and taking into account the divergence formula, the boundary terms BT (given below)
vanish (see h|∂Λt0,t1

= m|∂Λt0,t1
= f|∂Λt0,t1

= 0, hη |∂Λt0,t1
= 0, nξ(t) = the unit normal vector

on ∂Λt0,t1 , and δνξ = the Kronecker’s synmbol),
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∫
Λt0,t1

Dγ

(
∂L1

∂sj
γ

hj

)
dt1 · · · dtm =

∫
∂Λt0,t1

δνξ
∂L1

∂sj
ν

hjnξdσ,

∫
Λt0,t1

Dα

hjDβ
∂L1

∂sj
αβ

dt1...dtm =
∫

∂Λt0,t1

δνξ Dβ
∂L1

∂sj
νβ

hjnξdσ,

∫
Λt0,t1

Dβ

 ∂L1

∂sj
αβ

hj
α

dt1...dtm =
∫

∂Λt0,t1

δνξ
∂L1

∂sj
αν

hj
αnξ dσ.

Now, since the “small” variations h, f, m were taken arbitrarily, by using a fundamental
lemma of variational calculus, the relation (3) leads to the system of partial differential
equations formulated in theorem, and the proof is complete.

Remark 1. The system of Euler–Lagrange PDEs given in Theorem 1 can be reformulated as follows

∂L1

∂si − Dγ
∂L1

∂si
γ

+
1

µ(α, β)
D2

αβ

∂L1

∂si
αβ

= 0, i = 1, n

∂L1

∂vϑ
− Dγ

∂L1

∂uϑ
γ

+
1

µ(α, β)
D2

αβ

∂L1

∂uϑ
αβ

= 0, ϑ = 1, k

ga
ζ

(
s(t), sγ(t), sα,β(t), v(t), t

)
= 0, a = 1, 2, · · · , r ≤ n, ζ = 1, 2, · · · , l ≤ m.

Example 1. Let the double integral cost functional be given by

L(s(·), v(·)) =
∫
[0,1]2

(
s2(t) + v2(t)

)
dt1dt2.

Find the extremals of L(s(·), v(·)) subject to st1(t) + st2(t) = 0 and the boundary conditions
s(0, 0) = s(1, 1) = 0.

Solution. The associated auxiliary controlled Lagrangian is given by

L1 = s2(t) + v2(t) + b(t)(st1(t) + st2(t))

and the extremals are characterized by the following PDEs

2s− ∂b
∂t1 −

∂b
∂t2 = 0,

2u = 0,

st1(t) + st2(t) = 0,

implying that (s∗, v∗) = (s∗, 0) is the optimal solution of the considered PDE constrained opti-
mization problem, corresponding to the Lagrange multiplier b satisfying p(t1)2(t) + 2pt1t2(t) +
p(t2)2(t) = 0.

The intention of the following algorithm (see Algorithm 1) is to summarize the steps
for solving a control problem such as the one investigated here. More precisely, for a
multiple integral cost functional and a set of mixed (boundary conditions and second-order
PDE) restrictions, the goal is to find (s?, v?) (which fulfils the set of mixed constraints)
such that L(s?, v?) ≤ L(s, v) for all feasible points (s, v). In this direction, we begin with a
feasible point (s, v). If (s, v) satisfies the necessary conditions of optimality formulated in
Theorem 1, then the “Generating Stage” (see below) is completed and we go to the next step;
else, the algorithm stops. For (s?, v?) obtained in “Generating Stage”, if L(s?, v?) ≤ L(s, v)
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is true, for all feasible points (s, v), then (s?, v?) is an optimal solution for the considered
problem; else, the algorithm stops.

Algorithm 1: The steps for solving the control problem
DATA:

• controlled multiple integral cost functional

min
(s,v)

L(s, v) =
∫

Λt0,t1

L
(
s(t), sγ(t), sαβ(t), v(t), t

)
dt1 · · · dtm;

• set of boundary condition and second-order PDE constraints

ga
ζ

(
s(t), sγ(t), sαβ(t), v(t), t

)
= 0, a = 1, 2, · · · , r ≤ n, ζ = 1, 2, · · · , l ≤ m,

and
s(tq) = sq, sγ(tq) = s̃γq, q = 0, 1,

or
s(t)|∂Λt0,t1

= given, sγ(t)|∂Λt0,t1
= given;

RESULT:

S = {(s?, v?)|L(s?, v?) ≤ L(s, v),

with (s?, v?) satisfying the set

of ; boundary ; conditions ; and ; second-order ; PDE ; constraints};

BEGIN

• Generating Stage: let (s, v) be a feasible point
if the necessary optimality conditions (see Theorem 1)
are not compatible with respect to (s, v)
then STOP
else GO to the next step

• Deciding Stage: let (s?, v?) be obtained in Generating Stage
if L(s, v) ≥ L(s?, v?) holds for all feasible points (s, v)
then (s?, v?) is an optimal solution
else STOP

END

3. Conclusions

In this paper, we have introduced and investigated a class of second-order PDE
constrained controlled optimization problems with application in Lagrange–Hamilton
dynamics. More specifically, necessary conditions of optimality were established for the
considered class of variational problems driven by multiple integral cost functionals in-
volving second-order partial derivatives. Moreover, the theoretical results are accompanied
by an illustrative example. Finally, we have presented an algorithm to synthesize the steps
for solving a controlled optimization problem such as the one investigated in the paper.

A new direction of research, on the considered class of control problems introduced in
this paper, is given, for example, by the study of well-posedness and well-posedness in the
generalized sense.
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11. Treanţă, S. KT-geodesic pseudoinvex control problems governed by multiple integrals. J. Nonlinear Convex Anal. 2019, 20, 73–84.
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