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Abstract: Entropy is a functional of probability and is a measurement of information contained
in a system; however, the practical problem of estimating entropy in applied settings remains a
challenging and relevant problem. The Dirichlet prior is a popular choice in the Bayesian framework
for estimation of entropy when considering a multinomial likelihood. In this work, previously
unconsidered Dirichlet type priors are introduced and studied. These priors include a class of
Dirichlet generators as well as a noncentral Dirichlet construction, and in both cases includes the
usual Dirichlet as a special case. These considerations allow for flexible behaviour and can account
for negative and positive correlation. Resultant estimators for a particular functional, the power
sum, under these priors and assuming squared error loss, are derived and represented in terms of
the product moments of the posterior. This representation facilitates closed-form estimators for the
Tsallis entropy, and thus expedite computations of this generalised Shannon form. Select cases of
these proposed priors are considered to investigate the impact and effect on the estimation of Tsallis
entropy subject to different parameter scenarios.

Keywords: generator; multinomial; noncentral; Poisson; power sum; Tsallis

1. Introduction

Shannon entropy and related information measures are functionals of probability
and a measurement of information contained in a system that arise in information theory,
machine learning and text modelling, amongst others. Ref. [1] discussed quantifying the
information carried by neural signals to estimating the dependency structure and inferring
causal relations, uncertainty and dispersion in statistics being applied in fields such as
molecular biology. Other interests include studies measuring complexity of dynamics in
physics, to studies measuring diversity in ecology and genetics, fields of coding theory
and cryptography [2], financial analysis and data compression [3]. Numerous inferential
tasks rely on data-driven procedures to estimate these quantities. In these settings and
utilising the estimated quantities, researchers are often confronted with data arising from an
unknown discrete distribution, and seek to estimate its entropy. This motivates sustained
research interest within entropy, coupled with the current data-driven and computing-rich
era, for practitioners.

Entropy estimation remains an openly discussed challenge. Ref. [4] investigated how
the maximum likelihood estimator (MLE) performed. This is also referred to as the plug-in
principle in functional estimation, where a point estimate of the parameter is used to build
an estimate for a functional of the parameter. The classical asymptotic theory of MLEs
does not adequately address high-dimensional settings in this current data-driven era [4].
High-dimensional statistics arguably demand theoretical tools to address the needs of
these high-dimensional settings. Ref. [5] investigated 18 different estimation measures and
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the suitability was determined experimentally based on the bias and the mean squared
error. This work takes a Bayesian approach to entropy estimation, building upon work
by [1,4,6,7].

Multivariate count data constrained to add up to a certain constant are commonly
modelled using the multinomial distribution. This is widely used in modelling categorical
data, of which features could be for example, words in the case of textual documents
or visual words in the case of images. The Dirichlet distribution, closely related to the
probabilistic behaviour of the multinomial distribution, is a conjugate prior for the multi-
nomial distribution when a Bayes perspective is of interest. Ref. [8] highlights how the
use of prior distributions in a Bayesian framework makes it possible to work with very
limited data sets. Ref. [9] underscores the superior performance by using the hierarchical
approach which introduces the construction of the statistical model. Some meaningful
studies include [1,4,6,10]. Ref. [11] also showed how using different Dirichlet distributions
for the bivariate case gives one the opportunity to include prior information and expert
opinion to obtain more realistic results in certain situations. Ref. [4] also experimented
with the estimation of entropy and this triggered more exploration with alternative priors.
Experimentation on diverse data sets might necessitate parameter-rich priors; therefore,
this study proposes these alternative Dirichlet priors to address this potential challenge.

The paper illustrates how a Bayesian approach is applied in a multinomial-Dirichlet
family setup, which allows us to obtain a posterior distribution from where explicit ex-
pressions for the Tsallis entropy can be derived, by particularly focussing on the Product
moment for the power sum functional, and assuming squared error loss. The first of two
main contributions of this paper is the addition of flexible priors from a Dirichlet family,
utilising them within an information-theoretical world, which also allows for positive
correlation in addition to the usual negative correlation characteristic. The second shows
that using elegant constructs of the complete product moments of the posteriors, gives one
the comparative advantage of obtaining explicit estimators for entropy under these Dirich-
let priors. Ref. [8] echos how the computation on moments accelerates the estimation
of entropy.

The paper is outlined as follows. In Section 2, the essential components that are used
in the paper are outlined. In Section 3, alternative Dirichlet priors will be introduced
and studied, as candidates for the Bayesian analysis of entropy. In Section 4, analytical
expressions for the entropy expressions under consideration will be derived and studied.
Section 5 contains conclusions and final thoughts.

2. Essential Components

The countably discrete model under consideration in this paper is given by the well-
motivated multinomial distribution. A discrete random variable X = (X1, . . . , XK) follows
the multinomial distribution of order K (i.e., with K distinct classes of interest) with
parameters p = (p1, p2, . . . , pK) and n > 0 if its probability mass function (pmf) is given by

f (x|p) = n!

∏K
i=1 xi!(n−∑K

i=1 xi)

K

∏
i=1

pxi
i (1−

K

∑
i=1

pi)
n−∑K

i=1 xi . (1)

The Dirichlet distribution (of type 1, see [12]) of order K ≥ 2 and parameters
Π = (π1, π2, . . . , πK+1) for πi > 0, i = 1, . . . , k + 1, has a probability density function
(pdf) with respect to the Lebesgue measure on the Euclidean space RK given by

h(p; Π) =
∏k+1

i=1 Γ(πi)

Γ(∑k+1
i=1 πi)

K+1

∏
i=1

pπi−1
i (2)

on the K dimensional simplex, defined by
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p1, p2, . . . , pK > 0

p1 + p2 + · · ·+ pK < 1

pK+1 = 1− p1 − · · · − pK,

and where Γ(·) denotes the usual gamma function (the space and constraints of this K
dimensional simplex is denoted by A).

To derive a Bayesian engine, we need the likelihood function f (x|p) in addition to
a suitable prior distribution h(p). The fundamental relationship between the likelihood
function and the prior distribution to form the posterior distribution f (p|x) is given by

f (p|x) = f (x|p)h(p)∫
f (x|p)h(p)dp

.

The most popular form of entropy is that of Shannon:

H(P) =
K+1

∑
i=1
−pi ln pi.

Various generalised cases of this entropy exist, which relies on the power sum:

Fα(P) =
K+1

∑
i=1

pα
i (3)

where α > 0. The power sum functional occurs in various operational problems ([4]).
Under the assumption of squared error loss within Bayes estimation, the estimates of both
these quantities is given by their expected values:

E(H(P)) = E(
K+1

∑
i=1
−pi ln pi)

and

F̂α(P) = E(Fα(P)) = E(
K+1

∑
i=1

pα
i ) =

K+1

∑
i=1

E(pα
i ). (4)

Thus, it is of value to consider the expected value of pα
i for all values of i.

Since there are cases, such as the non-extensive system like alignment processing,
namely registration, which has complex behaviours associated with the phenomena of
radar-imaging systems [13])which cannot be fully explained by Shannon entropy, other gen-
eralized forms were designed. The Tsallis entropy considered in this paper, which is a
popular generalised entropy, tends to Shannon entropy as α tends to 1 [14] and is given by

T =
∑K+1

i=1 pα
i − 1

1− α
; α ≥ 0, α 6= 1. (5)

The estimate of this generalisation can be written in terms of the estimate of the
power sum:

E(T) = E

(
∑K+1

j=1 pα
j − 1

1− α

)
=

F̂α(p)− 1
1− α

.

Since the power sum is easier to estimate than the Shannon entropy, the power sum
is used in our case. We consider the estimate as the expectation under the posterior
distribution, thus under squared-error loss.

3. Alternative Dirichlet Priors

In this section, two previously unconsidered Dirichlet priors, namely the Dirichlet
generator prior and the noncentral Dirichlet prior will be proposed. Positive correlation
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can be observed for special cases of the Dirichlet generator prior, which is a benefit of this
generator form. These new contributions add to the field of generative models for count
data and have not been previously considered for entropy.

3.1. Dirichlet Generator Prior

In this section, Dirichlet generator distributions are proposed as alternative candidates.
From this form, numerous flexible candidates can be “generated”.

Definition 1. Suppose p is Dirichlet-generator distributed. Then, its pdf is given by

h(p1, . . . , pK; Π) = Cpπ1−1
1 pπ2−1

2 . . . pπK−1
K (1−

K

∑
i=1

pi)
πK+1−1g(θ

K

∑
i=1

pi) (6)

with C a normalising constant such that

C−1 =
∫
· · ·

∫
A

pπ1−1
1 pπ2−1

2 . . . pπK−1
K (1−

K

∑
i=1

pi)
πK+1−1g(θ

K

∑
i=1

pi)dp. (7)

The vector p ∈ A is thus a Dirichlet generator variate with parameters Π = (π1, . . . , πK+1),
θ ∈ R, and whichever additional parameters g(·) imposed, which ensures that the pdf h(·) is
non-negative. The following conditions also apply:

1. g(·) is a Borel-measurable function;
2. g(·) admits a Taylor series expansion;
3. g(0) = 1.

The usual Dirichlet distribution with pdf (2) is thus a special case of (6) when θ = 0.

For illustration of the implementation of the Dirichlet generator prior, we focus on

g(θ
K

∑
i=1

pi) = rFq(a1, . . . , ar; b1, . . . , bq; θ
K

∑
i=1

pi)

=
∞

∑
n=0

(a1)n · · · (ar)n

(b1)n · · · (bq)n

(θ ∑K
i=1 pi)

n

n!

where pFq(·) denotes the generalised hypergeometric function (see [15]) and (a)k =
Γ(a+k)

Γ(a)
is the Pochhammer function.

The prior distribution (6) will then take on the following form with pdf

h(p1, . . . , pk; Π) = C−1
∗

Γ
(

∑k+1
j=1 πj

)
∏k+1

j=1 Γ(πj)
pπ1−1

1 . . . , pπk−1
k

(
1−

k

∑
j=1

pj

)πk+1−1

× rFq

(
a1, . . . , ar, b1, . . . , bq; θ

k

∑
j=1

pj

)
(8)

where C∗ is equal to

r+1Fq+1

(
a1, . . . , ar,

k

∑
j=1

πj; b1, . . . , bq,
k+1

∑
j=1

πj; θ

)
. (9)

In this paper, three hypergeometric functions are considered (0F0; 0F1 and 1F1),
since these are commonly considered functions representing exponential, binomial, and the
confluent hypergeometric functions. For illustrative investigation, bivariate observations
from the corresponding distributions were simulated using Algorithm 1 and the associated
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pdfs are overlaid and presented in Figures 1–3. The data were simulated from (8) using the
following steps of the Acceptance/Rejection method:

Algorithm 1 Acceptance/Rejection method

1. Define yi ∈ (0, 1) of size n for i = 1, 2;
2. Calculate the pdf of the Dirichlet (2) h(y1, y2) for y1 + y2 < 1;
3. Obtain m = max(h(y1, y2));
4. Simulate pi ∼ Uni f (0, 1) of size n for i = 1, 2;
5. Calculate the pdf of the Dirichlet generator (8) h(p1, p2) for p1 + p2 < 1;
6. Simulate z ∼ Uni f (0, 1) of size n;

7. If h(p1,p2)
m > z, then keep (p1, p2), else return to Step 4;

8. Repeat steps 4–7 k times.

Figure 1. Dirichlet generator priors (8) for θ = 0.1 with three different sets of Π (described above
Figure 1), n = 50.
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Figures 1 and 2 illustrate the three chosen hypergeometric functions for two choices
of θ and for three different sets of Πs if K = 2 with a1 = 4 and b1 = 5 for 0F1 and 1F1,
respectively. This firstly illustrates the difference between the different hypergeometric
candidates as well as the effect a change in π1 has on these three functions (note that a
symmetric observation would be made for π2). The difference between Figures 1 and 2
shows the effect that θ has on these different combinations with Figure 1 having a very
small (almost negligible) θ, while Figure 2 increases the value of θ. An increase in π1
results in a more highly dense concentration of the pdf for corresponding values of p1
and p2. This is observed for all three considered hypergeometric candidates, as seen in
Figures 1 and 2, also for an increase in θ. For Figure 3, a single set of Πs were selected with
θ = 0.1 to showcase the effect that the parameters a and b of the hypergeometric function
have on the 1F0 and 1F1 functions. As a increases, an increased mass is observed closer to
the restriction p1 + p2 < 1 while an increase in b results in a lower pdf volume.

Figure 2. Dirichlet generator priors (8) for θ = 0.9 with three different sets of Π, n = 50.
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Figure 3. Dirichlet generator priors (8) for θ = 0.1 with a single set Π, n = 50.

Next, the posterior distribution is derived, assuming the Dirichlet generator prior (8)
together with a multinomial likelihood (1).

Theorem 1. Suppose the likelihood function is given by (1) and the prior distribution for p is given
by (8). Then, the pdf of the posterior distribution is given by

f (p|x) ∝ pπ1+x1−1
1 pπ2+x2−1

2 . . . pπK+xK−1
K (1−

K

∑
i=1

pi)
πK+1+xK−1−1g(θ

K

∑
i=1

pi) (10)

which is identifiable as a Dirichlet generator distribution with parameters (π1 + x1, . . . , πK +
xK, πK+1 + xK+1).

The complete product moment of the Dirichlet generator posterior (10) is of interest
for the power sum (4), thus we are interested in E(pk1

1 pk2
2 . . . pkk

k pkk+1
k+1 ).

Theorem 2. Suppose that p|x follows a Dirichlet generator posterior distribution with pdf given
in (10). Then, the complete product moment is given by



Mathematics 2021, 9, 1493 8 of 17

E(pk1
1 pk2

2 . . . pkk
k pkk+1

k+1 )

=
(π1 + x1)k1(π2 + x2)k2 . . . (πk+1 + xk+1)kk+1

(π1 + x1 + · · ·+ πk+1 + xk+1)k1+···+kk+1

× r+1Fq+1(a1, . . . , ar, ∑k
i=1(πi + xi + ki); b1, . . . , bq, ∑k+1

i=1 (πi + xi + ki); θ)

r+1Fq+1(a1, . . . , ar, ∑k
i=1(πi + xi); b1, . . . , bq, ∑k+1

i=1 (πi + xi); θ)
. (11)

Special cases of the above expression include setting kk+1 = 0 to obtain an expression for the
usual product moment of the Dirichlet generator distribution under investigation in this paper.

Proof. See Appendix A for the proof.

The product moment can then be used to investigate the correlation for the examples
as illustrated in this section. Figure 4 displays the correlation for a range of θ values
using (8) and the special cases. It is important to note the positive correlation obtained
by the introduction of g(·) = rFq(·), which is a major benefit of using these alternative
Dirichlet priors.

Figure 4. Correlation for different pFq candidates. Set 1—blue (π1 = 0.5; π2 = 0.5; π3 = 5); Set 2—orange (π1 = 2;
π2 = 2; π3 = 0.1); Set 3—purple (π1 = 5; π2 = 5; π3 = 10) with a = 100 and b = 2.
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3.2. Noncentral Dirichlet Prior

In this section, a noncentral Dirichlet distribution will be constructed via the use of
Poisson weights. Ref. [16] explored the use of a compounding method as a distributional
building tool to obtain bivariate noncentral distributions and showed how this form of the
distribution isolated the noncentrality parameter by retaining them in a Poisson probability
form and hence introducing mathematical convenience. Ref. [17] extended on this work
by introducing new bivariate gamma distributions emanating from a scale mixture of
normal class.

Theorem 3. Suppose p is Dirichlet distributed with pdf given by (2). Then, a noncentral Dirichlet
distribution can be constructed in the following manner:

h(p; Π, Λ) (12)

=
∞

∑
j1=1
· · ·

∞

∑
jK+1=1

exp( λ1
2 )( λ1

2 )j1

j1!
. . .

exp( λK
2 )( λK

2 )jK

jK !
exp( λK+1

2 )( λK+1
2 )jK+1

jK+1!
h(p; Π|j1, . . . , jK+1)

=
∞

∑
j1=1
· · ·

∞

∑
jK+1=1

exp( λ1
2 )( λ1

2 )j1

j1!
. . .

exp( λK
2 )( λK

2 )jK

jK !
exp( λK+1

2 )( λK+1
2 )jK+1

jK+1!

× Γ(π1 + j1 + · · ·+ πK + jK + πK+1 + jK+1)

Γ(π1 + j1)Γ(πK + jK)Γ(πK+1 + jK+1)
pπ1+j1−1

1 . . . pπK+jK−1
K (1−

K

∑
i=1

pi)
πK+1+jK+1−1

where h(p|j1, . . . , jK+1) denotes the conditional (central) Dirichlet distribution (see (2)) with
parameters Π∗ = (π1 + j1, . . . , πK+1 + jK+1), and Λ denotes the vector of noncentral parameters
(λ1, . . . , λK, λK+1) with λi > 0 ∀ i. After simplification (12) reflects

h(p; Π, Λ)

= h(p; Π) exp(−
K+1

∑
i=1

λi
2
)

× ∑
φ

(π1 + · · ·+ πK+1)j1+···+jK+1

(π1)j1 . . . (πK+1)jK+1 j1! . . . jK+1!

(
λ1

2
p1

)j1
. . .
(

λK
2

pK

)jK
(

λK+1

2
(1−

K

∑
i=1

pi)

)jK+1

(13)

where h(p; Π) denotes the (unconditional) Dirichlet distribution (see (2)) with parameter Π and
where ∑φ = ∑∞

j1=1 · · ·∑∞
jK+1=1 .

Remark 1. The pdf in equation (13) reflects a parametrization of the noncentral Dirichlet distribu-
tion of [12] and can be represented via the confluent hypergeometric function of several variables:

f (p; Λ)

= h(p; Π) exp(−
K+1

∑
i=1

λi
2
)

×Ψ
(K+1)
2 (

K+1

∑
i=1

πi; π1, · · · , πK+1;
λ1

2
p1, · · · ,

λK
2

pK,
λK+1

2
(1−

K

∑
i=1

pi))

where

Ψ
(K+1)
2 (

K+1

∑
i=1

πi; π1, · · · , πK+1;
λ1

2
p1, · · · ,

λK
2

pK,
λK+1

2
(1−

K

∑
i=1

pi))

= ∑
φ

(π1 + · · ·+ πK+1)j1+···+jK+1

(π1)j1 . . . (πK+1)jK+1 j1! . . . jK+1!
(

λ1

2
p1)

j1 . . . (
λK
2

pK)
jK (

λK+1

2
(1−

K

∑
i=1

pi))
jK+1 .
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In particular, when λ1 = λ2 = · · · = λK = λK+1 = 0, see that

h(p; Π) exp(0)Ψ(K+1)
2 (

K+1

∑
i=1

πi; π1, · · · , πK+1; 0, · · · , 0, 0)

= h(p; Π)

which illustrates that the model in (12) reduces to the usual (central) Dirichlet model in (2) when
the noncentrality parameters are equal to 0. The model in (12) is thus the multivariate analogue
of the doubly noncentral beta distribution (see [18]). In the case when Ψ

(K)
2 (∑K

i=1 πi; π1, · · · ,
πK; λ1

2 p1, · · · , λK
2 pK) is considered in (12), this would represent the multivariate analogue of the

singly noncentral beta distribution of [18].

Bivariate observations from the corresponding distributions were simulated using
Algorithm 1 and the associated pdfs are overlaid and presented in in Figure 5 for different
values of λ1 and three combinations of Πs. These results showcase the effect that λ1 has on
these three different functions. Figure 5 clearly demonstrates the movement of the centroid
of the contour plot.

Figure 5. Noncentral Dirichlet Priors (12) for different λ1s with λ2 = 0.8 and λ3 = 0.1 , n = 50.
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Next, the posterior distribution is derived, assuming the noncentral Dirichlet prior
(12) together with a multinomial likelihood (1).

Theorem 4. Suppose the likelihood function is given by (1) and the prior distribution for p is given
by (12). Then, the posterior distribution has pdf

f (p|x) ∝ ∑
φ

(π1 + · · ·+ πk+1)j1+···+jk+1

(π1)j1 . . . (πk+1)jk+1
j1! . . . jk+1!

(
λ1

2
p1

)j1
. . .
(

λk+1
2

pK+1

)jk+1

×

Γ
(

∑k+1
j=1 πj + xj

)
∏K+1

j=1 Γ(πj + xj)

pπ1+xi−1
1 . . . pπk+1+xk+1−1

k+1 (14)

which can be identified as a noncentral Dirichlet distribution with parameters (π1 + x1, . . . , πK +
xK, πK+1 + xK+1) and Λ.

Remark 2. See that (14) can be represented using the confluent hypergeometric function from
Remark 1 as

f (p|x; Λ)

=
Ψ
(K+1)
2 (∑K+1

i=1 πi; π1, · · · , πK+1; λ1
2 p1, · · · , λK

2 pK, λK+1
2 (1−∑K

i=1 pi))

Ψ
(K+1)
2 (∑K+1

i=1 πi; π1, · · · , πK+1; λ1
2 , · · · , λK

2 , λK+1
2 )

∏K+1
j=1 Γ(πj+xj+jj)

Γ
(

∑k+1
j=1 πj+xj+jj

)
× pπ1+xi−1

1 . . . pπk+1+xk+1−1
k+1 .

The complete product moment of the noncentral Dirichlet posterior is of interest for
the power sum, thus we are interested in E(pk1

1 pk2
2 . . . pkk

k pkk+1
k+1 ).

Theorem 5. Suppose that p|x follows a noncentral Dirichlet distribution with pdf given in (14).
Then, the complete product moment is given by

E(pk1
1 pk2

2 . . . pkk
k pkk+1

k+1 )

=
∑φ

(π1+···+πK+1)j1+···+jK+1
(π1)j1

...(πK+1)jK+1
j1!...jK+1! (

λ1
2 )j1 . . . ( λK+1

2 )jK+1 [
∏K+1

i=1 Γ(πi+xi+ji+ki)

Γ(∑K+1
i=1 (πi+xi+ji+ki)

]

∑φ∗
(π1+···+πK+1)j1+···+jK+1

(π1)j1
...(πK+1)jK+1

j1!...jK+1! (
λ1
2 )j1 . . . ( λK+1

2 )jK+1 [
∏K+1

i=1 Γ(πi+xi+ji)
Γ(∑K+1

i=1 (πi+xi+ji)
]

. (15)

Proof. See Appendix B for the proof.

4. Entropy Estimates

In this section, the Bayesian estimators (16) and (17) based on the posterior distribu-
tions (10) and (14) are derived for the power sum (3).

4.1. Dirichlet Generator Prior

Assuming the Dirichlet generator prior, the posterior distribution is given by (10).
Using the complete product moments derived in (11), the Bayesian estimator for the power
sum (3) can be derived by setting ki = α with i = 1, . . . , k + 1 and k 6=i = 0.
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Theorem 6. Using (11), the Bayesian estimator for the power sum entropy under the Dirichlet
generator posterior (10) is given by:

F̂α(p)

=
K+1

∑
j∗=1

Γ(πj∗ + xj∗ + α)∏K+1
j 6=j∗ Γ(πj + xj)Γ(∑K+1

j=1 πj + xj)

Γ(∑K+1
j=1 πj + xj + α)∏K+1

j=1 (πj + xj)

×
r+1Fq+1

(
a1, . . . , ar, α +

K
∑

j=1
πj + xj, b1, . . . , bq, α +

K+1
∑

j=1
πj + xj; θ

)

r+1Fq+1

(
a1, . . . , ar,

K
∑

j=1
πj + xj, b1, . . . , bq,

K+1
∑

j=1
πj + xj; θ

)

=
K+1

∑
j∗=1



Γ

(
K+1
∑

j=1
πj+xj

)(
K+1
∏
j=1

Γ(πj+xj)

)−1

(
Γ(πj∗+xj∗+α)

K+1
∏

j 6=j∗
Γ(πj+xj)

)−1

Γ

(
α+

K+1
∑

j=1
πj+xj

)
 r+1Fq+1

(
a1,...,ar ,α+

K
∑

j=1
πj+xj ,b1,...,bq ,α+

K+1
∑

j=1
πj+xj ;θ

)

r+1Fq+1

(
a1,...,ar ,

K
∑

j=1
πj+xj ,b1,...,bq ,

K+1
∑

j=1
πj+xj ;θ

)

−1


. (16)

Using the estimated power sum entropy, we can calculate and investigate the be-
haviour of Tsallis entropy for various parameter scenarios as illustrated in Figure 6 for the
bivariate case K = 2.

Figure 6. Dirichlet generator entropy (16)—Varying θ: Set A—blue (π1 = 2; π2 = 2; π3 = 2) Set B—orange (π1 = 1;
π2 = 2; π3 = 2) Set C—purple (π1 = 10; π2 = 2; π3 = 2).
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4.2. Noncentral Dirichlet Prior

Assuming the noncentral Dirichlet prior and the posterior distribution is given by (14).
Using the complete product moments derived in (15), the Bayesian estimator for the power
sum entropy (3) can be derived by setting ki = α with i = 1, . . . , K + 1 and k 6=i = 0.

Theorem 7. By using (15), the Bayesian estimator for the power sum (4) under the noncentral
Dirichlet posterior (14) is given by:

F̂α(p) (17)

=
K+1

∑
j∗=1



∑
φ

(π1+···+πK+πK+1)j1+..+jK+1
(π1)j1

...(πK+1)jK+1
j1 !...jK+1 !

(
λ1
2

)j1
. . .
(

λK+1
2

)jK+1
Γ(πj∗+xj∗+jj∗+α)

K+1
∏

j 6=j∗
Γ(πj+xj+jj)

Γ

(
α+

K+1
∑

j=1
πj+xj+jj

)

∑
φ∗

(π1+···+πK+πK+1)j1+···+jK+1
(π1)j1

...(πK+1)jK+1
j1 !...jK+1 !

(
λ1
2

)j1
. . .
(

λK+1
2

)jK+1

K+1
∏
j=1

Γ(πj+xj+jj)

Γ

(
K+1
∑

j=1
πj+xj+jj

)


.

Using the estimated power sum entropy, we can calculate the entropies for different
parameters of interests as illustrated in Figure 7 for the bivariate case.

Figure 7. Noncentral Dirichlet Entropy—Varying λ1: Set A—blue (π1 = 2; π2 = 2; π3 = 2) Set B—orange (π1 = 1;
π2 = 2; π3 = 2) Set C—purple (π1 = 10; π2 = 2; π3 = 2).

4.3. Numerical Experiments of Entropy

The following steps illustrate the empirical behaviour of the Tsallis entropy under
consideration for the alternative priors under consideration (Algorithm 2).
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Algorithm 2 Numerical Experiments of Entropy

1. Simulate p1 and p2 from the posterior distribution given by (10) and (14) using the
Accept/Rejection method as described earlier for n = 50;

2. Calculate p3 = 1− p1 − p2;
3. Calculate the pα

i values for all the samples;
4. Determine ∑3

i=1 pα
i for each calculation;

5. Calculate the median for the sample of quantities in Step 4 (Note that ∑3
i=1 pα

i might
not be symmetric, thus the median is used.)

6. The power sum (16) and (17) is used to calculate the Tsallis entropy (5);
7. Steps 1 to 5 are repeated for different parameters and plotted against the analytical

entropy in order to illustrate the accuracy of the derived estimates.

Figures 8 and 9 provides validation of the accuracy of the obtained theoretical ex-
pression and contribution for the Dirichlet generator 0F0 and noncentral Dirichlet cases
with x1 = 1, x2 = 2 and x3 = 10. From these two figures, it can be seen that the Dirichlet
generator prior resulted in empirical results that closely match the theoretical results, while
the noncentral Dirichlet shows slight deviations. It is observed that as π1 increases, the
Tsallis entropy increases (indicating more uncertainly), while as π1 decreases the Tsallis
entropy also decreases (indicating less uncertainty). When considering the location of the
density, the changing of π1 leads to densities which tend to the margin of p2 or towards
a specific point along the p1 + p2 = 1 line. This shows that as the concentration of the
density moves toward a point along the p1 + p2 = 1 line, the uncertainty increases and
will decrease as the concentration moves towards the small values of p1.

Figure 8. Dirichlet generator 0F0—empirical vs calculated Tsallis entropy: for θ = 0.5 and Set A—blue (π1 = 2; π2 = 2;
π3 = 2) Set B—orange (π1 = 1; π2 = 2; π3 = 2) Set C—purple (π1 = 10; π2 = 2; π3 = 2).
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Figure 9. Noncentral Dirichlet—empirical vs calculated Tsallis entropy: for λ1 = 0.1; λ2 = 0.8 and λ3 = 0.1 with Set
A—blue (π1 = 2; π2 = 2; π3 = 2) Set B—orange (π1 = 1; π2 = 2; π3 = 2) Set C—purple (π1 = 10; π2 = 2; π3 = 2).

5. Conclusions

This study focussed on the power sum functional and its estimation as a key tool
to model a generalised entropy form, namely Tsallis entropy, via a Bayesian approach.
In particular, previous unconsidered Dirichlet priors have been proposed and studied,
offering the practitioner more pliable options given experimental data. Specific choices of
the proposed Dirichlet family allow for positive correlation in addition to the usual negative
correlation characteristic. An example illustrated theoretical results accurately described
empirical entropy. Future work could include further investigations into generalised
functionals and their modeling in this information-theoretic environment.
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Abbreviations
The following abbreviations are used in this manuscript:

MLE Maximum likelihood estimation
pmf Probability mass function
pdf Probability density function

Appendix A. Proof of Complete Product Moments of Dirichlet Generator (11)

Proof. The definition of the complete product moment of a (K + 1) variate variable Y with
pdf f (y) is given by

E

(
k+1

∏
i=1

Yxi
i

)
=
∫
· · ·

∫ k+1

∏
i=1

yxi
i f (y)dy1 . . . dyk+1

and since we know that the posterior distribution are given by Dirichlet generator distribu-
tions with parameters (π1 + x1; . . . ; πk+1 + xk+1) we can show that:

E(pk1
1 . . . pk+1

k+1) =
∫
· · ·

∫
A

kk+1

∏
i=k1

pki
i f (p)dp1 . . . dpk+1

= C−1 ∏k+1
i=1 Γ(πi + xi + ki)

Γ(∑k+1
i=1 πi + xi + ki)

Γ(π1 + x1 + · · ·+ pk+1 + xk+1)

Γ(π1 + x1) . . . Γ(πk+1 + xk+1)
C∗

∫
· · ·

∫
C−1
∗ pπ1+x1+k1

1 . . . pπk+1+xk+1+kk+1
k+1

Γ(∑k+1
i=1 πi + xi + ki)

∏k+1
i=1 Γ(πi + xi + ki)

× rFq

(
a1, . . . , ar, b1, . . . , bq; θ

(
k

∑
i=1

pi

))
dp1 . . . dpk+1

where C and C∗ corresponds to the normalising constants as in (7) and (9), respectively
with parameters with parameters (π1 + x1; . . . ; πk+1 + xk+1) and (π1 + x1 + k1; . . . ; πk+1 +
xk+1 + kk+1). Since the integral becomes the Dirichlet generator pdf (6) with parameters
(π1 + x1 + k1, . . . , πk+1 + xk+1 + kk+1) this will become 1 and the complete product moment
will simplify to

E(pk1
1 . . . pk+1

k+1) =
∏k+1

i=1 (πi + xi)ki

(∑k+1
i=1 πi + xi)k1+···+kk+1

× r+1Fq+1(a1, . . . , ar, ∑k
i=1 πi + xi + ki, b1, . . . , bq, ∑k+1

i=1 πi + xi + ki; θ)

r+1Fq+1(a1, . . . , ar, ∑k
i=1 πi + xi, b1, . . . , bq, ∑k+1

i=1 πi + xi; θ)
.

Appendix B. Proof of Complete Product Moments of Noncentral Dirichlet (15)

Proof. The definition of the complete product moment of a (K + 1) variate variable Y with
pdf f (y) is given by

E

(
k+1

∏
i=1

Yxi
i

)
=
∫
· · ·

∫ k+1

∏
i=1

yxi
i f (y)dy1 . . . dyk+1

and since we know that the posterior distribution are given by a noncentral Dirichlet pdf
(12) with parameters (π1 + x1; . . . ; πk+1 + xk+1) we can show that
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E(pk1
1 . . . pk+1

k+1) =
∫
· · ·

∫
A

kk+1

∏
i=k1

pki
i f (p)dp1 . . . dpk+1

=
∑φ

(π1+···+πk+1)j1+···+jk+1
(π1)j1

...(πk+1)jk+1
j1!...jk+1!

(
λ1
2

)j1
. . .
(

λk+1
2

)jk+1
[

∏K+1
i=1 Γ(πi+xi+ji+ki)

Γ(∑K+1
i=1 (πi+xi+ji+ki)

]

∑φ∗
(π1+···+πk+1)j1+···+jk+1

(π1)j1
...(πk+1)jk+1

j1!...jk+1!

(
λ1
2

)j1
. . .
(

λk+1
2

)jk+1 ∏K+1
j=1 Γ(xj+xj+jj)

Γ
(

∑k+1
j=1 πj+xj+jj

)
×

∫
· · ·

∫
p

π1+xi+jj+k1−1
1 . . . pπk+1+xk+1+jk+1+kk+2−1

k+1

×
Γ(∑k+1

i=1 πi + xi + ji + ki)

∏k+1
i=1 Γ(πi + xi + ji + ki)

dp1 . . . dpk+1.

Since the integral becomes the noncentral Dirichlet pdf with parameters (π1 + x1 +
k1 + j1, . . . , πk+1 + xk+1 + kk+1 + jk+1) this will become 1 and the complete product moment
will simplify to

E(pk1
1 . . . pk+1

k+1) =
∑φ

(π1+···+πK+1)j1+···+jK+1
(π1)j1

...(πK+1)jK+1
j1!...jK+1! (

λ1
2 )j1 . . . ( λK+1

2 )jK+1 [
∏K+1

i=1 Γ(πi+xi+ji+ki)

Γ(∑K+1
i=1 (πi+xi+ji+ki)

]

∑φ∗
(π1+···+πK+1)j1+···+jK+1

(π1)j1
...(πK+1)jK+1

j1!...jK+1! (
λ1
2 )j1 . . . ( λK+1

2 )jK+1 [
∏K+1

i=1 Γ(πi+xi+ji)
Γ(∑K+1

i=1 (πi+xi+ji)
]

.
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