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Abstract: Games of inspection and corruption are well developed in the game-theoretic literature.
However, there are only a few publications that approach these problems from the evolutionary
point of view. In previous papers of this author, a generalization of the replicator dynamics of
the evolutionary game theory was suggested for inspection modeling, namely the pressure and
resistance framework, where a large pool of small players plays against a distinguished major player
and evolves according to certain myopic rules. In this paper, we develop this approach further in a
setting of the two-level hierarchy, where a local inspector can be corrupted and is further controlled
by the higher authority (thus combining the modeling of inspection and corruption in a unifying
setting). Mathematical novelty arising in this investigation involves the analysis of the generalized
replicator dynamics (or kinetic equation) with switching, which occurs on the “efficient frontier of
corruption”. We try to avoid parameters that are difficult to observe or measure, leading to some
clear practical consequences. We prove a result that can be called the “principle of quadratic fines”:
We show that if the fine for violations (both for criminal businesses and corrupted inspectors) is
proportional to the level of violations, the stable rest points of the dynamics support the maximal
possible level of both corruption and violation. The situation changes if a convex fine is introduced.
In particular, starting from the quadratic growth of the fine function, one can effectively control the
level of violations. Concrete settings that we have in mind are illegal logging, the sales of products
with substandard quality, and tax evasion.

Keywords: inspection; corruption; illegal logging; tax evasion; substandard quality; evolutionary
games; pressure and resistance games; dynamic law of large numbers; stable equilibria; approximate
Nash equilibria; principle of quadratic fines; efficient frontier of corruption

1. Introduction

Games of inspection and corruption are well developed in the game-theoretic lit-
erature; see, e.g., monographs [1–4] and reviews [5,6]. However, there are only a few
publications that approach these problems from the evolutionary point of view. Paper [7]
offers various insights, including some simple evolutionary models with evolutionarily
stable strategies applied to the setting of corruption games. Another evolutionary approach
to the games of corruption was suggested in [8], specifically for the setting of illegal logging,
where, in order to fit to the classical evolutionary setting of pairwise games, it was assumed
that arbitrary pairs of players can hire inspectors who can control their pairwise agreement
(but can be corrupted).

In [9,10], a generalized evolutionary approach to various classes of models was de-
veloped, including the pressure and resistance framework, where a large pool of small
players plays against a distinguished major player and evolves according to certain myopic
rules. This approach led to the generalized replicator dynamics (RD) or, in a more physical
language, kinetic equations (see details in the next Section), describing the dynamic law of
large numbers for games of N players as N → ∞. The remaining points of these equations
were shown to represent approximate Nash equilibria for games with a finite N (the games
that we are actually interested in).
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In this paper, we develop this approach further in a setting of the two-level hierarchy,
where a local inspector can be corrupted and is further controlled by the higher authority
(thus combining the modeling of inspection and corruption in a unifying setting). Applying
the second level of control goes one step in the direction indicated by the famous question,
“Who will guard the guardians?” addressed in the Nobel Prize lecture of L. Hurwicz [11].

One of the mathematical novelties arising in the present investigation involves the
analysis of the generalized replicator dynamics (or kinetic equation) with switching, which
occurs on the “efficient frontier of corruption”. Some general aspects of this development
were initiated in [2], but there, only trivial examples of such switching were looked upon
(like the generalized RD for the minority game).

In this paper, we specifically try to avoid complicated parameters that are difficult to
observe or measure, in order to derive some clear practical consequences. In particular, we
prove a result that can be called the “principle of quadratic fines”, which concerns the major
tool of the mechanism design of the controlling authority, the fine function that specifies
fines due from a detected violator depending on the level of violation. We show that if the
fine for violations (both for criminal businesses and corrupted inspectors) is proportional
to the level of violations (which is seemingly a common practice in many regulations), the
stable rest points of the dynamics support the maximal possible level of both corruption
and violation. The situation changes drastically if a convex fine is introduced. In particular,
starting from the quadratic growth of the fine function, one can effectively control the
level of violations. The convex fines bear analogy with progressive taxation. Furthermore,
in line with the arguments of [7], our analysis suggests that it is difficult to expect the
complete elimination of corruption, since full compliance with the regulations can hardly
be achieved as a stable equilibrium. However, keeping the size of violations to some
controlled values can be achieved well by a regulatory mechanism (without betaking
to any draconian methods). Another conclusion arises from the possibility of having
several distinct stable equilibria, meaning practically that with the identical regulations,
the equilibrium outcomes can be quite different depending on the initial conditions (say,
different social norms), and therefore copying the practices of successful peers may not
necessarily lead to a success.

The major concrete setting that we have in mind represents illegal logging. An ex-
tensive discussion of the models for illegal logging can be found in [8], starting from the
observation that “corruption is one of the most serious obstacles for ecosystem manage-
ment and biodiversity conservation”. Illegal harvesting of forest trees has devastating
consequences in many regions on Earth, from tropical rain forests of Brasil to conifer boreal
forests of Russia. Legal logging is usually linked with additional investments that can
sustainably provide ecosystem services, say, by new planting. Another setting, well fitted
to our modeling, provides the selling of sub-standard-quality products making illegal
savings on production. Examples are numerous. For instance, one can mention selling
meat produced under non-hygienic condition in Europe (one can recall the scandal around
the 2 Sisters Food Group in the UK in 2018) or selling substandard quality ice creams in
some regions of Russia. Yet another group of examples comes from the problem of tax
evasion. This is one of the most standard examples in the literature on corruption and
inspection games. Here one analyzes the situations when, for a certain bribe, corrupted
inspectors can accept false reports on the tax return.

The further content of the paper is as follows. In the next section, we briefly describe
the generalized replicator dynamics arising in the framework of the pressure and resistance
games, which we exploit here. Section 3 describes our game theoretic model introducing,
in particular, the key notion of an efficient corruption frontier that effectively controls the
possible spread of corruption. In Section 4, we analyze the switching kinetic equations in
the case of a linear fine function, leading to our first major conclusion that linear fines are
not effective: they support an infinite growth of illegal gains from violation and corruption.
In Section 5, we derive our major conclusion: the principle of quadratic fines as explained
above. In Section 6, some possible further developments are briefly outlined.
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2. Preliminaries

We propose here a generalized evolutionary model that belongs to the general frame-
work of pressure and resistance games developed in [10] (with preliminary results in [12]
and additional details and examples in [2]). The pressure and resistance framework de-
scribes the game of many small players or agents, say N, with a principle (big player) I. It
is supposed that small players are identical in the sense that each one of them has the same
finite collection of strategies {1, · · · , d} and they choose their strategies according to the
same rule, such that the state of the group of small players is fully described by a collection
(n1, · · · , nd) of d non-negative integers with N = n1 + · · · + nd, where ni denotes the
number of players adhering to the strategy i. We denote xi = ni/N and x = (x1, · · · , xd).
It is assumed that the strategy of the big player I can be specified by a certain number b
taking values from a subset of real numbers. One defines the game ΓN of N + 1 players
by specifying certain payoffs B(x, b, N) to the principle I and Ri(x, b) to each small player
that adheres to the strategy i.

On the other hand, one can consider the process of myopic adjustment of the behavior
of small players as a Markov chain on the set of the states (n1, · · · , nd), where a clock is
attached to each pair of agents (i, j) with a κ/N-exponential random time (with some
constant κ > 0), so that when the bell rings, the player i with a lower payoff Ri(x, b) can
change to the better strategy j with a higher payoff Rj(x, b) with a probability proportional
to Rj(x, b)− Ri(x, b). It is proven in [10] that, if

b∗(x, N) = arg max B(x, b, N)

is well defined and b∗(x, N)→ b∗(x), as N → ∞, and the functions R(x, b), R(x, b∗(x)) are
Lipschitz continuous functions of their variables, then this Markov chain converges weakly,
as N → ∞, to the deterministic process described by the following kinetic Equation (or
generalized replicator dynamics RD):

ẋj = κxj[Rj(x, b∗(x))− R̄(x, b∗(x))] = xj[Rj(x, b∗(x))−∑
i

xiRi(x, b∗(x))]. (1)

It is also shown that, when functions Rj(x, b∗(x)) are just continuous (not necessarily
Lipschitz, so that evolution (1) may not be well defined), the fixed points of these dynamics
define approximate ε-Nash equilibria for the game ΓN . When functions Rj(x, b∗(x)) are
Lipschitz, then ε is of order 1/N. In [2], a generalization of this result was considered
for some cases of piecewise continuous Rj, where, in the points of discontinuity of Rj,
Equation (1) generalizes to the corresponding differential inclusions.

Of course kinetic, Equation (1) (as well as a classical RD) has a clear intuitive meaning
independent of any Markov approximation. Therefore, equations of this kind are often
used without explicit reference to the prelimiting Markov model, assuming (often tacitly)
that they make sense only for a large population. However, we stress that we are eventually
interested in the situation with a finite number of players and results from [10] provide
quantitative estimates for the deviations from the law of large number limits.

It is seen that Equation (1) are generalized versions of the standard replicator dynamics
(RD) of the evolutionary game theory (essentially, the latter are obtained when R(x, b∗(x))
are linear functions in x). Similar equations can be obtained when considering generalized
RD for games with a field; see, e.g., [13] for the latter.

Numerous examples of modeling under the pressure and resistance framework were
given in [2,10] including modeling of inspection, corruption, counterterrorism, cyber-
security, evolutionary coalition building, optimal allocations, and others.

For the general notions of game theory used throughout this paper, we refer to any
text on the basic theory of game, see, e.g., [14,15].
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3. Main Model

We assume that there is a large number M of firms or agents, which can violate the
rules, or places, where a violation can occur. Violation can occur on several levels, resulting
with the illegal (criminal) gain rj, j = 1, · · · , J, so that r1 < r2 < · · · < rJ . We also set r0 = 0,
which corresponds to the strategy “refrain from violation”. We denote by V the number
of violating agents, so that v = V/M is the fraction of violating agents. The state of the
system can be described by the vector (x0, x1, · · · , xJ), where xj is the fraction of agents
adhering to the level of illegal gain rj, so that

J

∑
j=0

xj = 1,
J

∑
j=1

xj = v.

The average level of violation is

r̄ = Er =
J

∑
j=1

rjxj.

Here and everywhere below, E denotes the expectation.
If detected, the illegal gain is supposed to be taken away from the agent, and the fine

f (rj) is to be paid. A local inspector I is given some budget that allows her to detect each
violation with some probability p. If an inspector is honest (strategy H), then a detected
violator is fined. If an inspector is corrupted (strategy C), she just demands for herself the
part αrj of the illegal gain.

Additionally, there is a central authority A, which eventually makes independent
inspections in local areas. These inspections are of smaller scale. For simplicity, we assume
that A makes one random check among the M firms, and hence A detects a violation with
probability v = V/M. Under the condition that A detects a violation, the probability for
any particular violator to be the one detected is about 1/V = ε/v, where ε is small of
order 1/M.

Remark 1. To get the limiting kinetic equation, we pass to the limit M→ ∞. However, eventually,
we are interested in the case of a finite M. Thus, with the aim of deriving from the limiting case the
results for finite M, we can keep ε fixed of order 1/M with a given M of interest.

If A detects an agent that violates the rules but was not detected by the local inspector
I, then the agent just pays the corresponding fine, but nothing changes with I. If, however,
A finds a violator that was previously detected by I and paid the bribe αrj to I in order
to avoid paying the full fine f (rj), then the detected agent pays the fine f (rj), but I is
also punished. Namely, in accordance with the most standard modeling of corruption
games (see [5,6]), I loses the illegal profit αrj and pays the fine F(αrj) to A. Moreover, I has
some standard salary w, but if detected in corruption, she gets a lower-level job with some
reserve salary w0.

Let us now write the corresponding table of payoffs for the game of inspector I with
an agent (possible violator) under two scenarios: A does not find a violation and otherwise.
Note that the strategies of an agent include Refrain R from a violation and violations Vj on
various levels rj. Under the first condition, which occurs with probability 1− v, we have
the table

Violator

I
Refrain R Violate Vj

H w, 0 w, (1− p)rj − p f (rj)

C w, 0 w + αpr̄, rj(1− pα)

because (1− p)rj + p(1− α)rj = rj(1− pα).
Under the second condition, which occurs with probability v, we have the table
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Violator

I
Refrain R Violate Vj

H w, 0 w,−(ε/v) f (rj) + (1− ε/v)[(1− p)rj − p f (rj)]

C w, 0 p(w0 − EF(αr)) + (1− p)w,−(ε/v) f (rj) + (1− ε/v)rj(1− pα)

Here, EF(αr) = α ∑J
j=1 xjrj is the expectation of the gain of an inspector arising from

the corrupted behavior.
Thus, the total overall table of payoffs is

R Violate Vj
H w, 0 w, (1− ε)[(1− p)rj − p f (rj)]− ε f (rj)

C w, 0 (1− v)(w + αpr̄) + v[p(w0 − EF(αr)) + (1− p)w], (1− ε)rj(1− pα)− ε f (rj)

The probability p can be modelled differently. It seems natural that the budget for
local crime detection must be increased when the overall crime level increases, so that one
can set

p = p0 + βv (2)

with some nonnegative constants p0 and β such that p0 + β ≤ 1, which we adopt from
now on.

Remark 2. The result below will not be changed drastically if one assumes a simpler condition that
p is a given constant, or more generally that p is an arbitrary increasing function of v.

The corruption is profitable for inspectors I if the average illegal surplus is positive.
As is seen from the table, this is the case whenever

(1− v)(w + αpr̄) + v[p(w0 − EF(αr)) + (1− p)w] ≥ w,

that is, inside the corruption domain (which does not depend on p)

Mc = {(x1, · · · , xJ) ∈ RJ
+ : αr̄(1− v)− vEF(αr) ≥ v(w− w0)}, (3)

which is bounded by the hyperplanes of the orthant RJ
+ and the effective corruption frontier

Γc = {(x1, · · · , xJ) ∈ RJ
+ : αr̄(1− v)− vEF(αr) = v(w− w0)} \ {0}. (4)

4. Linear Fines
4.1. Corruption Frontier

The fine functions F(r) and f (r) represent the mechanism design of the central au-
thority A. Let us start with the simplest linear functions

f (r) = f r, F(r) = Fr

with some constants f and F.
In this case the corruption domain becomes

Mc = {v ≥ 0 : αr̄(1− v− vF) ≥ v(w− w0)}. (5)

Thus, the condition of corruption simplifies to the condition

v(1 + F) ≤ 1− v(w− w0)

αr̄
. (6)

and the effective corruption frontier becomes the surface (a hyperboloid)

Γc = {(x1, · · · , xJ) ∈ RJ
+ : αr̄(1− v− vF)− v(w− w0) = 0} \ {0}, (7)



Mathematics 2021, 9, 1619 6 of 14

It is seen that for small v, the corruption is profitable, so the ideal point (no violation,
no corruption) cannot be a stable equilibrium.

4.2. Partial Kinetic Equations

We shall now analyze separately the behavior of kinetic equations in two domains of
interest: corruptive and non-corruptive inspector.

Recall that the state of the set M of agents is described by the vector (x0, x1, · · · , xJ),
specifying the fraction of agents using the strategies with violations r0 = 0, r1, · · · , rJ .

Inside the domain of corruption kinetic, Equation (1) takes the form

ẋj = κxj(rj − r̄)[(1− ε)(1− αp)− ε f ]

Since ε is negligibly small, we can write approximately 1 instead of 1− ε, so that the
dynamics simplifies to

ẋj = κxj(rj − r̄)(1− αp− ε f ) = κxj(rj − r̄)(1− αp0 − αβv− ε f ). (8)

Remark 3. Keeping 1 − ε would just make the following formulas more lengthy, not change
anything essential. Of course ε f is also small, but we keep it here, because ε f can be comparable
with other small terms like αp0.

For the analysis, the following three cases must be considered:

(i) 1− αp0 − ε f < 0,

(ii) 0 < 1− αp0 − ε f < αβ,

(iii) 1− αp0 − ε f > αβ.

(9)

The case (i) is included here for completeness of the argument. Effectively we are
interested in cases (ii), (iii). Since ε is of order 1/M, to make ε f of order 1 (and to obtain
(i)), an extremely high f should be chosen. These f will increase as M increases, and thus
they cannot be chosen as the universal rule.

Remark 4. We will not consider some (not interesting) additional details arising in the non-generic
cases of equalities in cases (9).

Dynamics (8) has, as usual, the pure strategy fixed points Xj (the corners of the
simplex of probability measures on J + 1 points) with xj = 1 and other coordinate zeros.
Additionally, in case (ii), it has the hyperplane of rest points with

v =
1− αp0 − ε f

αβ
. (10)

Around the point Xj, we can choose J independent coordinates xi with i 6= j and get

r̄ = rj + ∑
k 6=j

xk(rk − rj),

so that
ẋi = xi[ri − rj −∑

k 6=j
xk(rk − rj)](1− αp0 − αβvs− ε f ).

If j 6= 0, in the linear approximation of small xi, this equation turns into the equation

ẋi = xi[ri − rj](1− αp0 − αβ− ε f ). (11)
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In the case tht j = 0, the linear approximation becomes

ẋi = xiri(1− αp0 − ε f ). (12)

It is seen that whenever ri is neither maximum rJ nor zero, this is a saddle point, so
that for the search for stable rest points, these intermediate values can be always dismissed.

Lemma 1. In case (iii), the point XJ is the only stable rest point for (8). In case (ii), the points X0
and XJ are both repulsive, but the hyperplane of the rest points (10) is the global attractor for (8):
starting from all points except Xj, the solutions of (8) will tend to this hyperplane. In case (i), the
rest point X0 of honest behavior is the only stable point.

Proof. In case (iii), (1− αp0 − αβ− ε f ) > 0 and the r.h.s. of (11) is negative for j = J and
all i (and only for this j). Hence, XJ is stable. Similarly, in case (i), X0 is the only stable rest
point. In case (ii), both X0 and XJ are repulsive. Let us show that the hyperplane (10) is
attracting by proving that the function

L = (1− αp0 − ε f − vαβ)2

can be taken as a Lyapunov function (that decreases along the trajectories). In fact,

d
dt

L = −2(1− αp0 − ε f − vαβ)αβ
d
dt

v = −2κ(1− αp0 − ε f − vαβ)2αβx0r̄ = −2κx0r̄αβL,

as required.

Outside the corruptive domain, the kinetic Equation (1) takes the form

ẋj = κxj(rj − r̄)[(1− ε)(1− p(1 + f ))− ε f ]

= κxj(rj − r̄)[(1− ε)(1− p0(1 + f ))− ε f − (1− ε)βv(1 + f )].

Again, writing approximately 1 instead of 1− ε, we get the dynamics

ẋj = κxj(rj − r̄)[1− p0(1 + f )− ε f − βv(1 + f )]. (13)

Similarly to the above, the dynamics distinguishes the following cases:

(i) 1− (1 + f )p0 − ε f < 0,

(ii) 0 < 1− (1 + f )p0 − ε f < (1 + f )β,

(iii) 1− (1 + f )p0 − ε f > (1 + f )β.

(14)

Analogously to Lemma 1, we get the following result.

Lemma 2. In case (iii), the point XJ is the only stable rest point for (13). In case (ii), the points X0
and XJ are both repulsive, but the hyperplane of the rest points

v =
1− (1 + f )p0 − ε f

(1 + f )β
(15)

is the global attractor for (13) (outside the points Xj). In case (i), the rest point X0 of honest behavior
is the only stable point.

4.3. Full Switching Dynamics for J = 1

Let us now look at the full switching dynamics, which evolves according to (8) inside
the corruption domain Mc and according to (13) outside Mc.
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Remark 5. We do not bother with the exact description of the dynamics exactly on the switching
corruption frontier because it does not affect our results in any substantial way. To make a full
description of the dynamics, one can either smooth it in an arbitrary small neighborhood of the
frontier (and thus avoid all problems with nonsmoothness), or work in the framework of differential
inclusions (as suggested in [2] in a similar setting), where the r.h.s. of a differential equation in a
point of discontinuity is substituted by the convex hull of all left and right limits.

Let us first look at the simplest case of only one level of violation, that is, when J = 1,
r1 = r and v = x1. In fact, the case already captures the main qualitative results that we
shall point out in this paper.

In this case, the corruption domain becomes

Mc = {v ≥ 0 : αr(1− v(1 + F)) ≥ (w− w0)} ∈ R+. (16)

It is given by the condition

v ≤ vc =
1

1 + F

(
1− w− w0

rα

)
, (17)

so that the frontier turns to one point v = vc.
In particular, corruption is possible only if

αr > w− w0, (18)

which is quite natural (the illegal gain of inspectors exceeds possible losses) and indicates
already that corruption is profitable for large illegal profits.

The remaining hyperplanes of kinetic equations in corruptive and non-corruptive
(honest) domains, given by Lemmas 1 and 2, turn correspondingly to the points

vrc =
1− αp0 − ε f

αβ
, vrh =

1− (1 + f )p0 − ε f
(1 + f )β

. (19)

We note that
vrh < vrc ⇐⇒ ε f < 1.

The total switching dynamics is given by (8) and (13) in the corruptive domain Mc and
outside it, respectively. Its behavior is determined by the relative positions of the points
vc, vrc, vrh as described by the following result.

We shall discuss in detail only the most interesting case when (ii) holds in (9) and (14).
The case (i) was already dismissed as a not very relevant one. Furthermore, in case (iii), the
corner point XJ = X1 takes the role of the corresponding rest points vrc or vrh.

Theorem 1. Assume that (18) and the cases (ii) in both (9) and (14).
(i) If vrc < vc < vrh, then there are two stable rest points of the switching dynamics, namely

vrc and vrh, which are attracting for the starting points in the domains 0 < v < vc and 1 > v > vc,
respectively.

(ii) If vc < vrc < vrh, then there is only one stable rest point of the switching dynamics,
namely vrh, which is the global attractor (for all starting points except the rest corners v = 0 and
v = 1).

(iii) If vrh < vc, then there is only one stable rest point of the switching dynamics, namely
min(vc, vrc), which is the global attractor (for all starting points except the rest corners v = 0 and
v = 1).

Proof. Case (i) is straightforward. In case (ii), all points starting at v < vc will move right
in the direction of vrc until they reach vc. At this point, the dynamics will be switched to
the non-corruptive domain and will move further toward vrh. In case (iii), for v < vc, two
cases must be distinguished: vrc < vc and vc < vrc. In the first case, the points v < vc will
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move towards vcr according to the corruptive branch of the dynamics, and all points v > vc
will first move left towards vr according to the non-corruptive branch of the dynamics until
they reach vc; then, they switch to the corruptive branch and continue moving towards vrc.
If vc < vrc, then all points v < vc will move towards vc by the corruptive branch, and all
points v > vc will move towards vc by the non-corruptive branch.

The key conclusion is that the rest points do not depend essentially on the level
of corruption r (the point vc converges to 1/(1 + F), as r → ∞). This means that the
mechanism design with linear fine functions supports infinite growth rvc of losses due to
violations and/or corruption.

4.4. A Numeric Example

Assume we have M = 20 agents in a local area, so that ε = 1/20. Assume that, by the
“social norms” of corruption, a corrupted inspector requires α = 1/4 of the illegal profit of
a violator. Let the routine inspections in the area detect violations with the basic probability
p0 = 1/2, which increases to p = p0 + v/2, when the rate of violation v is expected. Let the
difference in the salaries of an inspector and the reserve salary be w− w0 = 5000 dollars.

The mechanism design of the government consists in choosing the coefficients f and
F. As is shown below, the value of f is not very essential. Namely, assume that f lies
somewhere in the interval [1, 10]. Then

vrc =
1− 1

8 −
f

20
1
8 · 1

2
> 1, vrh =

1− 1
2 (1 + f )− f

20
1
2 (1 + f )

< 0,

so that, according to Theorem 1 (iii), the only stable point of the dynamics is the effective
frontier of corruption

vc =
1

1 + F

(
1− 20000

r

)
,

if this vc belongs to [0, 1]. This occurs when the amount of illegal profit exceeds 20 thousand.
Therefore, the corruption becomes profitable for the inspector when r > 20,000, in

which case the illegal gains, due to violations and corruption, equal rvc in equilibrium,
supporting the maximal available level of violation r.

According to a result from [10] mentioned after Equation (1), the equilibrium value
vM

c for the actual game of M = 20 players differs from the equilibrium of the limiting
evolution vc by amount of order 1/M, that is, by 5%, which is not very large.

4.5. Full Switching Dynamics for Arbitrary J

Let us see what modifications arise for an arbitrary J. Taking into account the condition
for corruption (18), it is natural to assume that

αrj > w− w0, j > 0. (20)

Remark 6. One sees that if (20) is reversed for all j, then corruption again becomes unprofitable.
If inequalities (20) hold for some j, the analysis of corruption can be performed, showing that the
levels of rj that do not satisfy this condition do not essentially influence the behavior of the system.

Under (20), the corruption frontier (7) is separated from the origin and becomes the
part of the hyperboloid

α ∑
j>1

rjxj

(
1− (1 + F) ∑

j>1
xj

)
−∑

j>1
xj(w− w0) = 0, (21)
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lying in RJ
+ \ {0} that intersects the coordinate axes of RJ in the points Yj that have zero

coordinates of indices i 6= j and the jth coordinate

yj =
1

1 + F

(
1− w− w0

αrj

)
.

Notice that y1 < y2 < · · · < yJ .
Equation (21) can be also written as expressing r̄ in terms v = ∑j>0 xj:

r̄ =
v(w− w0)

1− (1 + F)v
. (22)

The key property of this hyperboloid is that the function (22) is a strictly increasing
function of v. This allows us to get the multidimensional version of Theorem 1. Of course,
there are more cases on the various relationships between the three key surfaces: the
corruption frontier Γc and the remaining hyperplanes vrh and vrc (with some abuse of
notation, we denote by the same letter, say vrh, both the corresponding value of v and the
hyperplane {v : v = vrh}).

The most straightforward cases arise when the points vrc and vrh are separated from
the interval (y1, yJ). Then we get following result.

Theorem 2. Assume (20) holds.
(i) If vrc ≤ y1 < yJ ≤ vrh, then there are two stable hyperplanes of rest points of the switching

dynamics, namely vrc and vrh, which are attracting for the starting points in the corruption domains
Mc and in RJ

+ \Mc (that is, from below and from above the efficient frontier), respectively.
(ii) If yJ ≤ vrc < vrh, then there is only one stable hyperplane of rest points of the switching

dynamics, namely vrh, which is the global attractor (for all starting points except the rest corners Xj).
(iii) If vrh ≤ y1 < yJ ≤ vrc, then the corruption frontier Γc is the global attractor for the

switching dynamics (for all starting points except the rest corners).

The case (iii) with J = 2 and vrh < y1 < y2 = vrc is illustrated in Figure 1. The
corruption frontier is given by the curve (actually a part of a hyperbola) connecting the
points (0, y2) and (y1, 0).

When various intersections occur, they are also treated as in Theorem 1. Let us consider
just one of the cases.

Theorem 3. Assume (20) holds, and let vrh ≤ y1 < vrc < yJ . Then the global attractor is the
boundary of the set

Mc ∩ {(x1, · · · xJ) : v ≤ vrc},
more precisely, the part of this boundary where either v = vrc or (x1, · · · , xJ) ∈ Γc.

The case with J = 2 and vrh < y1 < vrc < y2 is illustrated in Figure 2. The global
attractor consists of the part of a line v = vrc joining the points (0, vrc) and A and the part
of the corrupted frontier joining the points A and (y1, 0).

The main conclusion remains the same: linear fine functions support infinite growth
of illegal gains on violations and/or corruption.
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Figure 1. Corruption frontier for Theorem 2(iii).

The case (iii) with J = 2 and vrh < y1 < y2 = vrc is illustrated on Figure 1. The
corrupted frontier is given by the curve (actually a part of a hyperbola) connecting the
points (0, y2) and (y1, 0).

When various intersections occur, they are also treated as in Theorem 4.1. Let us
consider just one of the cases.

Theorem 4.3. Assume (20) holds, and let vrh ≤ y1 < vrc < yJ . Then the global attractor
is the boundary of the set

Mc ∩ {(x1, · · ·xJ) : v ≤ vrc}.
More precisely, the part of this boundary, where either v = vrc or (x1, · · · , xJ) ∈ Γc.

The case with J = 2 and vrh < y1 < vrc < y2 is illustrated on Figure 2. The global
attractor consists of the part of a line v = vrc joining the points (0, vrc) and A and the
part of the corrupted frontier joining the points A and (y1, 0).

The main conclusion remains the same: linear fine functions support infinite growth
of illegal gains on violations and/or corruption!
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5 Power-type fines

Let us assume now that the fine functions are of power type:

f(r) = frγ, F (r) = Frγ,

with some positive constants f, F, γ. We shall also reduce attention to the case γ > 1,
that is, to the case of convex power functions.

For simplicity we reduce the discussion to the case of one level of violation only: J = 1,
r1 = r and v = x1.

Remark 7. As for the linear fines, the general case creates more complicated (quite
curious in fact) geometry of the efficient frontier, but our major qualitative conclusion
remains the same. The new feature of nonlinear fines for J > 1 is that the rest points
never form continuous surfaces (like hyperplanes) and are concentrated on two strategies
(with only two xi non-vanishing). In a slightly different setting this effect was discussed
in [5].

12

Figure 2. Global attractor for Theorem 3.

5. Power-Type Fines

Let us assume now that the fine functions are of power type:

f (r) = f rγ, F(r) = Frγ,

with some positive constants f , F, γ. We shall also reduce attention to the case γ > 1; that
is, to the case of convex power functions.

For simplicity, we reduce the discussion to the case of one level of violation only:
J = 1, r1 = r, and v = x1.

Remark 7. As for the linear fines, the general case creates more complicated (quite curious in fact)
geometry of the efficient frontier, but our major qualitative conclusion remains the same. The new
feature of nonlinear fines for J > 1 is that the rest points never form continuous surfaces (like
hyperplanes) and are concentrated on two strategies (with only two xi non-vanishing). In a slightly
different setting, this effect was discussed in [9].

In this case, the corruption domain becomes

Mc = {v ≥ 0 : αvr(1− v)− v2Fαγrγ ≥ v(w− w0)}, (23)
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so that it is determined by the inequality

v ≤ vc =
1

1 + F(αr)γ−1

(
1− w− w0

rα

)
. (24)

Therefore, the corruption frontier vc decreases as r grows, unlike the linear case.
The kinetic equation in the corruption domain becomes (again in our usual approxi-

mation with 1 instead of 1− ε)

v̇. = v(1− v)r[1− p0α− αβv− ε f rγ−1] (25)

and outside the corruptive domain, it is

v̇ = v(1− v)r[1− p0 − f rγ−1(p0 + ε)− vβ(1 + f rγ−1)]. (26)

The analogs of (9) now depend on r. We must consider the cases

(i) 1− αp0 − ε f rγ−1 < 0,

(ii) 0 < 1− αp0 − ε f rγ−1 < αβ,

(iii) 1− αp0 − ε f rγ−1 > αβ.

(27)

for the corruption branch of the dynamics and the cases

(i) 1− p0 − f rγ−1(p0 + ε) < 0,

(ii) 0 < 1− p0 − f rγ−1(p0 + ε) < β(1 + f rγ−1),

(iii) 1− p0 − f rγ−1(p0 + ε) > β(1 + f rγ−1).

(28)

for the non-corruption branch of the dynamics.
The corresponding analogs of Lemmas 1 and 2 are valid:

Lemma 3. For the evolution (25) in the corrupted domain, the following holds true. In case (iii) of
(27), the point X1 is the only stable rest point. In case (ii), the points X0 and XJ are both repulsive,
but the rest point

1− αp0 − ε f rγ−1

αβ

is the global attractor. In case (i), the rest point X0 of honest behavior is the only stable point.

Lemma 4. For the evolution (26) outside the corrupted domain, the following holds true. In case
(iii) of (28), the point X1 is the only stable rest point. In case (ii), the points X0 and X1 are both
repulsive, but the rest point

1− p0 − f rγ−1(p0 + ε)

β(1 + f rγ−1)

is the global attractor (outside the points Xj). In case (i), the rest point X0 of honest behavior is the
only stable point.

Turning to the full switching dynamics, we observe first of all that if

r > rc =

(
1− αp0

ε f

)1/(γ−1)
, (29)

then the no-violation rest point v = 0 is the unique stable point for the dynamics in
corruption domain, and if

r > rh =

(
1− p0

(ε + p0) f

)1/(γ−1)
, (30)
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then the no-violation rest point v = 0 is the unique stable point for the dynamics in the
domain of honest inspectors. It is seen by inspection (as ought to be expected) that rc > rh.
Therefore, rc is an upper bound for the costs of violation. However, this bound is not
universal, because it increases with ε→ 0.

Next, for r < rc it follows that the point

vrc = min
(

1,
1− αp0 − ε f rγ−1

αβ

)
(31)

is the unique stable fixed point for the dynamics (25), and for r < rh, it follows that
the point

vrh = min
(

1,
1− p0 − f rγ−1(p0 + ε)

β(1 + f rγ−1)

)
(32)

is the unique stable fixed point for the dynamics (25).
Now we are in the same setting, as in Theorem 1, though with different parameters.

Hence we can directly conclude that the following result holds.

Theorem 4. Assume that r < rc.
(i) If r > rh, then the unique stable rest point for the total switching dynamics is min(vc, vrc).
(ii) If r ≤ rh, then the results of Theorem 1 hold with vrc, vrh, vc given by (31), (32),

(24), respectively.

We can now derive our main conclusion. By (30) (and assuming p0 > 0), the maximal
illegal profit under no corruption of inspectors is universally bounded for any γ > 1, and
this bound can be effectively controlled by the choice of f and p0 (uniformly for all ε). The
level of corruption cannot go beyond vc given by (24), which decreases with the growth of
illegal profit r for any γ > 1. However, the bound for the illegal profit rvc still increases
as long as γ < 2. Furthermore, we are led to the principle of quadratic fines: Starting from
the power γ = 2, the illegal profit rvc becomes universally bounded, and the bound can be
effectively controlled by the choice of F.

Under all conditions of the example of Section 4.4, but in the case of a quadratic fine,
we find that

vc =
1

1 + Fr/4

(
1− 20000

r

)
,

so that the total loss to society from violation and corruption in the equilibrium point vc
will be

rvc =
4

F + 4/r

(
1− 20000

r

)
≤ 4

F
,

which can be effectively controlled by the choice of F.

6. Further Perspectives

We present our model in the simplest case in order to illustrate the main conclusions
in the most transparent way. Let us point out to possible further developments.

Firstly, we considered the parameter α (the proportion of bribes) as an exogenous
parameter (kind of “social norm for corruption”). It seems natural to develop second-level
kinetic equations describing the evolutionary changes to the behavior of a large pool of
inspectors as playing with the authority A (and assuming that the violators adhere to their
equilibrium strategies). The various strategies of inspectors can be enriched from the two
considered (Honest and Corrupt) to the various levels of corruption specified by various
levels of α. I expect that the evolutionary dynamics will drive α to the highest possible
levels.

Secondly, more detailed description of the switching kinetic equations for arbitrary J
and an arbitrary convex fine functions can be of interest. This investigation can also include
the continuous case of levels r taken from some finite interval [rmin, rmax].
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Thirdly, our analysis was based on the stable points of the limiting dynamics, which
eventually specify the long-term behavior of this limiting dynamics. Of interest is the
long-term behavior of the corresponding prelimiting Markov chain of M players. One can
conjecture that, in the large time limit, it will converge to some stationary distribution, with
support around the attractors of the kinetic equations.

Fourthly, we assumed that the central authority A makes just one random check in
each local area. It is natural to extend the analysis to the case when the number of local
checks is any small (compared to M) number.

Fifthly, our inspectors were supposed to act with the best response to instantaneous
adjustments. It is, of course, natural to assume that they act strategically, with some
planning horizon in mind. This would lead to a more complicated problem of coupled
kinetic equations with the optimal policy of inspectors. A general theory of such a coupling
was developed in Chapter 3 of [2] and may be applied in the present setting.

The author believes that the principle of quadratic fine is sufficiently robust and will
manifest itself in all of these extensions.
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