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Abstract: Our starting point is an integral inequality that involves convex, concave and monotonically
increasing functions. We provide some interpretations of the inequality, in terms of both probability
and terms of linear functionals, from which we further generate completely monotone functions and
means. The latter application is seen from the perspective of monotonicity and convexity.
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1. Integral Inequality

The following Lemma originates from unsolved Problem 8, Jósef Wildt International
Mathematical Competition (see [1]).

Lemma 1. Let f , g : [a, b] → R+, f (a) = g(a) = 0 two continuous functions, such that f is
convex, and g concave. If h : [a, b]→ R is an increasing function, then

∫ b

a
h(x)g(x)dx

∫ b

a
f (x)dx ≤

∫ b

a
g(x)dx

∫ b

a
h(x) f (x)dx. (1)

Proof. Define

ϕ(x) = f (x)
∫ b

a
g(t)dt− g(x)

∫ b

a
f (t)dt.

It follows that ϕ is a continuous convex function, such that ϕ(a) = 0,
∫ b

a ϕ(x)dx = 0.
If ϕ ≡ 0, then we have equality in (1).

Otherwise, there is a unique x0 ∈ (a, b) such that ϕ(x0) = 0, ϕ(t) < 0, t < x0; ϕ(t) >
0, t > x0. An easy proof of this fact can be obtained using Proposition 1.3.5 from [2], and
below is the geometric illustration of this fact.

y

x
x0

ϕ

a b

Since h is increasing, we can define a measure µ with

µ(c, d] = h(d)− h(c), a ≤ c < d ≤ b,
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and then extend it on the Borel sigma algebra B(a, b) as described in [3].
Now we calculate∫ b

a
h(x)ϕ(x)dx =

∫ b

a
(h(x)− h(a))ϕ(x)dx + h(a)

∫ b

a
ϕ(x)dx︸ ︷︷ ︸
=0

=
∫ b

a
ϕ(x)

∫ x

a
dµ(t)dx = (Fubini)

=
∫ b

a

(∫ b

t
ϕ(x)dx

)
dµ(t) (2)

=
∫ x0

a

(∫ b

t
ϕ(x)dx

)
dµ(t) +

∫ b

x0

(∫ b

t
ϕ(x)dx

)
dµ(t)

=
∫ x0

a

(∫ b

a
−
∫ t

a

)
ϕ(x)dxdµ(t) +

∫ b

x0

(∫ b

t
ϕ(x)dx

)
dµ(t)

=
∫ x0

a

(
−
∫ t

a
ϕ(x)dx

)
dµ(t) +

∫ b

x0

(∫ b

t
ϕ(x)dx

)
dµ(t).

Both summands in (2) are greater than zero, from which one can conclude that

∫ b

a
h(x)ϕ(x)dx ≥ 0

i.e., (1).

2. Probabilistic Point of View

The Lemma result 1 can be interpreted in probability terms. First, suppose that we
have a probability space (Ω,F , µ) and a random variable Z : Ω → R, with the Borel
sigma algebra on R, such that P(a ≤ Z ≤ b) = 1. If we consider the increasing function
h(t) = P(a ≤ Z ≤ t) in Lemma 1, then we have the following inequality in terms of
mathematical expectations

∫ b

a
f (x)dxE

 b∫
Z

g(t)dt

 ≤ ∫ b

a
g(x)dxE

 b∫
Z

f (t)dt

, (3)

since we can use an analogous technique from line (2).
There is another probability interpretation of (1). Let us divide both sides of (1) by∫ b

a f (x)dx ·
∫ b

a g(x)dx, hence∫ b
a h(x)g(x)dx∫ b

a g(x)dx
≤
∫ b

a h(x) f (x)dx∫ b
a f (x)dx

.

This inequality enables us to deduce a second inequality between mathematical
expectations, viz.

E[h(X)] ≤ E[h(Y)], (4)

where the random variable X has a concave density function g : [a, b] → R+, random
variable Y has convex density function f : [a, b] → R+ such that g(a) = f (a) = 0 and
h : [a, b]→ R is an increasing function, as before.

3. Applications to Complete Monotone Functions and Means

In this section, we will offer some applications of Lemma 1, in terms of completely
monotone functions and means.
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Recall that a function f is said to be completely monotone on an open interval I ⊂ (0, ∞)
if it has derivatives of all orders there and satisfies

(−1)n f (n)(x) ≥ 0 for all x ∈ I and n = 0, 1, 2, . . . . (5)

The class of all completely monotone functions on I is denoted by CM(I). We can
observe here that completely monotone functions are log-convex and, therefore, convex
functions (see [4]).

Let us consider two linear functionals, respectively defined by

AH =
∫ b

a
g(x)dx

∫ b

a
H(x) f (x)dx−

∫ b

a
H(x)g(x)dx

∫ b

a
f (x)dx, (6)

where f and g are functions as in Lemma 1, and

BF =
∫ b

a
g(x)dx

∫ b

a
h(x)F(x)dx−

∫ b

a
h(x)g(x)dx

∫ b

a
F(x)dx, (7)

where g and h are functions as in Lemma 1.
From the conclusion of that lemma, we know AH ≥ 0, for any increasing function H

on [a, b], and BF ≥ 0, for any convex function F on [a, b], such that F(a) = 0.

Theorem 1.

(i) Let H ∈ C1[a, b] and let A : C[a, b]→ R be a linear functional defined with (6). Then, there
exists ξ ∈ [a, b], such that

AH = H′(ξ)Ae1, (8)

where e1(x) = x.
(ii) Let F ∈ C2[0, b], F(0) = 0, and let B : C[0, b]→ R be a linear functional defined with (7).

Then, there exists η ∈ [0, b], such that

BF = F′′(η)Be2, (9)

where e2(x) = x2/2.

Proof. (i) Let
m = min

x∈[a,b]
H′(x), M = max

x∈[a,b]
H′(x).

Let us observe that the function ϕ(x) = Mx− H(x) = Me1(x)− H(x) is increasing since
ϕ′(x) = M− H′(x) ≥ 0. Hence, Aϕ ≥ 0, and we conclude

AH ≤ M · Ae1.

Similarly,
mAe1 ≤ AH ≤ MAe1.

Now, we have (8) using Bolzano’s Intermediate Value Theorem.
(ii) Let

m = min
x∈[0,b]

F′′(x), M = max
x∈[0,b]

F′′(x).

Define ψ(x) = Mx2/2− F(x) = Me2(x)− F(x). Then ψ(0) = 0 and ψ is convex, since
ψ′′(x) = M− F′′(x) ≥ 0 concluding BF ≤ M · Be2. Similarly, mBe1 ≤ BF and, therefore,
we have (9) using Bolzano’s Intermediate Value Theorem.
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Corollary 1.

(i) If H1, H2 ∈ C1[a, b],; then, there exists ξ ∈ [a, b], such that

H′1(ξ)
H′2(ξ)

=
AH1

AH2
. (10)

(ii) If F1, F2 ∈ C2[0, b],; then, there exists η ∈ [0, b], such that

F′′1 (η)
F′′2 (η)

=
BF1

BF2
. (11)

(iii) Let I be any open interval in (0, ∞). Assume that H = {Ht : t ∈ I} is the family of
differentiable functions on [a, b], such that t 7→ dHt(x)/dx is in CM(I), for any x ∈ [a, b].
Then t 7→ AHt also belongs to CM(I);

(iv) Let I be any open interval in (0, ∞). Assume that F = {Ft : t ∈ I} is the family of
differentiable functions on [a, b], such that t 7→ d2Ft(x)/dx2 is in CM(I), for any x ∈ [a, b].
Then, t 7→ AFt also belongs to CM(I);

(v) for any r < s < t, r, s, t ∈ I we have

(AHs)
t−r ≤ (AHr)

t−s(AHt)
s−r (12)

and
(BFs)

t−r ≤ (BFr)
t−s(BFt)

s−r (13)

(vi) for any p ≤ u, q ≤ v, p, q, u, v ∈ I, we have

Mp,q(A,H) ≤ Mu,v(A,H) (14)

where

Mp,q(A,H) =


(

AHp
AHq

) 1
p−q , p 6= q;

exp
( d

dp (AHp)
AHp

)
, p = q;

(15)

also

Mp,q(B,F ) ≤ Mu,v(B,F ) (16)

where

Mp,q(B,F ) =


(

BFp
BFq

) 1
p−q , p 6= q;

exp
( d

dp (BFp)
BFp

)
, p = q.

(17)

Proof. (i) We introduce an auxiliary function φ(x) = H1(x)AH2 − H2(t)AH1. By part (i)
of Theorem 1, there exists ξ ∈ [a, b], such that

Aφ = φ′(ξ)Ae1.

Since Aφ = 0, the result follows after we check Ae1 6= 0 (see Remark below).
(ii) Let us define ψ(x) = F1(x)BF2 − F2(t)BF1. By part (ii) of Theorem 1, there exists

ξ ∈ [0, b], such that
Bψ = ψ′′(η)Be2.
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Since Bψ = 0, we have our result after we check that Be2 6= 0.
(iii)− (iv) Since AHt = H′t(ξ)Ae1 and AFt = F′′t (ξ)Ae2, we conclude that t 7→ AHt and
t 7→ AHt are completely monotone functions on I.

(iii)− (iv) Since AHt = H′t(ξ)Ae1 and AFt = F′′t (ξ)Ae2, we conclude that t 7→ AHt
and t 7→ AHt are completely monotone functions on I.

(v) First, it is known, see [2] (p. 21) or [5] (p. 4), that a function φ is convex on an
interval I if, and only if,

φ(s1)(s3 − s2) + φ(s2)(s1 − s3) + φ(s3)(s2 − s1) ≥ 0

for s1 < s2 < s3, s1, s2, s3 ∈ I. Now, since t 7→ AHt and t 7→ BFt are log-convex functions,
we have our claims.

(vi) Again from the log-convexity of the function t 7→ AHt, we have (see [2] ([p. 23]))

log AHq − log AHp

q− p
≤ log AHv − log AHu

v− u
, (18)

for p ≤ u, q ≤ v; p 6= q, u 6= v, that is, in fact, (14). The case p = q in (14) we obtain after
we pass the limit p ≤ u in (18).

Remark 1. There is one important issue with the possible zeros in denominators in the above
fractions. As we pointed out at the beginning of this section, completely monotone functions are
also log-convex (see [4] (p. 885)) so if, say, AHt0 = 0 for some t0 ∈ I, then AHt = 0 for all t ∈ I.

Let us now illustrate Corollary 1 on a concrete family of functions.

Example 1. Let 0 < a < b, I = (0, 1), H = {Ht : t ∈ I}, Ht(x) = x1−t

1−t , t ∈ I. Then
t 7→ dHt(x)/dt = x−t > 0 is completely monotone function on I and from Corollary 1 we know
that the function

t 7→ AHt =
1

1− t

∫ b

a
g(x)dx

∫ b

a
x1−t f (x)dx− 1

1− t

∫ b

a
x1−tg(x)dx

∫ b

a
f (x)dx

is also completely monotone on I for any concave function g : [a, b] → R+ and any convex
function f : [a, b]→ R+, and this function satisfies Lyapunov inequality (12) and means (15) can
be produced.

Example 2. Let 0 = a < b = 1, I = (0, 1), F = {Ft : t ∈ I},
Ft(x) = x2−t

(t−1)(t−2) −
x

(t−1)(t−2) , t ∈ I.

Then, t 7→ d2Ft(x)/dx2 = x−t > 0 is completely monotone function on I and, from Corollary 1,
we know that the function t 7→ BFt,

BFt =
1

(t− 1)(t− 2)

∫ b

0
g(x)dx

∫ b

0
x2−th(x)dx +

b3−t

(t− 1)(t− 2)(t− 3)

∫ b

0
g(x)h(x)dx,

is completely monotone on I for any concave function g : [0, b]→ R+ and any increasing function
h : [0, b]→ R+. Additionally, using function t 7→ BFt, we can produce means (17).

Examples 1 and 2 used some adapted examples of generating families from [4] because
of the specific requirements on the functions f and h in Lemma 1.

Example 3. Let −∞ < a < b < ∞, I = (0, ∞) and a family H = {Ht : t ∈ I} of functions on
[a, b] defined by

Ht(x) = − e−tx

t
. (19)
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Since t 7→ d
dx Ht(x) = e−tx > 0 is from CM(I) then t 7→ AHt, with

AHt = −
1
t

∫ b

a
g(x)dx

∫ b

a
e−tx f (x)dx +

1
t

∫ b

a
e−txg(x)dx

∫ b

a
f (x)dx,

is also completely monotone on I for any concave function g : [a, b] → R+ and any convex
function f : [a, b]→ R+, and this function satisfies Lyapunov inequality (12) and means (15) can
be produced.

Example 4. Let 0 = a < b < ∞, I = (0, ∞) and a family F = {Ft : t ∈ I} of functions on [0, b]
defined by

Ft(x) =
e−tx − 1

t2 . (20)

Since t 7→ d2Ft(x)/dx2 = e−tx > 0 is from CM(I) ,then t 7→ BFt,

BFt =
∫ b

0
g(x)dx

∫ b

0

e−tx − 1
t2 h(x)dx +

e−tb − b− 1
t3

∫ b

0
g(x)h(x)dx,

is completely monotone on I for any concave function g : [0, b]→ R+ and any increasing function
h : [0, b]→ R+. Additionally, using function t 7→ BFt, we can produce means (17).
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