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Abstract: In this paper, we construct and study a new family of multi-point Ehrlich-type iterative
methods for approximating all the zeros of a uni-variate polynomial simultaneously. The first member
of this family is the two-point Ehrlich-type iterative method introduced and studied by Trićković
and Petković in 1999. The main purpose of the paper is to provide local and semilocal convergence
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approach that was introduced by the authors in 2020. Two numerical examples are presented to show
the applicability of our semilocal convergence theorem.
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1. Introduction

This work deals with multi-point iterative methods for approximating all the zeros of
a polynomial simultaneously. Let us recall that an iterative method for solving a nonlinear
equation is called a multi-point method if it can be defined by an iteration of the form

x(k+1) = ϕ(x(k), x(k−1), . . . , x(k−N)), k = 0, 1, 2, . . . ,

where N is a fixed natural number, and x(0), x(−1), . . . , x(−N) are N + 1 initial approxima-
tions. In the literature, there are multi-point iterative methods for finding a single zero of
a nonlinear equation (see, e.g., [1–7]). This study is devoted to the multi-point iterative
methods for approximating all the zeros of a polynomial simultaneously (see, e.g., [8–11]).

Let us recall the two most popular iterative methods for simultaneous computation
of all the zeros of a polynomial f of degree n ≥ 2. These are Weierstrass’ method [12] and
Ehrlich’s method [13].

Weierstrass’ method is defined by the following iteration:

x(k+1) = x(k) −W f (x(k)), k = 0, 1, 2, . . . , (1)

where the function W f : D ⊂ Kn → Kn is defined by W f (x) = (W1(x), . . . , Wn(x)) with

Wi(x) =
f (xi)

a0 ∏
j 6=i

(xi − xj)
(i = 1, . . . , n), (2)

where a0 ∈ K is the leading coefficient of f and D denotes the set of all vectors in Kn with
pairwise distinct components. Weierstrass’ method (1) has second order of convergence
(provided that f has only simple zeros).
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Ehrlich’s method is defined by the following fixed point iteration:

x(k+1) = T(x(k)), k = 0, 1, 2, . . . , (3)

where the iteration function T : Kn → Kn is defined by T(x) = (T1(x), . . . , Tn(x)) with

Ti(x) = xi −
f (xi)

f ′(xi)− f (xi)∑
j 6=i

1
xi − xj

(i = 1, . . . , n). (4)

Ehrlich’s method has third order convergence. In 1973, this method was rediscovered
by Aberth [14]. In 1970, Börsch-Supan [15] constructed another third-order method for
simultaneous computing all the zeros of a polynomial. However in 1982, Werner [16]
proved that both Ehrlich’s and Börsch-Supan’s methods are identical.

In 1999, Trićković and Petković [9] constructed and studied a two-point version of
Ehrlich’s method. They proved that the two-point Ehrlich-type method has the order of
convergence r = 1 +

√
2.

In the present paper, we introduce an infinite sequence of multi-point Ehrlich-type
iterative methods. We note that the first member of this family of iterative methods is the
two-point Ehrlich-type method constructed in [9]. The main purpose of this paper is to pro-
vide a local and semilocal convergence analysis of the multi-point Ehrlich-type methods.

Our local convergence result (Theorem 2) contains the following information: con-
vergence domain; a priori and a posteriori error estimates; convergence order of every
method of the family. For instance, we prove that for a given natural number N, the order
of convergence of the Nth multi-point Ehrlich-type method is r = r(N), where r is the
unique positive solution of the equation

1 + 2(t + . . . + tN) = tN+1. (5)

It follows from this result that the first iterative method (N = 1) has the order of
convergence r(1) = 1 +

√
2 which coincides with the above mentioned result of Trićković

and Petković. We note that each method of the new family has super-quadratic convergence
of order r ∈ [1 +

√
2, 3). The semilocal convergence result (Theorem 4) states a computer-

verifiable initial condition that guarantees fast convergence of the corresponding method
of the family.

The paper is structured as follows: In Section 2, we introduce the new family of
multi-point iterative methods. Section 3 contains some auxiliary results that underlie the
proofs of the main results. In Section 3, we present a local convergence result (Theorem 2)
for the iterative methods of the new family. This result contains initial conditions as well as
a priori and a posteriori error estimates. In Section 5, we provide a semilocal convergence
result (Theorem 4) with computer verifiable initial conditions. Section 6 provides two
numerical examples to show the applicability of our semilocal convergence theorem and
the convergence behavior of the proposed multi-point iterative methods. The paper ends
with a conclusion section.

2. A New Family of Multi-Point Ehrlich-Type Iterative Methods

Throughout the paper (K, | · |) stands for a valued field with a nontrivial absolute
value | · | and K[z] denotes the ring of uni-variate polynomials over K. The vector space
Kn is equipped with the product topology.

For a given vector u ∈ Kn, ui always denotes the ith component of u. For example, if F
is a map with values in Kn, then Fi(x) denotes the ith component of the vector F(x) ∈ Kn.
Let us define a binary relation # on Kn as follows [17]

u # v ⇔ ui 6= vj for all i, j ∈ In with i 6= j.
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Here and throughout the paper, In is defined by

In = {1, 2, . . . , n}.

Suppose f ∈ K[z] is a polynomial of degree n ≥ 2. A vector ξ ∈ Kn is called a root
vector of the polynomial f if

f (z) = a0

n

∏
i=1

(z− ξi) for all z ∈ K,

where a0 ∈ K. It is obvious that f possesses a root vector in Kn if and only if it splits over K.
In the following definition, we introduce a real-value function of two vector variables

that plays an essential role in the present study.

Definition 1. Suppose f ∈ K[z] is a polynomial of degree n ≥ 2. We define an iteration function
Φ : DΦ ⊂ Kn ×Kn → Kn of two vector variables as follows:

Φi(x, y) = xi −
f (xi)

f ′(xi)− f (xi) ∑
j 6= i

1
xi − yj

(i = 1, . . . , n), (6)

where DΦ is defined by

DΦ =

{
(x, y) ∈ Kn ×Kn : x # y, f ′(xi)− f (xi) ∑

j 6= i

1
xi − yj

6= 0 for i ∈ In

}
. (7)

Now the two-point Ehrlich-type root-finding method introduced by Trićković and
Petković [9] can be defined by the following iteration

x(k+1) = Φ(x(k), x(k−1)), k = 0, 1, . . . (8)

with initial approximations x(0), x(−1) ∈ Kn.

Theorem 1 (Petković and Trićkovic [9]). The convergence order of the two-point Ehrlich-type
method (8) is r = 1 +

√
2 ≈ 2.414.

Based on the function Φ, we define a sequence (Φ(N))∞
N=1 of vector-valued functions

such that the Nth function Φ(N) is a function of N + 1 vector variables.

Definition 2. We define a sequence (Φ(N))∞
N = 0 of iteration functions

Φ(N) : DN ⊂ Kn × . . .×Kn︸ ︷︷ ︸
N+1

→ Kn

recursively by setting Φ(0)(x) = x and

Φ(N)(x, y, . . . , z) = Φ(x, Φ(N−1)(y, . . . , z)). (9)
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The sequence (DN)
∞
N = 0 of domains is defined also recursively by setting D0 = Kn and

DN =

(x, y, . . . , z) ∈ Kn × . . . ×Kn︸ ︷︷ ︸
N+1

: (y, . . . , z) ∈ DN−1, x # Φ(N−1)(y, . . . , z)

and f ′(xi)− f (xi) ∑
j 6= i

1

xi −Φ(N−1)
j (y, . . . , z)

6= 0 for i ∈ In

.

(10)

Clearly, the iteration function Φ(1) coincides with the function Φ.

Definition 3. Let N be a given natural number, and x(0), x(−1), . . . , x(−N) ∈ Kn be N + 1
initial approximations. We define the Nth iterative method of an infinite sequence of multi-point
Ehrlich-type methods by the following iteration

x(k+1) = Φ(N)(x(k), x(k−1), . . . , x(k−N)), k = 0, 1, . . . . (11)

Note that in the case N = 1, the iterative method (11) coincides with the two-point
Ehrlich-type method (8).

In Section 4, we present a local convergence theorem (Theorem 2) for the methods (11)
with initial conditions that guarantee the convergence to a root vector of f . In the case
N = 1, this result extends Theorem 1 in several directions.

In Section 5, we present a semilocal convergence theorem (Theorem 4) for the fam-
ily (11), which is of practical importance.

3. Preliminaries

In this section, we present two basic properties of the iteration function Φ defined in
Definition 1, which play an important role in obtaining the main result in Section 4.

In what follows, we assume that Kn is endowed with the norm ‖ · ‖∞ defined by

‖u ‖∞ = max{|u1|, . . . , |un|}

and with the cone norm ‖ · ‖ : Kn → Rn defined by

‖u ‖ = (|u1|, . . . , |un|),

assuming that Rn is endowed with the component-wise ordering � defined by

u � v ⇔ ui ≤ vi for all i ∈ In .

Furthermore, for two vectors u ∈ Kn and v ∈ Rn, we denote by u/v the vector

u
v
=

(
|u1|
v1

, · · · ,
|un|
vn

)
.

We define a function d : Kn → Rn by d(u) = (d1(u), . . . , dn(u)) with

di(u) = min
j 6= i
|ui − uj| (i = 1, . . . , n).

Lemma 1 ([11]). Suppose x, y, ξ ∈ Kn and ξ is a vector with pairwise distinct components.

|xi − yj | ≥ (1− E(x)− E(y)) |ξi − ξ j| for all i, j ∈ In, (12)
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where the function E : Kn → R+ is defined by

E(x) =
∥∥∥∥ x− ξ

d(ξ)

∥∥∥∥
∞

. (13)

Lemma 2. Suppose f ∈ K[z] is a polynomial of degree n ≥ 2, which splits over K, and ξ ∈ Kn is
a root vector of f . Let x, y ∈ Kn be two vectors such that x # y. If f (xi) 6= 0 for some i ∈ In, then

f ′(xi)

f (xi)
− ∑

j 6= i

1
xi − yj

=
1− τi
xi − ξi

, (14)

where τi ∈ K is defined by

τi = (xi − ξi) ∑
j 6= i

yj − ξ j

(xi − ξ j)(xi − yj)
. (15)

Proof. Since ξ is a root vector of f , we obtain

f ′(xi)

f (xi)
− ∑

j 6= i

1
xi − yj

=
n

∑
j=1

1
xi − ξi

− ∑
j 6= i

1
xi − yj

=
1

xi − ξi
+ ∑

j 6= i

(
1

xi − ξ j
+

1
xi − yj

)

=
1

xi − ξi
− ∑

j 6= i

yj − ξ j

(xi − ξ j)(xi − yj)
=

1− τi
xi − ξi

,

which proves (14).

Define the function σ : D ⊂ Kn ×Kn → R+ by

σ(x, y) =
(n− 1)E(x)E(y)

(1− E(x))(1− E(x)− E(y))− (n− 1)E(x)E(y)
(16)

with domain

D = {(x, y) ∈ Kn ×Kn : (1− E(x))(1− E(x)− E(y)) > (n− 1)E(x)E(y) and E(x) + E(y) < 1}, (17)

where E : Kn → R+ is defined by (13).

Lemma 3. Let f ∈ K[z] be a polynomial of degree n ≥ 2 with n simple zeros in K, and let ξ ∈ Kn

be a root vector of f . Suppose x, y ∈ Kn are two vectors such that (x, y) ∈ D . Then:

(i) (x, y) ∈ DΦ;

(ii) ‖Φ(x, y)− ξ ‖ � σ(x, y) ‖x− ξ ‖;

(iii) E(Φ(x, y)) ≤ σ(x, y) E(x),

where the functions Φ, E and σ are defined by (6), (13) and (16), respectively.

Proof. (i) According to (17), we have E(x) + E(y) < 1. Then it follows from Lemma 1 that

|xi − yj| ≥ (1− E(x)) dj(ξ) > 0 (18)

for every j 6= i. This yields x # y. In view of (7), it remains to prove that

f ′(xi)− f (xi) ∑
j 6= i

1
xi − yj

6= 0 (19)
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for i ∈ In. Let i ∈ In be fixed. We shall consider only the non-trivial case f (xi) 6= 0. In this
case, (19) is equivalent to

f ′(xi)

f (xi)
− ∑

j 6= i

1
xi − yj

6= 0. (20)

On the other hand, it follows from Lemma 2 that (20) is equivalent to τi 6= 1, where τi is
defined by (15). By Lemma 1 with y = ξ, we obtain

|xi − ξ j| ≥ (1− E(x)) di(ξ) > 0 (21)

for every j 6= i. From (15), (18) and (21), we obtain

|τi| ≤ |xi − ξi| ∑
j 6= i

|yj − ξ j|
|xi − ξ j||xi − yj|

(22)

≤ 1
(1− E(x))(1− E(x)− E(y))

|xi − ξi|
di(ξ)

∑
j 6= i

|yj − ξ j|
dj(ξ)

≤ (n− 1)E(x)E(y)
(1− E(x))(1− E(x)− E(y))

< 1.

This implies that τi 6= 1 which proves the first claim.
(ii) The second claim is equivalent to

|Φi(x, y)− ξi | ≤ σ(x, y) |xi − ξi| (23)

for all i ∈ In. If xi = ξi, then (23) holds trivially. Let xi 6= ξi. Then, it follows from (21) that
f (xi) 6= 0. It follows from (6), (20) and (14) that

Φi(x, y)− ξi = xi − ξi −
(

f ′(xi)

f (xi)
− ∑

j 6= i

1
xi − yj

)−1

(24)

= xi − ξi −
xi − ξi
1− τi

= − τi
1− τi

(xi − ξi).

By (24) and the estimate (22), we obtain

|Φi(x, y)− ξi| =
|τi|
|1− τi|

|xi − ξi| ≤
|τi|

1− |τi|
|xi − ξi|

≤ (n− 1)E(x)E(y)
(1− E(x))(1− E(x)− E(y))− (n− 1)E(x)E(y)

|xi − ξi|

= σ(x, y) |xi − ξi|.

Therefore, (23) holds, which proves the second claim.
(iii) By dividing both sides of the last inequality by di(ξ) and taking the max-norm,

we obtain the third claim.

Lemma 4. Let f ∈ K[z] be a polynomial of degree n ≥ 2 with n simple zeros in K, and let ξ ∈ Kn

be a root vector of f . Suppose x, y ∈ Kn are two vectors satisfying

max{E(x), E(y)} ≤ R =
2

3 +
√

8n− 7
, (25)

where the function E : Kn → R+ is defined by (13). Then:

(i) (x, y) ∈ D ;
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(ii) σ(x, y) ≤ E(x)E(y)
R2 ;

(iii) E(Φ(x, y)) ≤ E(x)2E(y)
R2 .

Proof. It follows from (25) that E(x) + E(y) ≤ 2R < 1 and

(1− E(x))(1− E(x)− E(y))− (n− 1)E(x)E(y) ≥ (1− R)(1− 2R)− (n− 1) R2 > 0. (26)

Hence, it follows from (17) that (x, y) ∈ D which proves the claim (i). It is easy to show
that R is the unique positive zero of the function φ, defined by

φ(t) =
(n− 1)t2

(1− t)(1− 2t)− (n− 1)t2 . (27)

Then, from (16) and (26), we obtain

σ(x, y) ≤ (n− 1)E(x) E(y)
(1− R)(1− 2R)− (n− 1)R2

=
(n− 1)R2

(1− R)(1− 2R)− (n− 1)R2
E(x)E(y)

R2

= φ(R)
E(x)E(y)

R2 =
E(x)E(y)

R2 , (28)

which proves (ii). The claim (iii) follows from Lemma 3 (iii) and claim (ii).

4. Local Convergence Analysis

In this section, we present a local convergence theorem for the multi-point iterative
methods (11). More precisely, we study the local convergence of the multi-point Ehrlich-
type methods (11) with respect to the function of the initial conditions E : Kn → R+ defined
by (13), where ξ ∈ Kn is a root vector of a polynomial f ∈ K[z].

Definition 4. We define a sequence (σN)
∞
N = 1 of functions σN : DN ⊂ Kn × . . .×Kn︸ ︷︷ ︸

N+1

→ R by

σN(x, y, . . . , z) = σ(x, Φ(N−1)(y, . . . , z)), (29)

where σ is defined by (16). The domain DN is defined by

DN ={(x, y, . . . , z) : x ∈ Kn, (y, . . . , z) ∈ DN−1,

(1− E(x))(1− E(x)− E(Φ(N−1)(y, . . . , z))) > (n− 1)E(x)E(Φ(N−1)(y, . . . , z)),

E(x) + E(Φ(N−1)(y, . . . , z)) < 1},

and DN is defined by (10).

Lemma 5. Let f ∈ K[z] be a polynomial of degree n ≥ 2 with n simple zeros in K and ξ ∈ Kn be
a root vector of f . Assume N ≥ 1 and (x, y, . . . , z) ∈ DN . Then:

(i) (x, y, . . . , z) ∈ DN ;

(ii) ‖Φ(N)(x, y, . . . , z)− ξ ‖ � σN(x, y, . . . , z) ‖x− ξ ‖;

(iii) E(Φ(N)(x, y, . . . , z)) ≤ σN(x, y, . . . , z) E(x),

where Φ(N) and σN are defined by (9) and (29), respectively.
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Proof. Applying Lemma 1 with y = Φ(N−1)(y, . . . , z), we obtain (i). It follows from Defini-
tion 2, Lemma 3 (ii) and Definition 4 that

‖Φ(N)(x, y, . . . , z)− ξ ‖ = ‖Φ(x, Φ(N−1)(y, . . . , z))− ξ ‖

� σ(x, Φ(N−1)(y, . . . , z)) ‖x− ξ ‖ = σN(x, y, . . . , z) ‖x− ξ ‖,

which proves (ii). From Definition 2, Lemma 3 (iii) and Definition 4, we obtain

E(Φ(N)(x, y, . . . , z)) = E(Φ(x, Φ(N−1)(y, . . . , z)))

≤ σ(x, Φ(N−1)(y, . . . , z)) E(x) = σN(x, y, . . . , z) E(x),

which proves (iii).

Lemma 6. Let f ∈ K[z] be a polynomial of degree n ≥ 2 with n simple zeros in K, and let ξ ∈ Kn

be a root vector of f . Assume N ≥ 1 and x, y, . . . , t, z are N + 1 vectors in Kn such that

max{E(x), E(y), . . . , E(z)} ≤ R =
2

3 +
√

8n− 7
, (30)

where the function E : Kn → R+ is defined by (13). Then:

(i) (x, y, . . . , t, z) ∈ DN ;

(ii) σN(x, y, . . . , t, z) ≤ E(x)E(y)2 . . . E(t)2E(z)
R2N ;

(iii) E(Φ(N)(x, y, . . . , t, z)) ≤ E(x)2E(y)2 . . . E(t)2E(z)
R2N .

Proof. The proof goes by induction on N. In the case N = 1, Lemma 6 coincides with
Lemma 4. Suppose that for some N ≥ 1 the three claims of the lemma hold for every N + 1
vectors x, y, . . . , t, z ∈ Kn satisfying (30). Let x, y, . . . , t, z ∈ Kn be N + 2 vectors satisfying

max{E(x), E(y), . . . , E(t), E(z)} ≤ R.

We must prove the following three claims:

(x, y, . . . , t, z) ∈ DN+1, (31)

σN+1(x, y, . . . , t, z) ≤ E(x)E(y)2 . . . E(t)2E(z)
R2(N+1)

, (32)

E(Φ(N+1)(x, y, . . . , z) ≤ E(x)2E(y)2 . . . E(t)2E(z)
R2(N+1)

. (33)

By induction assumption, we obtain (y, . . . , t, z) ∈ DN . By induction assumption (ii) and
(30), we obtain

E(x) + E(Φ(N)(y, . . . , t, z)) ≤ E(x) + E(y)2 . . . E(t)2E(z)/R2N ≤ 2R < 1. (34)

By induction assumption, we also have

(1− E(x))(1− E(x)− E(Φ(N)(y, . . . , z)))− (n− 1)E(x)E(Φ(N)(y, . . . , z))

> (1− R)(1− 2R)− (n− 1)R2 > 0
(35)



Mathematics 2021, 9, 1640 9 of 16

The inequalities (34) and (35) yield (x, y, . . . , z) ∈ DN+1, which proves (31). From Defini-
tion 4, Lemma 4 (ii) and induction assumption (ii), we obtain

σN+1(x, y, . . . , z) = σ(x, Φ(N)(y, . . . , z)) ≤ E(x) E(Φ(N)(y, . . . , z)/R2

≤ E(x)E(y)2 . . . E(t)2E(z)/R2(N+1),

which proves (32). Claim (33) follows from Lemma 5 (ii) and claim (32).

Now we are ready to state the first main result in this paper.

Theorem 2. Suppose f ∈ K[z] is a polynomial of degree n ≥ 2 which has n simple zeros in K,
ξ ∈ Kn is a root vector of f , and N ∈ N. Let x(0), x(−1), . . . , x(−N) ∈ Kn be initial approximations
such that

max
−N≤k≤0

E(x(k)) < R =
2

3 +
√

8n− 7
, (36)

where the function E : Kn → R+ is defined by (13). Then the multi-point Ehrlich-type iteration (11)
is well defined and converges to ξ with order r and error estimates

‖x(k+1) − ξ ‖ � λrk+N+1−rk+N‖x(k) − ξ ‖ for all k ≥ 0, (37)

‖x(k) − ξ ‖ � λrk+N−rN‖x(0) − ξ ‖ for all k ≥ 0, (38)

where r = r(N) is the unique positive root of the Equation (5), and λ is defined by

λ = max
−N≤k≤0

(
E(x(k))

R

)1/rk+N

. (39)

Proof. First, we will show that the iterative sequence (x(k))∞
k=−N generated by (11) is well

defined and the inequality
E(x(ν)) ≤ R λrν+N

(40)

holds for every integer ν ≥ −N. The proof is by induction. It follows from (39) that (40)
holds for −N ≤ ν ≤ 0. Suppose that for some k ≥ 0 the iterates x(k), x(k−1), . . . , x(k−N) are
well defined and

E(x(ν)) ≤ R λrν+N
for all k− N ≤ ν ≤ k. (41)

We shall prove that the iterate x(k+1) is well defined and that it satisfies the inequality (40)
with ν = k + 1. It follows from (39) that 0 ≤ λ < 1. Hence, from (41) we obtain

max
k−N≤ ν≤k

E(x(ν)) ≤ R.

Then by (11), Lemma 6 (iii), (41) and the definition of r, we obtain

E(x(k+1)) = E(Φ(N)(x(k), x(k−1) . . . , x(k−N)))

≤
(

E(x(k)) E(x(k−1)) . . . E(x(k−N+1))
)2

E(x(k−N))/R2N

≤ R
(

λrk+N
λrk+N−1 · · · λrk+1

)2
λrk

= R λrk(1+2r+...+2rN−1+2rN) = Rλrk+N+1
,

which completes the induction. By Lemma 6 (ii), (40) and the definition of r, we obtain the
following estimate

σN(x(k), x(k−1), . . . , x(k−N)) ≤ E(x(k))
(

E(x(k−1)) · · · E(x(k−N+1))
)2

E(x(k−N))/R2N

≤ λrk+N
(

λrk+N−1 · · · λrk+1
)2

λrk
= λrk(1+2r+...+2rN−1+rN) = λrk+N+1−rk+N

.
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From (11), Lemma 5 (ii) and the last estimate, we obtain

‖x(k+1) − ξ ‖ =‖Φ(N)(x(k), x(k−1), . . . , x(k−N))− ξ ‖

� σN(x(k), x(k−1), . . . , x(k−N)) ‖x(k) − ξ ‖

� λrk+N+1−rk+N ‖x(k) − ξ ‖,

which proved the a posteriori estimate (37). The a priori estimate (38) can be easily proved
by induction using the estimate (37). Finally, the convergence of the sequence x(k) to a root
vector ξ follows from the estimate (38).

Remark 1. It can be proved that the sequence r(N), N = 1, 2, . . ., of orders of the multi-point
Ehrlich-type methods (11) is an increasing sequence which converges to 3 as N → ∞. In Table 1,
one can see the order of convergence r = r(N) for N = 1, 2, . . . , 10.

Table 1. Values of the convergence order r = r(N) for N = 1, 2, . . . , 10.

N 1 2 3 4 5 6 7 8 9 10

r(N) 2.41421 2.83117 2.94771 2.98314 2.99446 2.99816 2.99939 2.99979 2.99993 2.99998

5. Semilocal Convergence Analysis

In this section, we present a semilocal convergence result for the multi-point Ehrlich
type methods (11) with respect to the function of initial conditions E f : D ⊂ Kn → R+

defined by

E f (x) =

∥∥∥∥∥W f (x)
d(x)

∥∥∥∥∥
∞

, (42)

where the function W f : D ⊂ Kn → Kn is defined by (2). We note that in the last decade,
this is the most frequently used function to set the initial approximations of semilocal
results for simultaneous methods for polynomial zeros. (see, e.g., [10,11,17–22]).

The new result is obtained as a consequence from the local convergence Theorem 2 by
using the following transformation theorem:

Theorem 3 (Proinov [19]). Let K be an algebraically closed field, f ∈ K[z] be a polynomial of
degree n ≥ 2, and let x ∈ Kn be a vector with pairwise distinct components such that∥∥∥∥∥W f (x)

d(x)

∥∥∥∥∥
∞

<
R(1 + R)

(1 + 2R)(1 + nR)
, (43)

where 0 < R ≤ 1/(
√

n− 1− 1). Then f has only simple zeros in K and there exists a root vector
ξ ∈ Kn of f such that ∥∥∥∥ x− ξ

d(ξ)

∥∥∥∥
∞
< R. (44)

Each iterative method for finding simultaneously all roots of a polynomial f ∈ K[z] of
degree n ≥ 2 is an iterative method in Kn. It searches the roots ξ1, . . . , ξn of the polynomial
f as a vector ξ = (ξ1, . . . , ξn) ∈ Kn. We have noticed in Section 2 that such a vector ξ is
called a root vector of f . Clearly, a polynomial can have more than one vector of the roots.
On the other hand, we can assume that the vector root is unique up to permutation.

A natural question arises regarding how to measure the distance of an approximation
x ∈ Kn to the zeros of a polynomial. The first step is to identify all vectors whose
components are the same up to permutation. Namely, we define a relation of equivalence



Mathematics 2021, 9, 1640 11 of 16

≡ on Kn by x ≡ y if the components of x and y are the same up to permutation. Then
following [11,20], we define a distance between two vectors x, y ∈ Kn as follows

ρ(x, y) = min
v≡ y
‖x− v‖∞. (45)

Note that ρ is a metric on the set of classes of equivalence. For simplicity, we shall identify
equivalence classes with their representatives.

In what follows, we consider the convergence in Kn with respect to the metric ρ.
Clearly, if a sequence x(k) in Kn is convergent to a vector x ∈ Kn with respect to the norm
‖ · ‖, then it converges to x with respect to the metric ρ. The opposite statement is not true
(see [11]).

Before formulating the main result, we recall a technical lemma.

Lemma 7 ([11]). Let x, ξ, ξ ∈ Kn be such that ξ ≡ ξ. Then there exists a vector x ∈ Kn such that
x ≡ x and ∥∥∥∥∥ x− ξ

d(ξ)

∥∥∥∥∥
∞

=

∥∥∥∥ x− ξ

d(ξ)

∥∥∥∥
∞

. (46)

Now we can formulate and prove the second main result of this paper.

Theorem 4. Suppose K is an algebraically closed field, f ∈ K[z] is a polynomial of degree
n ≥ 2 and N ∈ N. Let x(0), x(−1), . . . , x(−N) ∈ Kn be initial approximations satisfying the
following condition:

max
−N≤ k≤ 0

E f (x(k)) < Rn =
2(5 +

√
8n− 7)

(2n + 3 +
√

8n− 7)(7 +
√

8n− 7)
, (47)

where the function E f is defined by (42). Then the polynomial f has only simple zeros and the
multi-point Ehrlich-type iteration (11) is well defined and converges (with respect to the metric ρ)
to a root vector ξ of f with order of convergence r = r(N), where r is the unique positive solution
of the Equation (5).

Proof. The condition (47) can be represented in the form

max
−N≤ k≤ 0

∥∥∥∥∥W f (x)
d(x)

∥∥∥∥∥
∞

<
R(1 + R)

(1 + 2 R)(1 + n R)
, (48)

where R is defined in (36). From Theorem 3 and the inequality (48), we conclude that f has
n simple zeros in K and that there exist root vectors ξ(0), ξ(−1), . . . ξ(−N) ∈ Kn such that

max
−N≤ k≤ 0

∥∥∥∥∥ x(k) − ξ(k)

d(ξ(k)

∥∥∥∥∥
∞

< R. (49)

Let us put ξ(0) = ξ. Since ξ(0), ξ(−1), . . . ξ(−N) are root vectors of f , then ξ(k) ≡ ξ for all
k = 0,−1, . . . ,−N. It follows from Lemma 7 that there exist vectors x(0), x(−1), . . . , x(−N)

such that x(k) ≡ x(k) and (49) can be represented in the form

max
−N≤ k≤ 0

∥∥∥∥∥ x(k) − ξ

d(ξ)

∥∥∥∥∥
∞

< R. (50)

It follows from Theorem 2 and inequality (50) that the multi-point iterative method (11)
with initial approximations x(0), x(−1), . . . , x(−N) is well defined and converges to ξ. Hence,
the iteration (11) with initial approximations x(0), x(−1), . . . , x(−N) converges with respect
to the metric ρ to the root vector of f .
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The following criterion guarantees the convergence of the methods (11). It is an
immediate consequence of Theorem 4.

Corollary 1 (Convergence criterion). If there exists an integer m ≥ 0 such that

Em = max
{

E f (x(m)), E f (x(m−1)), . . . , E f (x(m−N))
}
< Rn , (51)

then f has only simple zeros and the multi-point Ehrlich-type iteration (11) converges to a root
vector ξ of f .

The next result is an immediate consequence of Theorem 5.1 of [19]. It can be used as
a stopping criterion of a large class of iterative methods for approximating all zeros of a
polynomial simultaneously.

Theorem 5 (Proinov [19]). Suppose K is an algebraically closed field, f ∈ K[z] is a polynomial
of degree n ≥ 2 with simple zeros, and (x(k))∞

k=0 is a sequence in Kn consisting of vectors with
pairwise distinct components. If k ≥ 0 is such that

E f (x(k)) < µn = 1/(n + 2
√

n− 1), (52)

then the following a posteriori error estimate holds:

ρ(x(k), ξ) ≤ εk = α(E f (x(k))) ‖W f (x(k)‖∞ , (53)

where the metric ρ is defined by (45), the function E f is defined by (42), and the function α is
defined by

α(t) = 2/(1− (n− 2)t +
√
(1− (n− 2)t)2 − 4t). (54)

6. Numerical Examples

In this section, we present two numerical examples in order to show the applicability
of Theorem 4. Using the convergence criterion (51), we show that at the beginning of the
iterative process it can be proven numerically that the method is convergent under the
given initial approximations.

We apply the first four methods of the family (11) for calculating simultaneously all
the zeros of the selected polynomials. In each example, we calculate the smallest m > 0
that satisfies the convergence criterion (51). In accordance with Theorem 5, we use the
following stop criterion

E f (x(k)) < µn and εk < 10−12, (55)

where µn and εk are defined by (52) and (53), respectively. To see the convergence behavior
of the methods, we show in the tables εk+1 in addition to εk.

In both examples, we take the same polynomials and initial approximations as in [11],
where the initial approximations are chosen quite randomly. This choice gives the oppor-
tunity to compare numerically the convergence behavior of the multi-point Ehrlich-type
methods with those of the multi-point Weierstrass-type methods which are studied in [11].

To present the calculated approximations of high accuracy, we implemented the
corresponding algorithms using the programming package Wolfram Mathematica 10.0
with multiple precision arithmetic.

Example 1. The first polynomial is

f (z) = z3 − (2 + 5i)z2 − (3− 10i)z + 15i (56)
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with zeros−1, 3 and 5i (marked in blue in Figure 1). For N ∈ {1, 2, 3, 4}, the initial approximations
x(0), x(−1), . . . , x(−N) in C3 are given in Table 2, where

a = (5 + i, 7− i,−4.5i), b = (1,−2.7, 4.5i), c = (−5i, 2, 8),

u = (−10,−5i, 8), v = (i, 3 + i, 8).

In the case N = 3, the initial approximations are marked in red in Figure 1.

Table 2. Initial approximations for Example 1.

N x(−4) x(−3) x(−2) x(−1) x(0)

1 − − − a b
2 − − a b c
3 − a b c u
4 a b c u v

The numerical results for Example 1 are presented in Table 3. For instance, for the
multi-point Ehrlich-type method (11) with N = 3, one can see that the convergence condi-
tion (51) is satisfied for m = 6 which guarantees that the considered method is convergent
with order of convergence r = 2.94771. The stopping criterion (55) is satisfied for k = 6
and at the sixth iteration the guaranteed accuracy is 10−16. At the next seventh iteration,
the zeros of the polynomial f are calculated with accuracy 10−47.

Table 3. Convergence behavior for Example 1 (Rn = 0.125, τn = 0.171573).

N m E f (x(m)) k E f (x(k)) εk εk+1 r

1 4 0.036247 5 0.000039 9.06336× 10−14 1.52321× 10−32 2.41421
2 5 0.001957 5 0.001957 5.97453× 10−17 5.45631× 10−48 2.83117
3 6 0.076062 6 0.076062 2.46336× 10−16 1.05897× 10−47 2.94771
4 7 0.083021 7 0.083021 6.50717× 10−17 3.80803× 10−51 2.98314

In Figure 1, we present the trajectories of the approximations generated by the first
six iterations of the method (11) for N = 3. We observe how each initial approximation,
moving along a bizarre trajectory, finds a zero of the polynomial.

Example 2. The second polynomial is

f (z) = z7 − 28 z6 + 322 z5 − 1960 z4 + 6769 z3 − 13132 z2 + 13068 z− 5040 (57)

with zeros 1, 2, 3, 4, 5, 6, 7 (marked in blue in Figure 2). For given N ∈ {1, 2, 3, 4}, the initial
approximations x(k) ∈ Cn (k = −N, . . . ,−1, 0) are chosen with Aberth initial approximations
as follows:

x(k)ν = − a1

n
+ Rk exp (iθν), θν =

π

n

(
2ν− 3

2

)
, ν = 1, . . . , n, (58)

where a1 = −28, n = 7, Rk = R + 2− k and R = 13.7082. In the case N = 3, the initial approx-
imations are marked in red in Figure 2.
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Figure 1. Trajectories of the approximations for Example 1 (N = 3).

The numerical results for Example 2 are presented in Table 4. For example, for the
multi-point Ehrlich-type method (11) with N = 3, the convergence condition (51) is satisfied
for m = 7 and the stopping criterion (55) is satisfied for k = 8 which guarantees an accuracy
10−22. At the next ninth iteration, the zeros of the polynomial f are calculated with accuracy
10−65. In Figure 1, we present the trajectories of the approximations generated by the first
seven iterations of the method (11) for N = 3. One can see that the trajectories are quite
regular in the case of Aberth’s initial approximations.

Table 4. Convergence behavior for Example 2 (Rn = 0.125, τn = 0.171573).

N m E f (x(m)) k E f (x(k)) εk εk+1

1 18 0.00526 21 3.48544× 10−10 4.73454× 10−16 1.25695× 10−38

2 6 0.01689 8 7.85062× 10−6 4.23967× 10−17 1.06658× 10−48

3 7 0.01348 8 0.00038 1.12167× 10−22 6.66169× 10−65

4 14 0.03215 14 0.03215 6.61642× 10−24 4.98369× 10−71
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Figure 2. Trajectories of the approximations for Example 2 (N = 3).

7. Conclusions

In this paper, we introduced a new family of multi-points iterative methods for
approximating all the zeros of a polynomial simultaneously. Let us note that the first
member of this family is the two-point Ehrlich-type method introduced in 1999 by Trićković
and Petković [9]. Its convergence order is r = 1 +

√
2 .

We provide a local and semilocal convergence analysis of the new iterative methods.
Our local convergence result (Theorem 2) contains the following information for each
method: convergence order; initial conditions that guarantee the convergence; a priori and
a posteriori error estimates. In particular, each method of the family has super-quadratic
convergence of order r ∈ [1 +

√
2, 3). Our semilocal convergence result (Theorem 4) can be

used to numerically prove the convergence of each method for a given polynomial and
initial approximation.

Finally, we would like to note that the local convergence theorem was obtained by a
new approach developed in our previous article [11]. We believe that this approach can be
applied to obtain convergence results for other multi-point iterative methods.
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