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Abstract: With the quickly evolving hardware landscape of high-performance computing (HPC)
and its increasing specialization, the implementation of efficient software applications becomes
more challenging. This is especially prevalent for domain scientists and may hinder the advances
in large-scale simulation software. One idea to overcome these challenges is through software
abstraction. We present a parallel algorithm model that allows for global optimization of their
synchronization and dataflow and optimal mapping to complex and heterogeneous architectures.
The presented model strictly separates the structure of an algorithm from its executed functions.
It utilizes a hierarchical decomposition of parallel design patterns as well-established building
blocks for algorithmic structures and captures them in an abstract pattern tree (APT). A data-centric
flow graph is constructed based on the APT, which acts as an intermediate representation for
rich and automated structural transformations. We demonstrate the applicability of this model to
three representative algorithms and show runtime speedups between 1.83 and 2.45 on a typical
heterogeneous CPU/GPU architecture.

Keywords: parallel programming; parallel patterns; program optimization; optimizing framework;
dependence analysis

1. Introduction

Advances in science are intrinsically linked to a steady rise in computing power. Due
to the three walls [1], this demand is met with increasingly parallel processors and hardware
specialization. Modern clusters are thus heterogeneous and the computing nodes are often
equipped with different, specialized processors. However, the size and complexity of
typical legacy codes challenge the programming productivity of many domain scientists
and foster their reliance on (automatic) performance portability between architectures.

The major challenge for maintaining the performance of a parallel algorithm on new
architectures is the optimal utilization of parallelism on three levels: (i) instruction-level,
(ii) routine (local), and (iii) algorithm (global). As such, optimization on all these levels is
laborious and requires expert knowledge. Thus, significant efforts target the design of
programming abstractions such as parallel programming models and automatic transfor-
mation techniques: There are various transformation techniques and capable production
compilers for level (i) [2]. Level (ii) is mainly addressed with parallel programming mod-
els providing an abstraction over specific processor features such as OpenMP [3], CUDA,
and MPI [4]. Furthermore, a sophisticated parallel programming methodology has been
developed around the concept of parallel patterns [5,6] and the abstraction to local struc-
tural parallelism of algorithms. Based on these advances, recent programming models
like RAJA [7], Kokkos [8], and Stateful Dataflow Multigraphs [9] enable the implementation
and (partially) automatic optimization for different target architectures. These optimiza-
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tions include local dataflow and control flow transformations such as data layouts and
nested parallelism.

However, there is a lack of effective global transformation techniques. On the one hand,
global transformations require large-scale static analyses for identifying concurrency. These
analyses are highly combinatorial complex or even infeasible for dynamic programs. On the
other hand, global transformations intertwine with the more general decision of mapping
the workload to different processors. While lower-level transformations are applied for
a single target architecture, global transformations need to tradeoff significant structural
changes based on their effect on the concurrency of the algorithm and its utilization of the
available hardware. For instance, the fusion of multiple routines might enable the use of a
massively parallel accelerator. At the same time, each of these routines might, however, be
executed on dedicated processors simultaneously. With increasing heterogeneity, the global
transformation of parallel algorithms and their mapping decision cannot be separated.

This paper provides the theoretical model of a framework that enables global opti-
mizations and automatic hardware mapping. It abstracts parallel algorithms in a global,
structural representation called abstract pattern tree (APT). This APT captures high-level
data dependencies between local parallel structures formalized in a generic parallel pattern
definition. Global transformations and automatic mappings are then derived based on
optimizing algorithmic efficiencies. These efficiencies are necessary performance conditions
defined over the global properties of the APT.

In summary, our key contributions are as follows:

• A model of parallel algorithms is introduced, which abstracts the algorithmic structure
from the executed functions. This model facilitates the analysis of global algorithmic
properties while building on a flexible definition of local parallel structures.

• A new class of global transformation techniques is enabled by introducing necessary per-
formance conditions called algorithmic efficiencies. Three main efficiencies are identified:
synchronization, inter-processor dataflow, and intra-processor dataflow efficiency.

• The model’s applicability is demonstrated on three typical parallel algorithms show-
casing the major transformation capabilities, and their performance improvements
are investigated.

The remainder of this paper is structured as follows: Related work is analyzed in
Section 2. Section 3 introduces the essential algorithm representation in the form of the
APT. Section 4 introduces the idea of algorithmic efficiencies and identifies three main
efficiencies. The applicability of the model is investigated with three case studies of typical
parallel algorithms in Section 5. Section 6 provides a discussion of the presented techniques
towards optimality, applicability, and its integration into compiler frameworks. Section 7
concludes the work and provides an outlook into future work.

2. Related Work

There is extensive literature that addresses related problems or subproblems of this
work. In the following, the most relevant literature for this work is discussed in groups
based on the specific research question they target.

2.1. Abstractions for Parallel Programming

The used separation of structure and function in this work relates to the original work
on design patterns introduced by Christopher Alexander et al. [10] for the architectural
domain and later applied to the design of software [11,12]. Based on these works, algo-
rithmic skeletons [13] and parallel design patterns were developed by Mattson et al. [5]
and McCool et al. [6]. These building blocks can be found in most parallel programming
models and provide interoperability and a common terminology with this work. Cole [13]
and Darlington et al. [14] have developed algorithmic skeleton frameworks as the first
approach to this end. They were later extended to a wide variety of similar approaches
such as GrPPI [15], Fastflow [16], and many others [17]. These frameworks are typically
designed as libraries of pre-defined patterns. While they provide high-performance imple-
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mentations, they typically lack the global transformations and optimal hardware mapping
targeted in this work.

Similarly, OpenMP [3], OpenACC [18], OpenCL [19], and SYCL [20] focuses on local
loop-level optimizations, RAJA [7] and Kokkos [8] on task-based parallelism and rule-based
performance portability, Halide [21] on image and array processing, and MPI [4] on com-
munication and SPMD optimizations. Julia [22], MATLAB [23], and similar programming
languages focus on computer algebra, while Tensorflow [24], MapReduce [25], and simi-
lar programming languages mainly target data-centric and machine learning workloads.
These approaches allow expressing parallel algorithms adequately but focus on specific
domains or local optimization. Instead, our holistic approach aims at global optimizations
for the broad domains of scientific software. We use generic parallel patterns as formal
elements that provide structural and syntactical information about local concurrency. The
proposed model exposes concurrency, guarantees correctness, and globally optimizes the
execution for a specific hardware architecture.

2.2. Transformation Techniques

The optimization techniques developed in this work are targeted at global optimiza-
tions. For instruction-level optimizations, there is extensive literature on optimizing
compilers targeted at HPC, such as Bacon et al. [2]. The framework CHiLL [26] proposes
transformations to complex loop nests described by a sequence of high-level transforma-
tions. Flattening transformations as seen in NESL [27] and data-parallel Haskell [28], as
well as studies by Blelloch et al. [29] and Chakravarty and Keller [30], provide means to
compile nested data parallelism to flattened data-parallel code. While nested parallelism
allows for high-level abstractions, its transformations can significantly impact the perfor-
mance of the generated code [31]. Moreover, there exist many rule-based approaches for
transforming routines such as Lift [32], Steuwer et al. [33], Rasch et al. [34]. In contrast, this
work provides automatic global transformations and hardware mappings based on a static
performance model.

2.3. Architectural Mapping and Code Generation

There are multiple approaches for mapping parallel algorithms to specific hardware
architecture. The NP-hard MAKESPAN SCHEDULING problem on unrelated machines
is a static approach for which different approximation algorithms were proposed [35].
Beaumont et al. [36] have discussed the automatic mapping of parallelism to heterogeneous
architectures for local parts of programs instead of the global approach suggested in
this work. While this work focuses on static optimizations, there exist many dynamic
approaches such as cluster resource management systems [37] and runtime systems that
place threads and processes according to their memory affinities and communication
patterns [38]. Furthermore, this work integrates the mapping decision into the global
optimization to minimize the overall runtime and optimize the utilization of the given
hardware architecture.

Intel’s Array Building Blocks [39] dynamically generates code from a high-level
specification of data-parallel patterns to target heterogeneous architectures. Similarly,
Copperhead [40] and Stateful Dataflow Multigraphs [9] optimize and lower data-parallel
Python code. Furthermore, modern polyhedral compilers such as Pluto [41], PetaBricks [42],
PPCG [43], and Tensor Comprehensions [44,45] can expose parallelism and target multiple
hardware architectures. They typically provide advanced optimizations for common
problems such as loop-level parallelism.

3. A Theoretical Model of Parallel Algorithms

In the following, the basic theoretical model of the optimization framework is defined,
and a representation of parallel algorithms based on parallel building blocks denoted
abstract pattern tree (APT) is introduced. The APT is a self-contained structure for the global
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optimizations to be applied, and the whole framework is therefore widely decoupled from
language-specific properties.

3.1. Performance Definition and Model Assumptions

The framework’s goals are global optimization and the optimal mapping of parallel
algorithms onto a target architecture. Thereby, optimality is defined in terms of minimal
overall execution time for given hardware. This can include multiple nodes with heteroge-
neous architectures. The focus on global properties allows for the following separation: A
parallel algorithm consists of structural information such as concurrency, synchronization,
dependencies, input and output data and functional information, which provide the actual
computation. While the functional information may guide specific information, e.g., in a
static performance model, the global transformations rely on structural information only.
Furthermore, the model uses the following assumptions on the parallelism of the algorithm
provided by the developer:

• Local Optimality: Locally, the parallel hotspots have been identified, and the potential
independence of their operations is expressed optimally in the algorithmic structure.
This assumption can be assured by methods for identifying concurrency, such as
introduced by Mattson et al. [5].

• Correct: All dependencies are well-defined, and the algorithm is free of data races,
deadlocks, and similar correctness issues.

3.2. Algorithmic Representation

The algorithmic structure is represented in a dataflow-centric fashion with the follow-
ing structural elements:

• A data item, in short data, is produced and consumed as the result of computations
during the execution of an algorithm. Thereby, a data item is immutable and does not
refer to a memory location.

• An operation is a set of instructions producing and consuming data, which resembles
the task definition of typical parallel programming models. This set of instructions is
interpreted atomically.

• A place is a source (does not consume data) or a sink (does not produce data), i.e.,
external inputs and outputs of the parallel algorithm.

• A data dependency between operations occurs when one operation consumes a data
item another operation produces. The definition by A. J. Bernstein [46] corresponds to
a flow dependency (or true dependency, read-after-write, RAW).

Hence, the model represents a directed data-dependency graph based on flow de-
pendencies. It covers data and control dependencies, while name dependencies like the
anti-dependency (write-after-read) and the output dependency (write-after-write) are not
interpretable in this model because of the missing relation to memory locations. This also
ensures that data-dependency graphs are always acyclic in this model.

3.2.1. Local Structures: Serial and Parallel Patterns

Local structures like loops or functional calls reoccur throughout parallel algorithms
and are thus called patterns. Formally, each pattern is a data-dependency graph with opera-
tions and data items; the places of this graph are the results of preceding local structures.
The resulting directed graph is denoted a pattern diagram (PD), PD = (VPD, EPD). PDs
allow for the efficient analysis of local parallelism, which is defined as follows:

• An operation o ∈ VPD depends on another operation o′ ∈ VPD, iff there is a non-empty
directed path from o′ to o. All other operations are independent (cf. happens-before
relation [47]).

• Let o ∈ VPD be an operation and let o1, . . . , ok be the depending operations of
o, i.e., (oi, o) ∈ EPD, ∀i = 1, . . . , k. The earliest-execution-time of o is defined as
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t(o) := max{t(o1), . . . , t(ok)}+ 1 (all operands are available) with t(p) := 0 for any
place p.

• Let STEPn ⊆ VPD denote the set of all pairwise independent operations with earliest-
execution-time of n. The operations of STEPn are pairwise parallel and form a single
logical step of the pattern.

A pattern is called a parallel pattern if there are at least two parallel operations. Oth-
erwise, it is called a serial pattern. For example, Figure 1 shows four operations, each
consuming overlapping items from an array of data in a regular access scheme. This is the
structural abstraction of the four applications of a 2× 2 kernel on a flattened 3× 3 matrix.
The structure is commonly called a stencil, which is a specific instance of the generic parallel
pattern definition.

f1,1 f1,2 f1,3 f1,4

Figure 1. Pattern diagram of a stencil on 3× 3 matrix with a 2× 2 filter.

3.2.2. Global Structure: Abstract Pattern Tree

The APT is the high-level representation of an algorithmic structure providing a global
perspective on a parallel algorithm. Formally, the APT is an undirected graph with the
nodes being the patterns occurring in the algorithm and the edges reflecting the execution
order specified by the developer. The execution starts with the topmost serial node, which
calls its child nodes in sequential order from left to right. Rectangular boxes represent
the serial nodes, and undirected edges represent the dependencies between patterns. The
parallel nodes are shown through circular boxes and summarize the local pattern diagrams.
In a typical application, the pattern nodes are instances of specific parallel patterns such as
a map or a reduction. Such patterns can be understood as higher-order functions with fixed
schemes of data dependencies repeated over the input data. In these cases, the well-defined
regularity of the pattern allows significant compression of the structural information
making a global static analysis between different local patterns in the APT feasible.

Furthermore, the APT is enriched with information regarding hardware mapping.
During the optimization step, as described in the following chapter, the execution schedule
and target hardware is determined and added as metadata to the nodes of the APT.
This includes splitting of parallel patterns into partitions to be executed by processors
and the required data transfers. Additionally, the hardware description as used by the
optimization can be stored in the APT or through a separate hardware description language.
This includes the abstraction of the hardware with the main performance metrics such as
computational throughput, sustainable memory bandwidths and latencies, and the memory
hierarchy. The final APT, after the optimization steps, then contains all information required
to generate machine code.

An example of an APT is provided in Figure 2, which shows the algorithmic structure
of a typical image manipulation algorithm that first computes the image gradients and
then applies a 1D filter to the image. Its structure consists of a stencil with a PD similar
to Figure 1 and a subsequent composition of a map and a reduction corresponding to the
structure of matrix-vector multiplication.
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serial

stencil map

reduction

Figure 2. Example of the algorithmic structure of an image manipulation algorithm that first com-
putes the image gradients and then applies a 1D-filter to the image.

3.2.3. Basic Notations

Throughout this paper, a target architecture comprises a set of processors P . Graphi-
cally, an operation in a PD, o ∈ VPD, is described by a rectangular box, a place by a circular
box, and a data dependency by a directed edge. Parallel operations of a PD form a STEP
and are arranged on the same horizontal axis. The APT consists of rectangular boxes repre-
senting serial patterns, circular boxes representing parallel patterns, and undirected edges
representing the dependencies between patterns. The children of a serial pattern are to be
executed from left to right. Additionally, the STEP notation introduced on the level of PDs
is also used at the scope of the whole algorithm. These global steps GSTEP1, . . . , GSTEPN
are defined analogously and can be constructed directly from the local steps STEPn. The
disjoint union of all global steps equals the set of all operations O.

4. Algorithmic Efficiencies

The following chapter introduces a static performance model, enabling the derivation
of global mapping decisions and transformations. The proposed performance model
makes use of the concept of algorithmic efficiencies as sketched in [48]. Algorithmic
efficiencies define necessary optimality conditions of performance over different global
properties of algorithms. The separation into different properties allows to optimize the
performance separately and reduces the complexity compared to a joint optimization.
Runtime estimates in algorithmic efficiencies are thereby parameterized into cost functions,
modeled with existing performance models. Furthermore, each efficiency is defined over
the properties of the APT. Thus, transformations of the APT are also directly captured by
the performance model.

4.1. Algorithmic Steps and Synchronization

The synchronization efficiency seeks to maximize the potential parallelism before map-
ping the operations to an architecture. On the global algorithmic level, this potential is
mainly limited by unidentified parallelism such as false linearization of independent parallel
patterns. Linearization of parallel patterns is thereby defined as the sequential order of two
patterns due to data dependencies.

Although asynchronous techniques on the instruction-level may hide such lineariza-
tion to some extent, linearization on the global level still reduces the potential parallelism
during optimization. Therefore, maximizing this potential by resolving false lineariza-
tion is a prerequisite before deriving the actual mapping and applying transformations.
Formally, this problem is described by the global steps, GSTEP1, . . . , GSTEPN , defined
by the developer and the goal of pulling patterns into earlier steps so that the overall
number of steps is reduced and the width of the steps is maximized. Utilizing static data
dependency analysis [46,49], false data dependencies might be identified and the number
of steps reduced:

Definition 1 (Synchronization Efficiency). An algorithm is synchronization efficient if it has a
minimal number of global steps.
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4.2. Inter-Processor Dataflow

The inter-processor dataflow efficiency guides the mapping of operations to processors.
In this context, the abstract term processor refers to any homogeneous group of cores
sharing the same processor-local cache. Furthermore, the space of mappings is restricted to
functions, i.e., each operation must be executed on a single processor.

Without loss of generality, a mapping M : O → P can be decomposed into a sequence
of step-wise mappings MT

1 , where each step-mapping Mt : GSTEPt → P is a function on
the subset of operations of the global step. To compare mappings, the efficiency assigns
any mapping a cost as follows: The execution costs Et : P × 2GSTEPt → R define the costs for
executing a set operations on a processor. Hence, the execution costs are step-local. Further-
more, the network costs Nt : P × 2GSTEPt → R account for the costs of communicating the
data between two operations. Those costs may depend on previous steps and mappings,
which are indicated by the semicolon notation in the function Nt(·, ·; Mt−1

1 ). The total costs
of a mapping is then the sum of the maximal costs of operations assigned to a processor
M−1

t (P) over all steps t = 1, . . . , T:

T

∑
t=1

max
P

[
Et(P, M−1

t (P)) + Nt(P, M−1
t (P); Mt−1

1 )
]
,

leading to the following efficiency:

Definition 2 (Inter-Processor Dataflow Efficiency). A mapping MT
1 is inter-processor dataflow

efficient if it has minimal total costs for the execution and network.

Conceptually, this efficiency implies a multi-step scheduling problem, where pro-
cessors are distinguishable in the execution of operations and data access times. This
distinction of two dueling properties is an essential aspect of effective mapping and trans-
formation decisions: Minimizing the execution costs is typically achieved by spreading
the computation across processors. Simultaneously, the network costs and its full context-
dependence require minimizing the dataflow between different processors to keep the
need for communication minimal.

Cost Modeling

The costs of the above efficiency are introduced in a modular manner. Thus, different
performance models can be used to refine the exact costs with respect to the target architec-
tures and the complexity of the resulting optimization problem. For instance, the modeling
may be similar to the roofline model [50]:

• Execution costs: The execution of operations is captured by the number of floating point
operations (FLOPS) divided by the peak performance πP (clock frequency times FLOPS
per cycle):

Et(P, M−1
t (P)) := ∑o FLOPS(o)

πP
,

o ∈ M−1
t (P).

• Network costs: The network costs are defined as the slowest data transfer between
two processors. A data transfer thereby bundles all bytes to be transferred from one
processor to another to satisfy the data dependencies. The bandwidth βs(P′, P) is
determined by the slowest interconnect between these two processors and a latency
penalty Γs(P′, P) is added:

Nt(P, M−1
t (P)) := max

P′

{
∑(o′ ,o) BYTES((o′, o))

βs(P′, P)
+ Γs(P′, P)

}
,

o ∈ M−1
t (P), o′ ∈ M−1

1...t−1(P′).
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Furthermore, the roofline model assumes the execution and network costs to over-
lap entirely. In general, the degree of overlap may, however, be controlled by a set of
hyperparameters κP,t yielding:

∑
t

max
P

[
(1− κP,t)·Et(P, M−1

t (P)) + Nt(P, M−1
t (P); Mt−1

1 )
]
,

0 ≤ κP,T ≤ min

{
1,

Nt(P, ·)
Et(P, ·)

}
.

4.3. Intra-Processor Dataflow

Previous efficiencies result in a global mapping of operations to the different proces-
sors. To this end, the notion of steps and linearization is a convenient simplification on the
global level, where workloads are assumed to be significant. However, the simplification
becomes inadequate for analyzing the execution of operations on the cores of a processor.
For instance, multiple operations may be executed simultaneously through vectorization.
Furthermore, operations of different steps may overlap due to asynchronous techniques in
hardware such as prefetching or hyperthreading.

The intra-processor dataflow efficiency therefore seeks to optimize the execution of opera-
tions on a processor’s cores targeting the execution units and core-local caches. In principle,
this assignment may be solved as part of the previous efficiency. However, the cores of
a processor are assumed to be homogeneous, and the resulting scheduling problem may
therefore be adequately solved with simpler heuristics such as static scheduling based on
loop indices. Furthermore, the efficiency involves other instruction-level optimizations,
such as improving operations overlap through asynchronous techniques. Because of the
global scope of this paper, this optimization must be delegated to downward compilers
relying on a comprehensive toolset of best practices; see related work for approaches
(RAJA, Kokkos).

5. Evaluation

The theoretical model formulates the automatic mapping and global transformation
problem as an optimization over costs. The following evaluation’s purpose is to assess
whether this provides a suitable basis for a class of optimization and mapping algorithms
targeting heterogeneous architectures. In detail, it must be shown that performance-critical
transformation and mapping decisions, as typically applied by a performance engineer, can
be reproduced as the result of cost minimization on practical problems. This work focuses
on algorithmic changes, accelerator offloading, and distributed computing. The evaluation
is based on benchmarks representing typical parallel algorithms and two representative
heterogeneous CPU-GPU nodes found in modern clusters.

5.1. Experimental Setup

Due to the combinatorial complexity of possible mappings, the evaluation focuses
on comparing two mapping hypotheses: A baseline version and an optimized version are
identified for each benchmark. The baseline version closely follows the numerical definition
of the algorithm, whereas the optimized version comprises the typical performance-critical
transformation and mapping decisions. Based on these transformations and the cost
definition sketched in Section 4.2, it is investigated whether the optimized version is
also preferred in the cost-based framework. Furthermore, both hypotheses are manually
implemented in C, and both versions’ runtimes are compared to their costs. The difference
to an algorithmic setup is then the space of mappings, i.e., an algorithm can search through
a more expansive space of mappings of finer distinctions. The exemplary cost function
may not be detailed enough to reproduce the quality of the optima in these cases, and a
cost function would be required, which captures more architecture-specific properties.

The evaluation comprises the following benchmarks:
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• Jacobi: The problem showcases the capabilities of the model for applying algorithmic
changes. Two linear equation systems Ax = b and Ax′ = b′ are defined who share
A and are of size 8192 × 8192. The equations are solved iteratively with the Jacobi
algorithm and a fixed number of iterations K = 50 for both systems.

• k-means: The problem showcases the automatic accelerator offloading capabilities of
the model. The algorithm partitions n = 107 data points into k = 128 clusters. The
mean Euclidean distances of the data points to their respective nearest cluster are
minimized iteratively in 100 iterations.

• Monte Carlo Pi: The problem showcases the distributed computing capabilities of the
model. It defines the approximation of π via the Monte Carlo method. The area of
a unit circle is accumulated by averaging over 96 independent estimations with 109

random draws each.

The investigated architecture consists of two typical CPU-GPU nodes connected via
Intel® Omni-Path with a bandwidth of 100 Gb/s. Each node features two Intel® Skylake®

Platinum 8160 processors with 24 cores each, a base clock frequency of 2.1 GHz, disabled
HyperThreading, and 192 GB of DDR4 RAM. Two NVIDIA® Tesla® V100 GPUs with 16 GB
of HBM2 memory are connected via PCI-express. The implementations are done manually
in C with OpenMP 4.5 for shared memory problems, OpenMPI 3.1.3 for distributed memory
problems, and CUDA 10.2 for GPU offloading problems. The GCC compiler in version 9.3.0
with compiler flags -fopenmp -std=c99 -O2 is used to generate CPU code and the NVIDIA
compiler version 10.2 with GCC version 8.2.0 with compiler flags -Xcompiler -fopenmp for
the GPU code. The costs of the different transformation and mapping hypotheses are
derived manually, the runtime measurements are repeated 30 times, and median values
are reported.

5.2. Results

The experiments and results for each benchmark are explained in the following
sections. Table 1 provides a brief overview of costs, runtimes, and transformations.

Table 1. The estimated costs and the median measured runtime in seconds for the baseline version
(base) and the optimized version (opt.).

Algorithm
Cost [s] Runtime [s]

Transformations
Base Opt. Base Opt.

Jacobi 0.410 0.288 0.986 0.539 Fusion, re-ordering, pipelining
k-means 15.543 5.052 9.594 3.921 GPU offloading

Monte Carlo Pi 12.381 6.190 43.449 22.238 Distributed computing

5.2.1. Jacobi Algorithm

The benchmark consists of two linear equation systems Ax = b and Ax′ = b′ sharing
the same matrix A. Both systems are to be solved iteratively with the Jacobi algorithm.
Each iteration is a map over the rows of the matrix, yielding an APT consisting of a
sequence of maps. The setup exploits two high-level properties to be considered by an
optimization framework:

1. The two Jacobi applications are independent and could be fused into a single sequence
of Jacobi iterations.

2. In each iteration, the corresponding rows between both equation systems share the
same data from matrix A.

Hypotheses: The baseline hypothesis does not fuse the Jacobi applications and solves
the systems one after another. Each Jacobi iteration is split into an upper half and lower half
of equations. These halves are always assigned to the two 24-core CPUs of a single node.
The optimized version fuses the two Jacobi applications and executes the whole workload
on the same two 24-core CPUs of a single node. It thereby assigns the corresponding halves
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of both equation systems of a single iteration to the same CPU according to the shared data
of matrix A. The resulting costs are reported in Table 1, which shows that the baseline costs
are 0.410 s, and the optimized costs are 0.288 s. Furthermore, the implementation of both
versions yield median runtimes of 0.986 s and 0.539 s, respectively.

5.2.2. k-Means Algorithm

The benchmark consists of a clustering task on a dataset with the k-means algorithm.
In detail, 107 two-dimensional points of a synthetic dataset need to be assigned to k = 128
clusters, where the result is obtained after 100 iterations. Each iteration of the k-means
algorithm comprises two stages, an assignment and an update step. Both steps contain map
patterns on large, dense data defining a massive, data-parallel task. Therefore, a typical
manual optimization is to offload the whole computation to a suitable accelerator such as
the GPU in the considered setup.

Hypotheses: The baseline version executes the whole computation on the CPUs of a
single node with 48 cores. The optimized version offloads the computation to the GPU of a
single node considering the massive data parallelism of the application. The resulting costs
are reported in Table 1, showing the costs of baseline and optimized with 15.543 and 5.052
s. The runtimes are measured at 9.594 and 3.921 s.

5.2.3. Monte Carlo Pi

The benchmark approximates π by accumulating the area of a unit circle obtained
from 109 random draws. The estimation is repeated 96 times, and the final result is obtained
by averaging. The benchmark defines a typical, compute-bound Monte Carlo method,
where each estimation is embarrassingly parallel. Therefore, a typical manual mapping
decision distributes the independent estimation over multiple nodes as the communication
overhead is minimal.

Hypotheses: The baseline version executes the whole computation on the CPUs of
a single node with 48 cores. The optimized version, which represents the optimized
mapping decision, executes the same computation of the four CPUs of both nodes. The
resulting costs and median runtimes are shown in Table 1. The costs are 12.381 and 6.190 s,
respectively, while the runtimes are 43.449 and 22.238 s.

6. Discussion

This paper provides a theoretical model for global optimizations of parallel algorithms
and their mapping to specific target architectures. The optimization techniques are derived
from algorithmic efficiencies, which state generic criteria for performance.

6.1. Analysis of the Results

The model’s capabilities to automatically optimize parallel algorithms through al-
gorithmic changes, accelerator offloading, and distributed computing was shown. The
three real-world use-cases were optimized successfully, and a significant speedup in the
estimated runtime costs between 1.42 and 3.08 was achieved. Similarly, the measured
runtime shows speedups between 1.83 and 2.45. Hence, complex transformations utilizing
the specific hardware characteristics were automatically applied, significantly increasing
the developer’s productivity and aiding performance portability.

6.2. Performance Model

The costs for the k-means algorithm are overestimated by a factor of 1.62 for the base-
line and 1.29 for the optimized version. The other two benchmarks show underestimations
between 0.28 and 0.53, where the Monte Carlo Pi example shows the highest discrepancies.
However, the actual mapping and transformation decisions are guided by the relative cost
improvement of the optimized version over the baseline version, which is consistent with
runtime improvements on all benchmarks.
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In general, the costs of the static performance model must be interpreted as a loss/utility
rather than a direct runtime estimate. As considered in the evaluation, coarse-grained
cost modeling leads to sufficient mapping and transformation decisions if the investi-
gated set of mappings is sparse and each hypothesis differs significantly from others. On
the global level, this assumption is valid in cases where the processors of heterogeneous
architectures are distinctly different. However, a predictive performance model would
improve the resulting transformations’ interpretability and allow for finer mapping and
transformation decisions. Extensions to the roofline model to include further hardware
characteristics, including accelerator-specifics or a more detailed performance model such
as the execution-cache-memory performance model [51], could be utilized.

6.3. Optimizations

While the model allows for rich optimizations of parallel algorithms, it is limited in
finding completely different algorithms for a specific problem. This could be enabled by
adding a library of equivalent structures used as replacements for user-provided parts of
the algorithms. Furthermore, the model relies on static information and, thus, dynamic
information cannot be included in the algorithm’s specification. This limitation could be
mitigated by combining the model with a dynamic approach such as autotuning tech-
niques [52–54] to incorporate runtime information into the optimization process. Similarly,
monitoring data could be collected and fed back to the optimization step for commonly
executed programs.

Moreover, the optimality of the optimization algorithms highly depends on the choice
of initial hypothesis and their pruning. Well-tested heuristics will be required to handle
the tradeoff between optimality effectively and compile times. Finally, the analysis of
the quality of the optimizations is challenging due to the lack of a predictive model, as
discussed above. The combination with detailed performance models could enable estima-
tions of lower bounds of necessary synchronization and data movements. Furthermore,
additional constraints could be included to cater for energy efficiency and power capping,
cost-effective usage of the available resources by minimizing the total cost of ownership
of the cluster, and multi-job scheduling problems, such as specific times one needs the
respective simulation results. Weighting factors could handle the tradeoff between multiple
target metrics.

6.4. Integration into Compiler Frameworks

Three main stages are required to implement the proposed global optimization frame-
work: In the frontend, the hierarchy of patterns needs to be extracted from existing code
bases. To this end, pattern recognition tools such as AutoPar [55], Pluto [41,56] or Dis-
coPoP [57] could be leveraged. In the middleware, the exposed structure is optimized
and mapped to target hardware. In the backend, the optimized structure is lowered to a
representation that enables loop-level and ILP optimizations. This could be integrated as a
pre-processing step into existing compiler frameworks via an intermediate representation
(IR). Alternatively, one could implement the framework in a source-to-source fashion where
optimized and target-specific code is generated, lowered to an existing programming lan-
guage. The backend could utilize existing projects such as LLVM [58] and libraries such as
Boost [59] to reduce the required implementation efforts. A typical production compiler
could then further lower the code to machine code, which can be dynamically optimized
with autotuning techniques [52–54].

7. Conclusions

We present a systematic approach to optimize parallel algorithms globally and ef-
ficiently map them to heterogeneous architectures. The approach leverages an abstract
representation of parallel algorithms via a hierarchical decomposition of parallel patterns.
This representation allows for global transformations to optimize their synchronization
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and dataflow efficiencies, including pattern matching, siblings fusion, pipelining, cache
blocking, and reordering.

We have demonstrated that the proposed model can identify parallelism and re-
structure real-world parallel algorithms. To this end, dataflow optimizations, including
pipelining and cache-blocking, were applied automatically. Furthermore, the model pro-
posed the optimal hardware mapping for these algorithms and provided speedups between
1.83 and 2.45.

The following steps are the design and implementation of the global transformations
into a compiler framework. This includes the representation of the APT, the optimization
algorithms, and a code generator. Furthermore, a more detailed performance model
could improve the cost estimation, and heuristics and libraries could aid in substituting
algorithms with more advanced candidates.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227
-7390/9/14/1685/s1, Source code, optimization reports, and runtimes S1: Jacobi; source code,
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