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Abstract: This article presents numerical simulation of flow in the discharge object with the welded
siphon and the free water level. The main numerical tool used in this study is the lattice Boltzmann
method combined with the Volume-of-Fluid approach and the Smagorinski LES model. Some
aspects of the numerical method are discussed, especially the formulation of the outlet boundary
condition. The simulations are carried out with in-house software based on the open-source Palabos
framework. Presented results are compared with the CFD simulations, based on the ANSYS CFX
software applying the SST and SAS turbulence models and the free-surface flow modeling by
means of the Volume-of-Fluid method. The evolution and interactions of main flow structures are
analyzed using visualizations and the spectral analysis. All numerical simulations are verified by
the experimental data obtained in the hydraulic laboratory with water circuit. A stationary flow
regime has been visualized by means of PIV. Both the vertical planes and horizontal planes have
been examined, focused mainly on the regions below and behind the siphon outlet. The results show
a good agreement of calculated and measured complex flow structures, including time-averaged and
instantaneous flow fields.

Keywords: siphon; free-surface flow; lattice Boltzmann; CFD; PIV; flow structures

1. Introduction

The paper presents the results of numerical simulations of flows in discharge objects
of pumping stations. The main objective of the paper is the investigation of the usability
of the lattice Boltzmann method for the case of complex flows with free surface. The
work is part of a larger project involving both numerical simulations using the standard
finite volume method in the so-called Volume Of Fluid (hereinafter VOF) formulation and
experimental investigations using the Particle Image Velocimetry (hereinafter PIV) method.
The presented paper focuses mainly on numerical simulations of two-phase free-flow in an
outlet object with a siphon. This is a very complicated case where a stream of water flows
into the outlet pool through a siphon with an outlet diffuser, and interacts with still water
in the outlet tank and with the tank bottom. The flow field is non-stationary and contains
quite complex vortex structures.

Very few studies dealing with numerical simulations of this problem can be found
in the literature. The paper [1] deals with the shape optimization of the output object.
However, the authors of the mentioned paper consider only single-phase stationary flow
of an incompressible fluid described by a system of Navier–Stokes equations combined
with a standard two-equation turbulence model. The more advanced models considering
non-stationary two-phase flow with free surface [2,3] are mainly based on the numerical
solution of the Navier–Stokes equations in the VOF formulation.
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One of the drawbacks of simulations based on the solution of the Navier–Stokes
equations is the rather tedious process of mesh generation in the case of complex geometry.
The computational mesh must be significantly refined near the free surface and, in the case
of large eddy simulations, a sufficiently fine mesh is also needed inside the whole region.
The construction of such a mesh can be very challenging. One possible improvement
is, for example, the use of adaptive meshes with automatic refinement [4,5]. However,
this introduces another problem related, among others, to the efficient use of parallel
computers.

An alternative method for flow simulation is the so-called Lattice Boltzmann Method
(hereinafter LBM) based on the kinetic theory originally proposed in [6]. The original
method was proposed for the case of compressible isothermal low Mach flows, but it was
later modified for other types of problems, see e.g., the book [7]. The article [8] describes the
application for convection-diffusion equation in a 2D channel, ref. [9] applies the method
to two-phase flows in porous media, paper [10] deals with the simulation of turbulent
flows. Paper [11] proposes the so-called discrete velocity LBM.

In this paper, we use LBM in combination with the free-surface flow model proposed
in [12] for the case of foam modeling. The method has been applied for free-surface water
flows [13] and then validated for many different free-surface flows. Let us mention the
application of the method combined with the Smagorinsky large eddy model presented
in [13] for the case of falling droplet and for the dam break problem. Articles [14–16] show
validation of the free-surface LBM for the case of dam break. Paper [17] presents validation
of the method for flows in narrow channels, ref. [18] validates the enhanced version of the
method for the case of wave breaking. As far as the authors know, there are no available
studies in the literature dealing with the application of LBM for the simulation of flows in
discharge objects with siphon.

There are other variants of LBM for multiphase flows. The oldest one proposed
by Gunstensen in [19] is based on a coloring. The model uses two sets of distribution
functions and the collision and streaming is done separately for each phase with an ad-
ditional collision term due to phase interface. This model suffers from some limitations
such us problems with stability, expensive recoloring, and spurious currents near the
interface [7,20]. Another family are the so-called pseudo-potential models such as the
Shan-Chen model [21] which calculate the interaction between fluid particles using inter-
molecular forces. The drawback of the model is its worse stability and spurious currents
especially in the case of large density ratios. The other family of models proposed in [22]
incorporates the effects of phase interface by a free energy. The original model has been
extended in [23] for large density ratios and should be therefore usable for two-phase
water-air simulations.

The free-surface LBM proposed in [12] has been chosen for current study thanks to its
computational efficiency and good stability.

2. Materials and Methods
2.1. Formulation of the Problem

The article deals with the simulation of flow problems experimentally investigated in
the hydraulic laboratory of the Centre of Hydraulic Research [2]. The test section consists
of 5 m long channel with a sluice gate at the outlet. The width of the test channel is 0.304 m.
The water flows into the channel through a welded siphon composed of a flange DN125
which turns into rectangular cross section 0.122 m × 0.103 m and ends with a rectangular
diffuser with an opening angle 10°, see Figure 1. See [3] for detailed description of the
test circuit.
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Figure 1. Test channel with the inlet siphon.

The steady volume flow rate of water is considered at the inlet of the siphon (the
leftmost position in Figure 1). The desired water level in the channel was kept either by
setting the sluice gate at the outlet (the rightmost position in the Figure 1) in the case of
experimental methods, or with an appropriate boundary condition in the case of numerical
simulations (see below).

2.2. Lattice Boltzmann Method

The motion of an incompressible fluid can be described in the framework of LBM by
the following set of advection-reaction PDEs for the so-called discrete density distribution
functions fi(~x, t), see e.g., [7]

∂ fi
∂t

+~ci · ∇ fi = −
1
τc

(
fi − f (eq)

i

)
+ Fi. (1)

Here~ci represents discrete (or lattice) velocities, τc is the relaxation time, f (eq)
i is the

equilibrium distribution, and Fi represents contributions due to the external force (i.e., grav-
ity). Moments of the distribution functions fi are the macroscopic density and momentum

ρ(~x, t) = ∑
i

fi(~x, t), (2)

ρ(~x, t)~u(~x, t) = ∑
i
~ci fi(~x, t). (3)

Integrating Equation (1) from time t to t + δt along the line ~x +~cit assuming constant
collision term during this time interval leads to a general formulation of LBM (τ = τc/δt)

fi(~x +~ciδt, t + δt)− fi(~x, t) = − 1
τ

(
fi(~x, t)− f (eq)

i (~x, t)
)
+ δtFi. (4)

For the rest of the article, we use the so-called D3Q19 model [7] where D3 denotes
three-dimensional nature of the model and Q19 means that the velocity space is discretized
using 19 discrete velocities ~ci (i.e., i = 0, ..., 18) given (in lattice units) as columns of the
matrix C

C = [~c0|~c1|...|~c18] =

 0 −1 0 0 −1 −1 −1 −1 0 0 1 0 0 1 1 1 1 0 0
0 0 −1 0 −1 1 0 0 −1 −1 0 1 0 1 −1 0 0 1 1
0 0 0 −1 0 0 −1 1 −1 1 0 0 1 0 0 1 −1 1 −1

. (5)
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Moreover, we use the nondimensional form of the lattice Boltzmann equation with
δt = 1 and lattice spacing ∆ = 1, i.e.,

fi(~x +~ci, t + 1) = fi(~x, t)− 1
τ

(
fi(~x, t)− f (eq)

i (~x, t)
)
+ Fi. (6)

Discrete equilibrium distribution functions are defined according to [24] as

f (eq)
i = wi

[
ρ +

~ci · ~u
c2

s
+

(~ci · ~u)2

2c4
s
− ~u · ~u

2c2
s

]
(7)

where cs is a fictitious speed of sound equal to 1/
√

3 for D3Q19 model and correspond-
ing weights wi are w0 = 1/3, wi = 1/18 for i = 1, 2, 3, 10, 11, 12, and wi = 1/36 for
i = 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18.

The body force ~F (i.e., gravity) is accounted by including a forcing term according
to [25] where Fi are given as proposed in [25] as

Fi = wi

[
~B ·~ci

c2
s

+
~~D : (~ci~ci − c2

s
~~I)

2c4
s

]
, (8)

where

~B =

(
1− 1

2τ

)
~F, (9)

~~D =

(
1− 1

2τ

)
(~v~F + ~F~v), (10)

ρ~v = ∑
i
~ci fi +

1
2
~F. (11)

It can be shown with the Chapman–Enskog expansion that LBM with the D3Q19
model with forcing term and with the discrete equilibrium functions (7) approximates the
system of hydrodynamic equations

∂ρ

∂t
+∇ · ~u = 0, (12)

∂~u
∂t

+∇ · (~u~u) = −∇p +∇ ·
[
ν(∇~u +∇~uT)

]
+

1
ρ
~F, (13)

where the pressure is related to the density as p = c2
s ρ and the viscosity ν is related to the

relaxation parameter τ as

ν =

(
τ − 1

2

)
c2

s . (14)

One can see that LBM with the equilibrium functions (7) does not correspond to the
Navier–Stokes equations for incompressible fluids. Nevertheless, the error due to the
density derivative in the continuity equation remains small as far as ||~u|| << cs.

To model turbulent flows at high Reynolds numbers, the large eddy simulation (LES)
approach based on the Smagorinsky model proposed in [26] is used. The molecular
viscosity ν is replaced by the effective viscosity νe f f which includes also the subgrid eddy
viscosity νsgs

νe f f = ν + νsgs = c2
s

(
τe f f −

1
2

)
. (15)

The effective relaxation time τe f f then replaces τ in (6) and takes the value of

τe f f =
τ +

√
τ2 + 2Csmag(ρc4

s )
−1Π

2
, (16)
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where Csmag > 0 is a model constant (Csmag = 0.14 in our calculations) and Π =√
~~π(neq) : ~~π(neq) with

~~π(neq) = ∑
i
~ci~ci( fi − f (eq)

i ). (17)

2.2.1. Free-Surface LBM

The free-surface model proposed in [13] is used in this paper. The model works with
three types of cells: fluid cells, interface cells, and empty cells. Fluid cells are separated
from empty cells by a layer of interface cells. The model uses an additional scalar field
ε(~x, t) representing the fluid volume fraction

ε(~x, t) = m(~x, t)/ρ(~x, t), (18)

where m stands for the mass of the liquid in the lattice cell at~x. The mass exchange between
two interface cells is approximated as

∆mi(~x, t + 1) = [ fi(~x +~ci, t)− fi(~x, t)]
ε(~x +~ci, t) + ε(~x, t)

2
. (19)

In the case of fluid-fluid or fluid-interface pairs, the mass exchange is simply

∆mi(~x, t + 1) = fi(~x +~ci, t)− fi(~x, t). (20)

Then the mass in a given cell is updated as

m(~x, t + 1) = m(~x, t) +
18

∑
i=1

∆mi(~x, t + 1). (21)

The distribution functions in the interface cells corresponding to incoming velocities
from empty cells must be reconstructed using the equilibrium distribution f (eq)

i and the
nonequilibrium part from opposite directions ī, i.e., using a bounce back scheme, see [13].
Hence (ı̄ corresponds to the opposite direction to i)

fi(~x, t + 1) = f (eq)
i (~x, t) + f ı̄(~x, t)− f (eq)

ı̄ (~x, t). (22)

Once the interface cell is completely emptied (m ≤ 0), its type is changed to empty.
When the interface cell becomes fully wet, it is flagged as fluid. At the end of the procedure,
all empty cells directly adjacent to fluid cells are flagged as interface.

2.2.2. Boundary Conditions for Free-Surface LBM

The domain is approximated with a staircase mesh which allows simple bounce back
boundary conditions at the walls, see [7]. Although the staircase mesh impairs the overall
accuracy of the method, the current study focuses on the flow structures inside the outlet
tank with straight walls. Therefore, the bounce back seems to be appropriate in this case.

The volumetric flow rate is given at the inlet (x = xmin) and the inlet velocity
is calculated using the parabolic profile. The density at the inlet is evaluated accord-
ing to [27]. Populations are divided into incoming (i+ = {10, 13, 14, 15, 16}), tangential
(i0 = {0, 2, 3, 8, 9, 11, 12, 17, 18}), and outgoing (i− = {1, 4, 5, 6, 7}). The density at the inlet
ρin is then

ρin = ∑
i

fi = ∑
i∈i+

fi + ∑
i∈i0

fi + ∑
i∈i−

fi = ρ+ + ρ0 + ρ−. (23)

Similarly, the x component of the momentum at the inlet is

ρinuin = ∑
i
~ci ·~e1 fi = ∑

i∈i+
fi − ∑

i∈i−
fi = ρ+ − ρ− (24)
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where~e1 = [1, 0, 0]. Eliminating unknown ρ+ gives

ρin =
2ρ− + ρ0

1− uin
. (25)

The equilibrium distribution functions are then calculated using ρin and ~uin = uin~e1
and the nonequilibrium bounce back scheme is applied for i ∈ i+

fi = f (eq)
i (ρin,~uin) + f ı̄ − f (eq)

ı̄ (ρin,~uin). (26)

The tangential populations i ∈ ß0 are set to equilibrium distributions fi = f (eq)
i (ρin,~uin).

Similar procedure is taken at the outlet. The outlet velocity is calculated using the
inlet flow rate qin, outlet channel width W, and desired water depth at the outlet H as
uout = qin/(WH). Then the water density is calculated as

ρout =
2ρ+ + ρ0

1 + uout
, (27)

and the nonequilibrium bounce back procedure similar to (26) is applied for i ∈ i−. Finally,
the volume fraction ε and the boundary cell type are set to values from the neighbor
fluid cell.

2.2.3. Computational Mesh and Case Setup

The problem was solved using a Cartesian mesh with uniform spacing ∆x = ∆y =
∆z = 2 mm and with a constant time step ∆t = 5× 10−5 s. Only first 2.7 m of the channel
was considered and the thickness of the siphon walls increased to 5 mm. The resulting
mesh consists of 78× 106 cells. Figure 2 shows the side view of the computational domain.
Front part of the computational domain with the siphon and part of the test channel is
given in Figure 3. The test channel starts at x = 0 m with the bottom at y = 0 m. The
domain is symmetric around the plane z = 0 m.

The use of the uniform Cartesian mesh does not allow the near wall refinement to
keep y+ below one and therefore a suitable wall model or wall function should be used.
We are aware of this fact, yet we did not use any such near wall treatment in this study.

The current model solves the discrete Boltzmann equation only in fluid or interface
cells (i.e., cells with non-zero fluid volume fraction) and completely ignores cells fully filled
with air. Therefore, without an additional bubble model such as e.g., [28] the LBM cannot
reliably predict the transient phase of the siphon fill-in. It can be seen in Figure 4 where the
calculation has been started from the initial condition (28)–(30), i.e., with some empty cells
inside the siphon. One should note that these “bubbles” are completely non-physical. The
current version of free-surface LBM does not solve any equations inside the empty cells
and simply sets the air pressure to a prescribed constant.

ρ(~x, 0) = 1, (28)

~u(~x, 0) = ~0, (29)

ε(~x, 0) =

{
0 for > 0.255 m,
1 otherwise.

(30)



Mathematics 2021, 9, 1734 7 of 20

Figure 2. Side view of the computational domain.

Figure 3. Front part of the computational domain.

Figure 4. Bubbles inside the siphon when calculating from initial condition (28)–(30). Front part of a
cut at z = 0 m.

To avoid the problem with these bubbles, the calculations have been initialized with a
filled-up siphon as given in Equations (31)–(33).

ρ(~x, 0) = 1, (31)

~u(~x, 0) = ~0, (32)

ε(~x, 0) =

{
0 for x > 0.8 m∧ y > 0.255 m,
1 otherwise .

(33)

In this case, the siphon remains filled with water, see Figure 5. All calculations in the
following text are therefore performed with the initial condition (31)–(33).
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Figure 5. Siphon filled with water when calculating from initial condition (31)–(33). Front part of a
cut at z = 0 m.

Distribution functions fi are then initialized to its equilibrium value. Parabolic velocity
profile corresponding to the given flow rate together with water volume fraction equal to
1 is prescribed at the inlet. The inlet density is then calculated using Equation (25). The
outlet velocity and density are calculated from the inlet flow rate and desired water depth
as in Equation (27).

All calculations with LBM were carried out with in-house software based on an
open-source CFD framework Palabos [29].

2.3. Finite Volume Method

The LBM calculations are compared with the results obtained with the standard
Finite Volume Method (hereinafter FVM) in VOF formulation. The FVM calculations were
carried out with the ANSYS CFX software considering a nonhomogeneous multiphase
model with different velocities for the water and air fractions. The unstructured mesh
with approximately 10× 106 nodes with appropriate near wall refinement was used. The
maximum element size was about 3 mm and the mesh was progressively refined near the
walls to keep the dimensionless wall normal cell size y+1 bellow 1. The FVM calculations
were carried out using the Scale Adaptive Simulation (SAS) model [30] and URANS with
the standard two-equation SST turbulence model [31]. The fully developed velocity profile
with water volume fraction equal to 1 was used as the inlet condition and a given static
pressure profile was prescribed at the outlet. The dimensions of the computational domain
correspond to the real geometry with an additional straight pipe of length 0.75 m connected
to the inlet flange. For details see [2].

2.4. Experimental Methods

The experimental data were acquired with the laser particle image velocimetry (PIV)
method with one-camera arrangement of the Dantec Dynamics measurement system. Mea-
surements were performed in 5 vertical planes located at 0 mm, ±75 mm, and ±141 mm
from the vertical symmetry plane and in three horizontal planes located at 10 mm, 135 mm,
and 170 mm above channel floor. The instantaneous results were captured with the fre-
quencies of 100 Hz to 250 Hz and the time-averaged results have used frequencies in the
range 10 Hz to 20 Hz. The relative accuracy of the measurements can be estimated as 1% to
2% in the high velocity regions. The accuracy is expected to be worse in the low velocity
regions. More details on the experimental device can be found in reference [2].

3. Results

This section presents selected results of LBM and finite volume-based CFD simulations
and compares these results with the experimental data obtained with the PIV measurements.
The attention is focused mainly on the performance of LBM. More detailed comparison of
finite volume CFD simulations with PIV measurements can be found in [2]. Both the CFD
simulation and the PIV measurements were performed for two flow rates q = 13.8 L s−1

and q = 17.2 L s−1. The topology of the flow fields was in both cases very similar to the
difference only in the magnitude of the velocity. Therefore, the LBM simulation was carried
out only for the flow rate q = 17.2 L s−1 with the outlet water depth H = 268 mm. Figure 6
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shows the water level at the time t = 20 s and Figure 7 the magnitude of instantaneous 2D

velocity M =
√

u2
x + u2

y in the vertical plane z = 0 mm.

Figure 6. LBM, water level at time t = 20 s.

Figure 7. LBM, the magnitude of instant 2D velocity in vertical plane (z = 0 mm) and time t = 20 s.

The unsteady results obtained with LBM have been time-averaged over the last 10 s of
simulation time. The time-averaged velocity field is then compared with the time-averaged
results obtained with the finite volume method and with the experiment. The results are

presented in the form of the magnitude of time-averaged 2D velocity (i.e., M =
√

u2
x + u2

y

for vertical cuts and M =
√

u2
x + u2

z for horizontal cuts) and as integral curves of the 2D
velocity vectors.

Figures 8 and 9 show the flow field obtained with the lattice Boltzmann method
and with the standard finite volume method in VOF formulation using the SAS model.
Comparison with the PIV measurements depicted in Figure 10 shows that LBM captures
very well the position of the high velocity jet near the upper side of the siphon. The finite
volume method overpredicts slightly the width of the jet in that case. One can clearly see
that both LBM and FVM capture the dominant vortex near the bottom at x ≈ 0.35 m which
can be also seen in the PIV results. Both numerical methods also predict a vortex structure
above the jet (x ≈ 0.7 m) which is not very well seen in the PIV results.
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Figure 8. LBM, vector lines (top) and the magnitude of time-averaged 2D velocity (bottom) in vertical
plane (z = 0 mm).

Figure 9. Finitevolume method (SAS model), vector lines (top) and the magnitude of time-averaged
2D velocity (bottom) in vertical plane (z = 0 mm).

Figure 10. PIV measurements, the magnitude of time-averaged 2D velocity (left panel) and vector
lines in vertical plane (z = 0 mm).

Figure 11 shows that similar flow pattern was observed also with URANS calculation
with the SST model. In the next text, we focus the attention only on the comparison of LBM
with the results of SAS model and with the experimental data, and we refer readers to [2]
for detailed comparison of the SAS and SST models.
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Figure 11. Finite volume method (SST model), vector lines (top) and the magnitude of time-averaged
2D velocity (bottom) in vertical plane (z = 0 mm).

Figures 12–14 show the flow field at the vertical cut at 75 mm from the symmetry
plane. One can again recognize the dominant vortex near the bottom at x ≈ 0.35 m and
another one at the upper side of the jet at x ≈ 0.7 m.

Figure 12. LBM, vector lines (top) and the magnitude of time-averaged 2D velocity (bottom) in
vertical plane (z = 75 mm).

Figure 13. Finite volume method (SAS model), vector lines (top) and the magnitude of time-averaged
2D velocity (bottom) in vertical plane (z = 75 mm).
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Figure 14. PIV measurements, the magnitude of time-averaged 2D velocity (left panel) and vector
lines in vertical plane (z = 75 mm).

The comparison with Figures 15–17 corresponding to cut at z = −75 mm reveals a
slight nonsymmetry of the flow field. The vortex at x ≈ 0.05 m completely disappears in
the FVM simulation and LBM shifts the position of stagnation point a bit upstream with
respect to cut at z = 0.75 m.

Figure 15. LBM, vector lines (top) and the magnitude of time-averaged 2D velocity (bottom) in
vertical plane (z = −75 mm).

Figure 16. Finite volume method (SAS model), vector lines (top) and the magnitude of time-averaged
2D velocity (bottom) in vertical plane (z = −75 mm).
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Figure 17. PIV measurements, the magnitude of time-averaged 2D velocity (left panel) and vector
lines in vertical plane (z = −75 mm).

Figures 18 and 19 show the flow field at z = 141 mm, i.e., close to side wall of the test
channel. FVM predicts a separation line at x ≈ 0.2 m which is not seen in the results of
LBM. Both numerical methods predict a singularity near the bottom at x ≈ 0.5 m.

Figure 18. LBM, vector lines (top) and the magnitude of time-averaged 2D velocity (bottom) in
vertical plane (z = 141 mm).

Figure 19. Finite volume method (SAS model), vector lines (top) and the magnitude of time-averaged
2D velocity (bottom) in vertical plane (z = 141 mm).

The separation line is not visible in the cut at z = −141 mm where both methods show
a vortex in the left part of the test channel, see Figures 20 and 21.
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Figure 20. LBM, vector lines (top) and the magnitude of time-averaged 2D velocity (bottom) in
vertical plane (z = −141 mm).

Figure 21. Finite volume method (SAS model), vector lines (top) and the magnitude of time-averaged
2D velocity (bottom) in vertical plane (z = −141 mm).

The nonsymmetry is much better visible in the horizontal cuts at 10 mm above the
bottom of the channel (Figures 22–24). The position of the critical point is shifted a bit
from the centerline both for the LBM results and PIV data. Please note that the position of
this nodal point is unstable and therefore its interpretation from the time-averaged data is
rather inappropriate.

Figures 25–27 show the solution in the horizontal cut at 135 mm above the channel
bottom. One can again see a slight nonsymmetry of the solution both in the velocity
magnitude and the vector lines. The FVM method predicts a horizontal vortex in the
upstream part of the channel at z ≈ 0.05 m whereas LBM shows the vortex at z ≈ −0.05 m.

Figures 28–30 show the structure of the flow field at y = 170 mm. One can see two
non-symmetric vortices at x ≈ 0.45 m and z ≈ ±0.1 m in the LBM results. Similar non-
symmetric structure is seen also in FVM calculation and PIV data, although the position is
slightly different. The nonsymmetry is also visible in the front part of the channel in the
LBM and FVM data.
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Figure 22. LBM, vector lines (top) and the magnitude of time-averaged 2D velocity (bottom) in
horizontal plane (y = 10 mm).

Figure 23. Finite volume method (SAS model), vector lines (top) and the magnitude of time-averaged
2D velocity (bottom) in horizontal plane (y = 10 mm).

Figure 24. PIV measurements, the magnitude of time-averaged 2D velocity (left panel) and vector
lines in horizontal plane (y = 10 mm).
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Figure 25. LBM, vector lines (top) and the magnitude of time-averaged 2D velocity (bottom) in
horizontal plane (y = 135 mm).

Figure 26. Finite volume method (SAS model), vector lines (top) and the magnitude of time-averaged
2D velocity (bottom) in horizontal plane (y = 135 mm).

Figure 27. PIV measurements, the magnitude of time-averaged 2D velocity (left panel) and vector
lines in horizontal plane (y = 135 mm).
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Figure 28. LBM, vector lines (top) and the magnitude of time-averaged 2D velocity (bottom) in
horizontal plane (y = 170 mm).

Figure 29. Finite volume method (SAS model), vector lines (top) and the magnitude of time-averaged
2D velocity (bottom) in horizontal plane (y = 170 mm).

Figure 30. PIV measurements, the magnitude of time-averaged 2D velocity (left panel) and vector
lines in horizontal plane (y = 170 mm).

Very important quantity for engineers is the total pressure loss. The pressure (in lattice
units) can be obtained from the density in LBM using the equation of state

p = c2
s ρ, (34)

where c2
s = 1/3. The total pressure is then

ptot = p +
1
2

ρ||~u||2 + ρgy. (35)
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The total pressure loss is then calculated from two area averaged values at x1 = −0.6 m
and x2 = 2.5 m as

∆ptot = ptot,1 − ptot,2. (36)

The LBM method gives the total pressure loss ∆ptot = 1086.82 Pa. The same can be
evaluated also from FVM which gives ∆ptot = 1121.71 Pa. The relative error between
LBM and FVM is less than 3.1%. Unfortunately, the experimental device was not instru-
mented with pressure probes and we cannot therefore compare the numerical data with
experimental one.

4. Discussion

The goal of this paper was to investigate the usability of free-surface LBM for the
simulation of flows in a model discharge object with the siphon. The attention was
focused namely to the structure of time-averaged flow field. The results obtained with
the free-surface variant of LBM show very good agreement both with the experimental
data obtained with PIV method and with the numerical simulations obtained with the
conventional finite volume method published in [2]. Please note that the LBM simulations
used several crude simplifications, namely the staircase approximation of the geometry
without any near wall mesh refinement or any wall functions and the single relaxation
time approach combined with the Smagorinsky LES model.

The prominent feature of LBM is the Cartesian mesh approach which greatly simplifies
the preprocessing phase of simulations by removing the lengthy mesh generation process.
Moreover, LBM is suitable for implementation on modern parallel computers and GPUs;
however, the current LBM simulations have been run on a multicore parallel computer
with 72 CPU cores. The required wall time for 1 s of physical time was approximately 5.5 h
with almost 80× 106 cells. The FVM required about 17 h using 32 cores with approximately
10× 106 cells. However, it is difficult to directly compare the performance of LBM and
FVM because of different mesh size (LBM has almost 8x more elements) or local element
sizes (FVM uses mesh refinement near the wall whereas LBM uses a uniform mesh).

The current approach does not contain any bubble model and therefore it is not usable
for the simulation of siphon fill-in which has been carried out with FVM in [3]. It can be
clearly seen in Figures 4 and 5 where some non-physical “bubbles” remain in the siphon.
Next, the lack of a carefully validated wall model in the current approach probably impairs
the prediction of the wall shear stress and consequently affects the structure of the flow
field near the walls.

However the free-surface LBM was already validated by many authors, the validation
was done mostly for relatively simple geometry (dam break, falling droplet, wave breaking).
The current study shows the validation for flows in siphon. Moreover, it also shows the
importance of proper initialization or a necessity of more advanced model for simulations
of transient siphon fill-in.

A more advanced model including either the bubble model such as [28] or a two-fluid
model should be investigated in the future. Similarly, the use of regularized LBM or
multiple relaxation time variants of LBM should be investigated in combination with more
advanced LES models such as WALE model [32].
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