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Abstract: This article introduces two well-known computational techniques for solving the time-
fractional system of nonlinear equations of unsteady flow of a polytropic gas. The methods suggested
are the modified forms of the variational iteration method and the homotopy perturbation method
by the Elzaki transformation. Furthermore, an illustrative scheme is introduced to verify the accuracy
of the available techniques. A graphical representation of the exact and derived results is presented
to show the reliability of the suggested approaches. It is also shown that the findings of the current
methodology are in close harmony with the exact solutions. The comparative solution analysis via
graphs also represents the higher reliability and accuracy of the current techniques.

Keywords: Elzaki transform; homotopy perturbation method; variational iteration method; gas
dynamic equations; Mittag–Leffler function

1. Introduction

Gas dynamic equations are mathematical representations based on physical con-
servation laws such as the conservation of energy, the conservation of mass laws, the
conservation of momentum, etc. The nonlinear equations of ideal gas dynamics are
implemented regarding three types of nonlinear waves, such as contact discontinuities
shock fronts, and refractions—see [1]. In 1981, Steger and Warming [2] proposed that the
conservation-law model of the inviscid gas dynamic equation possess interests by which
nonlinear flux vectors are homogeneous degree one functions allowing the division of flux
vectors into sub-vectors through similarity transforms; as a result, new explicit and implicit
finite-difference dissipative systems for analyzing first-order hyperbolic equation schemes
were created. In terms of developing an appropriate flow method for solving a slowly
changing gas dynamic system under the gravity field, the numerical scheme must be
well-balanced [3–6]. For instance, most astrophysical models are related to hydrodynamic
evolution in the gravitational area; the helpful application of the gravitational force in the
astronomical hydrodynamic code is essential to capture the long-term development of star
simulation and solar system formation. Although several hydrodynamic modules were
effectively implemented to solve astrophysical issues, such as the piecewise Parabolic tech-
nique and total variation diminishing codes [7,8], most considered only short-term changes
with robust expansion or shock waves. With the slowness of the evolution of the galaxy,
the different codes have significant drawbacks to the improper usage of the gravitational
potential effect, the so-called source term in the Euler or Navier–Stokes equations [9].
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In the present study, we consider the gas dynamic equations fractional-order scheme
describing the production of the unsteady two-dimensional streaming of the ideal fluid. In
astrophysics, polytropic gas is defined by [10]

ψ = kω1+ 1
m

where ψ = θ
φ is the energy density, φ is the container volume, θ is the total the energy of the

gas, m is the polytropic index and k is a constant. Degenerate adiabatic gas and electron gas
are two instances of such gases. In astrophysics and cosmology, the analysis of polytropic
gases plays a critical role and these gases can behave like dark energy [11]. Now consider
the gas dynamic equations scheme, which describes the evolution of unstable flow of a
perfect gas with fractional derivatives [10,12]:

Dσ
=µ + µ

∂µ

∂ϕ
+ ν

∂µ

∂ϑ
+

1
ω

∂ψ

∂ϕ
= 0, Dσ

=ν + µ
∂ν

∂ϕ
+ ν

∂ν

∂ϑ
+

1
ω

∂ψ

∂ϑ
= 0,

Dσ
=ω + µ

∂ω

∂ϕ
+ ν

∂ω

∂ϑ
+ ω

(
∂µ

∂ϕ
+

∂ν

∂ϑ

)
= 0, Dσ

=ψ + µ
∂ψ

∂ϕ
+ ν

∂ψ

∂ϑ
+ ηψ

(
∂µ

∂ϕ
+

∂ν

∂ϑ

)
= 0,

with initial conditions

µ(ϕ, ϑ, 0) = α(ϕ + ϑ), ν(ϕ, ϑ, 0) = β(ϕ + ϑ),

ω(ϕ, ϑ, 0) = γ(ϕ + ϑ), ψ(ϕ, ϑ, 0) = Φ(ϕ + ϑ).

where µ(ϕ, ϑ,=) and ν(ϕ, ϑ,=) are the velocity components, ω(ϕ, ϑ,=) is the density,
ψ(ϕ, ϑ,=) is the pressure and = is the ratio of the specific heat and it represents the
adiabatic index. In the past decade, the approximate analytical solutions of different
types of gas have been achieved by many numerical and analytical techniques. Various
techniques has been solved by gas dynamics problems, such as the fractional reduced
differential transform technique [13], homotopy perturbation technique [14], q-homotopy
analysis technique [10], Adomian decomposition technique [15], fractional homotopy
analysis transform technique [16] and natural decomposition technique [17].

The variational iteration method (VIM) was first introduced by J.He [13] and effectively
implemented in the treatment of heat conduction models [14–17]. In 2010, a fractional
variational iteration method (FVIM) was developed using a modified Riemann–Liouville
derivative [17]. The classification of the Lagrange multiplier plays an essential role for the
variational iteration method, and the variational concept is commonly used for this aim. A
more straightforward approach to the Elzaki of transformation to determine the multiplier is
proposed, making the technique available to researchers with different nonlinear problems.
The variational iteration method combines with other transformations and has been solved in
many papers, such as the work of Abassy et al., who implemented the VIM with the Laplace
transformation in 2007 [12], as did Hesameddini and Latifizadeh 2009 [14] and Mokhtari and
Mohammadi 2009 [13]. Abassy, El-Tawil and El-Zoheiry [12] used the Laplace transformation
in the solution process; the variational iteration method led to a series of linear equations,
which can be easily solved by the Laplace transformation.

The homotopy perturbation method (HPM) was first introduced by the Chinese
mathematician J.H. He played a key role in this research in 1998 [18]. This method is
efficient, accurate, and effective and eliminates infinite series, an unconditioned matrix,
and difficult integrals. This methodology does not require a specific parameter of the
equation. In this method, according to the homotopy technique, a homotopy with an
embedding parameter p ∈ [0, 11] is developed and the encoding parameter is called a
“small parameter”, which can ensure the full benefits of the conventional perturbation
techniques and homotopy techniques [19–22]. The Elzaki transformation (E.T.) is a new
integral transform introduced by Tarig Elzaki in 2010. The E.T. is a modified transform
of Sumudu and Laplace transforms. It is important to remember that there are certain
mathematical models with variable coefficients that Sumudu and Laplace transforms
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cannot be used for but can be conveniently carried out by using the E.T. [23–25]. The
homotopy perturbation transform method is a combination of the Elzaki transformation
and homotopy perturbation technique. Many researchers have solved different equations
with the help of HPETM, such as Navier–Stokes equations [26], heat-like equations [27],
Fisher’s equation and hyperbolic equations [28].

In this paper, the HPTM and VITM are implemented to analyze the fractional-order
gas dynamic equation. The HPTM and VITM solutions are determined for the particular
model of the fractional-order two-dimensional gas dynamic equation. The higher accuracy
and efficiency of HPTM and VITM are investigated, and the analysis of graphs is compared
to actual solutions. The series form results of HPTM and VITM for fractional-order gas dy-
namic equations has shown the desire rate of convergence. Thus, the current techniques are
suggested to solve other fractional-order linear and nonlinear partial differential equations.

2. Basic Preliminaries

Definition 1. The operator Dσ of order σ in Abel–Riemann sense is given as [23–25]

Dσν(ϕ) =


dj

dϕj ν(ϕ), σ = j
1

Γ(j−σ)
d

dϕj

∫ ϕ
0

ν(ϕ)

(ϕ−ψ)σ−j+1 dψ, j− 1 < σ < j

where j ∈ Z+, σ ∈ R+ and

D−σν(ϕ) =
1

Γ(σ)

∫ ϕ

0
(ϕ− ψ)σ−1ν(ψ)dψ, 0 < σ ≤ 1.

Definition 2. The Abel–Riemann fractional-order integration operator Jσ is defined as [23–25]

Jσν(ϕ) =
1

Γ(σ)

∫ ϕ

0
(ϕ− ψ)σ−1ν(ϕ)dϕ, ϕ > 0, σ > 0.

The operator of basic properties:

Jσ ϕj =
Γ(j + 1)

Γ(j + σ + 1)
ϕj+σ

Dσ ϕj =
Γ(j + 1)

Γ(j− σ + 1)
ϕj−σ

Definition 3. The Caputo fractional operator Dσ of ρ is defined as [23–25]

CDσν(ϕ) =


1

Γ(j−σ)

∫ ϕ
0

νj(ψ)

(ϕ−ψ)σ−j+1 dψ, j− 1 < σ < j,
dj

dϕj ν(ϕ), j = σ.

Definition 4.

Jσ
ϕDσ

ϕg(ϕ) = g(ϕ)−
m

∑
k=0

gk(0+)
ϕk

k!
, f or ϕ > 0, andj− 1 < σ ≤ j, j ∈ N.

Dσ
ϕ Jσ

ϕg(ϕ) = g(ϕ).

Definition 5. The fractional-order Caputo operator of Elzaki transform is given as:

E[Dσ
ϕg(ϕ)] = s−σE[g(ϕ)]−

j−1

∑
k=0

s2−σ+kg(k)(0), where j− 1 < σ < j.
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3. The Technique of VITM

In this section, discuss the VITM solution system for fractional partial differential
equations.

Dσ
=µ(ϕ, ϑ,=) +M1(µ, ν) +N1(µ, ν)−K1(ϕ, ϑ,=) = 0,

Dσ
=ν(ϕ, ϑ,=) +M2(µ, ν) +N2(µ, ν)−K2(ϕ, ϑ,=) = 0, m− 1 < σ ≤ m,

(1)

with initial conditions

µ(ϕ, ϑ, 0) = g1(ϕ, ϑ), ν(ϕ, ϑ, 0) = g2(ϕ, ϑ). (2)

where Dσ
= = ∂σ

∂=σ is the fractional-order Caputo operator of σ,M1,M2 and N1, N2 are
linear and nonlinear functions, respectively, and K1,K2 are source terms.
The Elzaki transform is implemented to Equation (1), we get

E[Dσ
=µ(ϕ, ϑ,=)]+E[M1(µ, ν) +N1(µ, ν)−K1(ϕ, ϑ,=)] = 0,

E[Dσ
=ν(ϕ, ϑ,=)]+E[M2(µ, ν) +N2(µ, ν)−K2(ϕ, ϑ,=)] = 0,

(3)

Implementing the differentiation property of the Elzaki Transform, we obtain

E[µ(ϕ, ϑ,=)]−
n−1

∑
k=0

(s)2−σ+k ∂kµ(ϕ, ϑ,=)
∂k=

|==0 = −E[M1(µ, ν) +N1(µ, ν)−K1(ϕ, ϑ,=)],

E[ν(ϕ, ϑ,=)]−
n−1

∑
k=0

(s)2−σ+k ∂kν(ϕ, ϑ,=)
∂k=

|==0 = −E[M2(µ, ν) +N2(µ, ν)−K2(ϕ, ϑ,=)],
(4)

E[µm+1(ϕ, ϑ,=)] =E[µm(ϕ, ϑ,=)] + λ(s)

[
1
sσ

µm(ϕ, ϑ,=)−
n−1

∑
k=0

(s)2−σ+k ∂kµ(ϕ, ϑ,=)
∂k=

|==0

−E[K1(ϕ, ϑ,=)]− E{M1(µ, ν) +N1(µ, ν)}],

E[νm+1(ϕ, ϑ,=)] =E[νm(ϕ, ϑ,=)] + λ(s)

[
1
sσ

νm(ϕ, ϑ,=)−
n−1

∑
k=0

(s)2−σ+k ∂kν(ϕ, ϑ,=)
∂k=

|==0

−E[K2(ϕ, ϑ,=)]− E{M2(µ, ν) +N2(µ, ν)}],

(5)

A Lagrange multiplier as
λ(s) = −sσ, (6)

Applying inverse Elzaki transform E−1 to Equation (5)

µm+1(ϕ, ϑ,=) =µm(ϕ, ϑ,=)− E−1

[
sσ

[
n−1

∑
k=0

(s)2−σ+k ∂kµ(ϕ, ϑ,=)
∂k=

|==0

−E[K1(ϕ, ϑ,=)]− E{M1(µ, ν) +N1(µ, ν)}]],

νm+1(ϕ, ϑ,=) =νm(ϕ, ϑ,=)− E−1

[
sσ

[
n−1

∑
k=0

(s)2−σ+k ∂kν(ϕ, ϑ,=)
∂k=

|==0

−E[K2(ϕ, ϑ,=)]− E{M2(µ, ν) +N2(µ, ν)}]],

(7)

The convergence of this technique is shown in [29,30].

4. The General Methodology of HPTM

The general methodology of the given method:

Dσ
=µ(ϕ, ϑ) + Mµ(ϕ, ϑ,=) + Nµ(ϕ, ϑ,=) = h(ϕ, ϑ,=), ϑ > 0, 0 < σ ≤ 1,

µ(ϕ, 0) = g(χ), ν ∈ <.
(8)
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Using Elzaki transform of Equation (8), we obtain

E[Dσ
=µ(ϕ, ϑ,=) + Mµ(ϕ, ϑ,=) + Nµ(ϕ, ϑ,=)] = E[h(ϕ, ϑ,=)], ϑ > 0, 0 < σ ≤ 1,

µ(ϕ, ϑ,=) = s2g(ϕ) + sσE[h(ϕ, ϑ,=)]− sσE[Mµ(ϕ, ϑ,=) + Nµ(ϕ, ϑ,=)].
(9)

Now, by using an inverse Elzaki transform

µ(ϕ, ϑ,=) = F(ϕ, ϑ)− E−1[sσE{Mµ(ϕ, ϑ,=) + Nµ(ϕ, ϑ,=)}], (10)

where

F(ϕ, ϑ,=) = E−1
[
s2g(ϕ) + sσE[h(ϕ, ϑ,=)]

]
= g(ν) + E−1[sσE[h(ϕ, ϑ,=)]]. (11)

Now, perturbation method is presented as

µ(ϕ, ϑ,=) =
∞

∑
k=0

pkµk(ϕ, ϑ,=), (12)

where the perturbation parameter is p and p ∈ [0, 1].
The nonlinear terms can be explain as

Nµ(ϕ, ϑ,=) =
∞

∑
k=0

pk Hk(µk), (13)

where Hn are He‘s polynomials in terms of µ0, µ1, µ2, ..., µn, and can be determined as

Hn(ψ0, ψ1, · · · , ψn) =
1
n!

∂n

∂pn

[
N

(
∞

∑
k=0

pkψk

)]
p=0

, m = 0, 1, 2 · · · . (14)

Putting Equations (13) and (14) in Equation (10), we obtain

∞

∑
k=0

pkµk(ϕ, ϑ,=) = F(ϕ, ϑ,=)− p×
[

E−1

{
sσE{M

∞

∑
k=0

pkµk(ϕ, ϑ,=) +
∞

∑
k=0

pk Hk(µk)}
}]

. (15)

Comparing the coefficient of equal powers of p from both sides of above equation, the
following equations are achieved

p0 : µ0(ϕ, ϑ,=) = F(ϕ, ϑ,=),
p1 : µ1(ϕ, ϑ,=) = E−1[sσE(Mµ0(ϕ, ϑ,=) + H0(µ))],

p2 : µ2(ϕ, ϑ,=) = E−1[sσE(Mµ1(ϕ, ϑ,=) + H1(µ))],
...

pk : µk(ϕ, ϑ,=) = E−1[sσE(Mµk−1(ϕ, ϑ,=) + Hk−1(µ))], k > 0, k ∈ N.

(16)

The solution is written as

µ(ϕ, ϑ,=) = µ1(ϕ, ϑ,=) + µ2(ϕ, ϑ,=) + µ3(ϕ, ϑ,=) + · · · . (17)
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5. Applications

Example 1. Consider the fractional-order nonlinear system gas equations

Dσ
=µ + µ

∂µ

∂ϕ
+ ν

∂µ

∂ϑ
+

1
ω

∂ψ

∂ϕ
= 0,

Dσ
=ν + µ

∂ν

∂ϕ
+ ν

∂ν

∂ϑ
+

1
ω

∂ψ

∂ϑ
= 0,

Dσ
=ω + µ

∂ω

∂ϕ
+ ν

∂ω

∂ϑ
+ ω

(
∂µ

∂ϕ
+

∂ν

∂ϑ

)
= 0,

Dσ
=ψ + µ

∂ψ

∂ϕ
+ ν

∂ψ

∂ϑ
+=ψ

(
∂µ

∂ϕ
+

∂ν

∂ϑ

)
= 0,

(18)

with the initial conditions

µ(ϕ, ϑ, 0) = eϕ+ϑ, ν(ϕ, ϑ, 0) = −1− eϕ+ϑ,

ω(ϕ, ϑ, 0) = eϕ+ϑ, ψ(ϕ, ϑ, 0) = c.
(19)

where c is the real constant. First, we solve this system with the help of HPTM.
Now, using the Elzaki transform of Equation (18), we obtain

1
sσ

E[µ(ϕ, ϑ,=)] = µ(ϕ, ϑ, 0)s2−σ − E
{

µ
∂µ

∂ϕ
+ ν

∂µ

∂ϑ
+

1
ω

∂ψ

∂ϕ

}
,

1
sσ

E[ν(ϕ, ϑ,=)] = ν(ϕ, ϑ, 0)sσ+2 − E
{

µ
∂ν

∂ϕ
+ ν

∂ν

∂ϑ
+

1
ω

∂ψ

∂ϑ

}
,

1
sσ

E[ω(ϕ, ϑ,=)] = ω(ϕ, ϑ, 0)s2−σ − E
{

µ
∂ω

∂ϕ
+ ν

∂ω

∂ϑ
+ ω

(
∂µ

∂ϕ
+

∂ν

∂ϑ

)}
,

1
sσ

E[ψ(ϕ, ϑ,=)] = ψ(ϕ, ϑ, 0)sσ+2 − E
{

µ
∂ψ

∂ϕ
+ ν

∂ψ

∂ϑ
+=ψ

(
∂µ

∂ϕ
+

∂ν

∂ϑ

)}
,

(20)

E[µ(ϕ, ϑ,=)] = s2µ(ϕ, ϑ, 0)− sσE
{

µ
∂µ

∂ϕ
+ ν

∂µ

∂ϑ
+

1
ω

∂ψ

∂ϕ

}
,

E[ν(ϕ, ϑ,=)] = s2µ(ϕ, ϑ, 0)− sσE
{

µ
∂ν

∂ϕ
+ ν

∂ν

∂ϑ
+

1
ω

∂ψ

∂ϑ

}
,

E[ω(ϕ, ϑ,=)] = s2µ(ϕ, ϑ, 0)− sσE
{

µ
∂ω

∂ϕ
+ ν

∂ω

∂ϑ
+ ω

(
∂µ

∂ϕ
+

∂ν

∂ϑ

)}
,

E[ψ(ϕ, ϑ,=)] = s2µ(ϕ, ϑ, 0)− sσE
{

µ
∂ψ

∂ϕ
+ ν

∂ψ

∂ϑ
+=ψ

(
∂µ

∂ϕ
+

∂ν

∂ϑ

)}
.

(21)

Applying the inverse Elzaki transform, we obtain

E[µ(ϕ, ϑ,=)] = eϕ+ϑ − E−1
[

sσE
{

µ
∂µ

∂ϕ
+ ν

∂µ

∂ϑ
+

1
ω

∂ψ

∂ϕ

}]
,

E[ν(ϕ, ϑ,=)] = −1− eϕ+ϑ − E−1
[

sσE
{

µ
∂ν

∂ϕ
+ ν

∂ν

∂ϑ
+

1
ω

∂ψ

∂ϑ

}]
,

E[ω(ϕ, ϑ,=)] = eϕ+ϑ − E−1
[

sσE
{

µ
∂ω

∂ϕ
+ ν

∂ω

∂ϑ
+ ω

(
∂µ

∂ϕ
+

∂ν

∂ϑ

)}]
,

E[ψ(ϕ, ϑ,=)] = c− E−1
[

sσE
{

µ
∂ψ

∂ϕ
+ ν

∂ψ

∂ϑ
+=ψ

(
∂µ

∂ϕ
+

∂ν

∂ϑ

)}]
.

(22)
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The HPM in Equation (22), we can archive this as

∞

∑
κ=0

pκµκ(ϕ, ϑ) =eϕ+ϑ − p

[
E−1

{
sσE

{
∞

∑
κ=0

pκ Hκ(µ)

}}]
,

∞

∑
κ=0

pκνκ(ϕ, ϑ) =− 1− eϕ+ϑ − p

[
E−1

{
sσE

{
∞

∑
κ=0

pκ Hκ(ν)

}}]
,

∞

∑
κ=0

pκωκ(ϕ, ϑ) =eϕ+ϑ − p

[
E−1

{
sσE

{
∞

∑
κ=0

pκ Hκ(ω)

}}]
,

∞

∑
κ=0

pκψκ(ϕ, ϑ) =c− p

[
E−1

{
sσE

{
∞

∑
κ=0

pκ Hκ(ψ)

}}]
,

(23)

where Hκ(µ), Hκ(ν), Hκ(ω) and Hκ(ψ) are He’s polynomials, which signify the nonlinear terms.
The first few terms of He’s polynomials are suggested as

H0(µ) =µ0
∂µ0

∂ϕ
+ ν0

∂µ0

∂ϑ
+

1
ω0

∂ψ0

∂ϕ
,

H0(ν) =µ0
∂ν0

∂ϕ
+ ν0

∂ν0

∂ϑ
+

1
ω0

∂ψ0

∂ϑ
,

H0(ω) =µ0
∂ω0

∂ϕ
+ ν0

∂ω0

∂ϑ
+ ω0

(
∂µ0

∂ϕ
+

∂ν0

∂ϑ

)
,

H0(ψ) =µ0
∂ψ0

∂ϕ
+ ν0

∂ψ0

∂ϑ
+=ψ

(
∂µ0

∂ϕ
+

∂ν0

∂ϑ

)
.

H1(µ) =µ1
∂µ0

∂ϕ
+ µ0

∂µ1

∂ϕ
+ ν1

∂µ0

∂ϕ
+ ν0

∂µ1

∂ϕ
+

1
ω0

(
ω0

∂ψ1

∂ϕ
−ω1

∂ψ0

∂ϕ

)
,

H1(ν) =µ1
∂ν0

∂ϕ
+ µ0

∂ν1

∂ϕ
+ ν1

∂ν0

∂ϕ
+ ν0

∂ν1

∂ϕ
+

1
ω0

(
ω0

∂ψ1

∂ϑ
−ω1

∂ψ0

∂ϑ

)
,

H1(ω) =µ1
∂ω0

∂ϕ
+ µ0

∂ω1

∂ϕ
+ ν1

∂ω0

∂ϕ
+ ν0

∂ω1

∂ϕ
+ ω1

∂µ0

∂ϕ
+ ω0

∂µ1

∂ϕ
+ ω1

∂ν0

∂ϑ
+ ω0

∂ν1

∂ϑ
,

H1(ψ) =µ1
∂ψ0

∂ϕ
+ µ0

∂ψ1

∂ϕ
+ ν1

∂ψ0

∂ϕ
+ ν0

∂ψ1

∂ϕ
+ ψ1

∂µ0

∂ϕ
+ ψ0

∂µ0

∂ϕ
+ ψ1

∂ψ0

∂ϑ
+ ψ0

∂ν1

∂ϑ
.

Comparing the coefficients of same power of p, we have

p0 : µ0(ϕ, ϑ,=) = eϕ+ϑ, p0 : ν0(ϕ, ϑ,=) = −1− eϕ+ϑ,

p0 : ω0(ϕ, y,=) = eϕ+ϑ, p0 : ψ0(ϕ, y,=) = c.
(24)

p1 : µ1(ϕ, ϑ,=) = −
[

E−1{sσE{H0(µ)}}
]
= eϕ+ϑ =σ

Γ(σ + 1)
,

p1 : ν1(ϕ, ϑ,=) = −
[

E−1{sσE{H0(ν)}}
]
= −eϕ+ϑ =σ

Γ(σ + 1)
,

p1 : ω1(ϕ, ϑ,=) = −
[

E−1{sσE{H0(ω)}}
]
= eϕ+ϑ =σ

Γ(σ + 1)
,

p1 : ψ1(ϕ, ϑ,=) = −
[

E−1{sσE{H0(ψ)}}
]
= 0,
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p2 : µ2(ϕ, ϑ,=) = −
[

E−1{sσE{H1(µ)}}
]
= eϕ+ϑ =2σ

Γ(2σ + 1)
,

p2 : ν2(ϕ, ϑ,=) = −
[

E−1{sσE{H1(ν)}}
]
= −eϕ+ϑ =2σ

Γ(2σ + 1)
,

p2 : ω2(ϕ, ϑ,=) = −
[

E−1{sσE{H1(ω)}}
]
= eϕ+ϑ =2σ

Γ(2σ + 1)
,

p2 : ψ2(ϕ, ϑ,=) = −
[

E−1{sσE{H1(ψ)}}
]
= 0,

...

The given example is a series form solution given as

µm(ϕ, ϑ,=) = eϕ+ϑ =mσ

Γ(mσ + 1)
, νm(ϕ, ϑ,=) = −eϕ+ϑ =mσ

Γ(mσ + 1)
,

ωm(ϕ, ϑ,=) = eϕ+ϑ =mσ

Γ(mσ + 1)
, ψm(ϕ, ϑ, 0) = 0, m = 1, 2, · · · .

µm(ϕ, ϑ,=) = µ0(ϕ, ϑ,=) + µ1(ϕ, ϑ,=) + µ2(ϕ, ϑ,=) + µ3(ϕ, ϑ,=) + · · · ,

νm(ϕ, ϑ,=) = ν0(ϕ, ϑ,=) + ν1(ϕ, ϑ,=) + ν2(ϕ, ϑ,=) + ν3(ϕ, ϑ,=) + · · · ,

ωm(ϕ, ϑ,=) = ω0(ϕ, ϑ,=) + ω1(ϕ, ϑ,=) + ω2(ϕ, ϑ,=) + ω3(ϕ, ϑ,=) + · · · ,

ψm(ϕ, ϑ, 0) = ψ0(ϕ, ϑ,=) + ψ1(ϕ, ϑ,=) + ψ2(ϕ, ϑ,=) + ψ3(ϕ, ϑ,=) + · · · ,

µ(ϕ, ϑ,=) =eϕ+ϑ + eϕ+ϑ =σ

Γ(σ + 1)
+ eϕ+ϑ =2σ

Γ(2σ + 1)
+ eϕ+ϑ =3σ

Γ(3σ + 1)
+ · · · ,

ν(ϕ, ϑ,=) =− 1− eϕ+ϑ − eϕ+ϑ =σ

Γ(σ + 1)
− eϕ+ϑ =2σ

Γ(2σ + 1)
− eϕ+ϑ =3σ

Γ(3σ + 1)
− · · · ,

ω(ϕ, ϑ,=) =eϕ+ϑ + eϕ+ϑ =σ

Γ(σ + 1)
+ eϕ+ϑ =2σ

Γ(2σ + 1)
+ eϕ+ϑ =3σ

Γ(3σ + 1)
+ · · · ,

ψ(ϕ, ϑ,=) =c + 0 + · · · ,

The approximate solution by VITM.
According to the iteration method for the scheme (18), we have

µm+1(ϕ, ϑ,=) = µm(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂µm

∂= + µm
∂µm

∂ϕ
+ νm

∂µm

∂ϑ
+

1
ωm

∂ψm

∂ϕ

}]
,

νm+1(ϕ, ϑ,=) = νm(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂νm

∂= + µm
∂νm

∂ϕ
+ νm

∂νm

∂ϑ
+

1
ωm

∂ψm

∂ϑ

}]
,

ωm+1(ϕ, ϑ,=) = ωm(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂µm

∂= + µm
∂ωm

∂ϕ
+ νm

∂ωm

∂ϑ
+ ωm

(
∂µm

∂ϕ
+

∂νm

∂ϑ

)}]
,

ψm+1(ϕ, ϑ,=) = ψm(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂νm

∂= + µm
∂ψm

∂ϕ
+ νm

∂ψm

∂ϑ
+=ψm

(
∂µm

∂ϕ
+

∂νm

∂ϑ

)}]
,

(25)

with the initial sources

µ0(ϕ, ϑ,=) = eϕ+ϑ, ν0(ϕ, ϑ,=) = −1− eϕ+ϑ,

ω0(ϕ, ϑ,=) = eϕ+ϑ, ψ0(ϕ, ϑ, 0) = c.
(26)

For m = 0, 1, 2, · · ·

µ1(ϕ, ϑ,=) = µ0(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂µ0

∂= + µ0
∂µ0

∂ϕ
+ ν0

∂µ0

∂ϑ
+

1
ω0

∂ψ0

∂ϕ

}]
,
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ν1(ϕ, ϑ,=) = ν0(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂ν0

∂= + µ0
∂ν0

∂ϕ
+ ν0

∂ν0

∂ϑ
+

1
ω0

∂ψ0

∂ϑ

}]
,

ω1(ϕ, ϑ,=) = ω0(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂µ0

∂= + µ0
∂ω0

∂ϕ0
+ ν0

∂ω0

∂ϑ0
+ ω0

(
∂µ0

∂ϕ
+

∂ν0

∂ϑ

)}]
,

ψ1(ϕ, ϑ,=) = ψ0(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂ν0

∂= + µ0
∂ψ0

∂ϕ
+ ν0

∂ψ0

∂ϑ
+=ψ0

(
∂µ0

∂ϕ
+

∂ν0

∂ϑ

)}]
,

µ1(ϕ, ϑ,=) = eϕ+ϑ

{
1 +

=σ

Γ(σ + 1)

}
, ν1(ϕ, ϑ,=) = −1− eϕ+ϑ

{
1 +

=σ

Γ(σ + 1)

}
,

ω1(ϕ, ϑ,=) = eϕ+ϑ

{
1 +

=σ

Γ(σ + 1)

}
, ψ1(ϕ, ϑ, 0) = c + 0.

µ2(ϕ, ϑ,=) = µ1(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂µ1

∂= + µ1
∂µ1

∂ϕ
+ ν1

∂µ1

∂ϑ
+

1
ω1

∂ψ1

∂ϕ

}]
,

ν2(ϕ, ϑ,=) = ν1(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂ν1

∂= + µ1
∂ν1

∂ϕ
+ ν1

∂ν1

∂ϑ
+

1
ω1

∂ψ1

∂ϑ

}]
,

ω2(ϕ, ϑ,=) = ω1(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂µ1

∂= + µ1
∂ω1

∂ϕ0
+ ν1

∂ω1

∂ϑ1
+ ω1

(
∂µ1

∂ϕ
+

∂ν1

∂ϑ

)}]
,

ψ2(ϕ, ϑ,=) = ψ1(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂ν1

∂= + µ1
∂ψ1

∂ϕ
+ ν1

∂ψ1

∂ϑ
+=ψ1

(
∂µ1

∂ϕ
+

∂ν1

∂ϑ

)}]
,

µ2(ϕ, ϑ,=) = eϕ+ϑ

{
1 +

=σ

Γ(σ + 1)
+

=2σ

Γ(2σ + 1)

}
,

ν2(ϕ, ϑ,=) = −1− eϕ+ϑ

{
1 +

=σ

Γ(σ + 1)
+

=2σ

Γ(2σ + 1)

}
,

ω2(ϕ, ϑ,=) = eϕ+ϑ

{
1 +

=σ

Γ(σ + 1)
+

=2σ

Γ(2σ + 1)

}
,

ψ2(ϕ, ϑ, 0) = c + 0.

µ3(ϕ, ϑ,=) = µ2(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂µ2

∂= + µ2
∂µ2

∂ϕ
+ ν2

∂µ2

∂ϑ
+

1
ω2

∂ψ2

∂ϕ

}]
,

ν3(ϕ, ϑ,=) = ν2(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂ν2

∂= + µ2
∂ν2

∂ϕ
+ ν2

∂ν2

∂ϑ
+

1
ω2

∂ψ2

∂ϑ

}]
,

ω3(ϕ, ϑ,=) = ω2(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂µ2

∂= + µ2
∂ω2

∂ϕ0
+ ν2

∂ω2

∂ϑ2
+ ω2

(
∂µ2

∂ϕ
+

∂ν2

∂ϑ

)}]
,

ψ3(ϕ, ϑ,=) = ψ2(ϕ, ϑ,=)− E−1
[

sσE
{

1
sσ

∂ν2

∂= + µ2
∂ψ2

∂ϕ
+ ν2

∂ψ2

∂ϑ
+=ψ2

(
∂µ2

∂ϕ
+

∂ν2

∂ϑ

)}]
,

µ3(ϕ, ϑ,=) =eϕ+ϑ

{
1 +

=σ

Γ(σ + 1)
+

=2σ

Γ(2σ + 1)
+

=3σ

Γ(3σ + 1)

}
,

ν3(ϕ, ϑ,=) =− 1− eϕ+ϑ

{
1 +

=σ

Γ(σ + 1)
+

=2σ

Γ(2σ + 1)
+

=3σ

Γ(3σ + 1)

}
,

ω3(ϕ, ϑ,=) =eϕ+ϑ

{
1 +

=σ

Γ(σ + 1)
+

=2σ

Γ(2σ + 1)
+

=3σ

Γ(3σ + 1)

}
,

ψ3(ϕ, ϑ,=) = c + 0.

µ(ϕ, ϑ,=) =
∞

∑
m=0

µm(ϕ, ϑ,=) = eϕ+ϑ

{
1 +

=σ

Γ(σ + 1)
+

=2σ

Γ(2σ + 1)
+

=3σ

Γ(3σ + 1)
+ · · ·+ =mσ

Γ(mσ + 1)

}
,
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ν(ϕ, ϑ,=) =
∞

∑
m=0

νm(ϕ, ϑ,=) = −1− eϕ+ϑ

{
1 +

=σ

Γ(σ + 1)
+

=2σ

Γ(2σ + 1)
+

=3σ

Γ(3σ + 1)
+ · · ·+ =mσ

Γ(mσ + 1)

}
,

ω(ϕ, ϑ,=) =
∞

∑
m=0

ωm(ϕ, ϑ,=) = eϕ+ϑ

{
1 +

=σ

Γ(σ + 1)
+

=2σ

Γ(2σ + 1)
+

=3σ

Γ(3σ + 1)
+ · · ·+ =mσ

Γ(mσ + 1)

}
,

ψ(ϕ, ϑ,=) =
∞

∑
m=0

ψm(ϕ, ϑ,=) = c + 0.

The exact result of Equation (22) at σ = 1,

µ(ϕ, ϑ,=) = eϕ+ϑ+=, ν(ϕ, ϑ,=) = −1− eϕ+ϑ+=,

ω(ϕ, ϑ,=) = eϕ+ϑ+=, ψ(ϕ, ϑ,=) = c.
(27)

6. Discussion and Numerical Results

In this section, we discuss the numerical analysis of the obtained solutions for four
differential equation schemes discussing the unsteady flow of a polytropical gas of arbi-
trary order. Figures 1 and 2 shows results of two-dimensional plots of actual and HPTM
solutions for ϕ ∈ [0; 1], = = 0.1 and ϑ = 1. In Figures 3–8 the 3D graph of µ(ϕ, ϑ,=),
ν(ϕ, ϑ,=) and ω(ϕ, ϑ,=) for various fractional order are presented, which shows that the
derived HPTM/VITM approximated results are in strong agreement with the exact and the
numerical ones. This comparison represents a strong correlation between the HPTM/VITM
and exact findings. Figures 9 and 10 shows results of two-dimensional plots of actual and
VITM solutions for ϕ ∈ [0; 1], = = 0.1 and ϑ = 1. Figures 11 and 12 depicts solutions in
two-dimensional plots for different values of σ = 1, 0.9, 0.8, 0.7, 0.6, 0.5 for ϕ ∈ [0; 1], = and
ϑ = 1. The same figures of the suggested techniques are obtained and the validity of the
proposed methods has been verified. Numerical evaluations were performed to ensure
that the proposed methods are simple and effective.

Figure 1. The exact and approximate solution graphs of µ(ϕ, ϑ) and ν(ϕ, ϑ), Example 1.
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Figure 2. The exact and approximate solution graphs of ω(ϕ, ϑ) and ψ(ϕ, ϑ), Example 1.

Figure 3. The HPTM graphs of δ = 1 and 0.8 of µ(ϕ, ϑ), Example 1.

Figure 4. The HPTM graphs of δ = 0.6 and 0.4 of µ(ϕ, ϑ), Example 1.
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Figure 5. The HPTM graphs of δ = 1 and 0.8 of ν(ϕ, ϑ) Example 1.

Figure 6. The HPTM graphs of δ = 0.6 and 0.4 of ν(ϕ, ϑ), Example 1.

Figure 7. The HPTM graphs of δ = 1 and 0.8 of ω(ϕ, ϑ), Example 1.
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Figure 8. The HPTM graphs of δ = 0.6 and 0.4 of ω(ϕ, ϑ), Example 1.

Figure 9. The exact and approximate solution graphs of µ(ϕ, ϑ) and ν(ϕ, ϑ), Example 1.

Figure 10. The exact and approximate solution graphs of ω(ϕ, ϑ) and ψ(ϕ, ϑ), Example 1.
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Figure 11. The approximate solution graphs of different fractional order of δ for µ(ϕ, ϑ) and ν(ϕ, ϑ), Example 1.

Figure 12. The approximate solution graph of different fractional order of δ for ω(ϕ, ϑ).

7. Conclusions

In this article, two semi-analytical techniques are implemented to solve fractional-
order gas dynamics equations. The approximate solution of the system is evaluated to
confirm the validity and reliability of the proposed methods. Graphs of the solutions are
plotted to display the close relation between the obtained and exact results. The problem
shows this to validate and test the efficacy of the suggested techniques. Moreover, the
efficiency of the mentioned procedures and the reduction in calculations provides broader
applicability. It is also illustrated that the findings of the current methodology are close
to the exact solutions. The proposed methods are powerful techniques to solve other
nonlinear systems of fractional-order partial differential equations.
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