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Abstract: Nowadays, solving constrained engineering problems related to optimization approaches
is an attractive research topic. The chaotic krill herd approach is considered as one of most advanced
optimization techniques. An advanced hybrid technique is exploited in this paper to solve the
challenging problem of estimating the largest domain of attraction for nonlinear systems. Indeed,
an intelligent methodology for the estimation of the largest stable equilibrium domain of attraction
established on quadratic Lyapunov functions is developed. The designed technique aims at com-
puting and characterizing a largest level set of a Lyapunov function that is included in a particular
region, satisfying some hard and delicate algebraic constraints. The formulated optimization problem
searches to solve a tangency constraint between the LF derivative sign and constraints on the level
sets. Such formulation avoids possible dummy solutions for the nonlinear optimization solver. The
analytical development of the solution exploits the Chebyshev chaotic map function that ensures
high search space capabilities. The accuracy and efficiency of the chaotic krill herd technique has
been evaluated by benchmark models of nonlinear systems. The optimization solution shows that the
chaotic krill herd approach is effective in determining the largest estimate of the attraction domain.
Moreover, since global optimality is needed for proper estimation, a bound type meta-heuristic opti-
mization solver is implemented. In contrast to existing strategies, the synthesized technique can be
exploited for both rational and polynomial Lyapunov functions. Moreover, it permits the exploitation
of a chaotic operative optimization algorithm which guarantees converging to an expanded domain
of attraction in an essentially restricted running time. The synthesized methodology is discussed,
with several examples to illustrate the advantageous aspects of the designed approach.

Keywords: nonlinear system; quadratic Lyapunov function; optimization; chaotic krill herd algo-
rithm

1. Introduction

The main problem of theory of optimization consists in selecting an optimal vector
within a given space of search. The attained vector can minimize or maximize an objective
function which is expected to offer the optimal solution. Mostly, advanced intelligent
techniques are developed to deal with the design of these kinds of optimization processes.
In view of their methodology, optimization techniques can be classified into several main
categories: (1) analytical or deterministic, (2) heuristic or random advanced methods and
(3) Multi-Objective or single objective optimization [1]. The first class, based mainly on
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the gradient theory, are known to be “strict step” methods. Indeed, identical solutions are
obtained whenever the initial starting conditions of the algorithm are the same. However,
heuristic algorithms are founded on a random walks principle. As a result, the optimization
approaches cannot be reiterated under any initializing conditions. Nonetheless, both
classes mostly provide satisfactory solutions leading to similar final optimal results. Lately,
bio-inspired algorithms demonstrate an impressive and valuable performance in solving
challenging nonlinear optimization problems [2].

All meta-heuristic methods, to some degree, manage to identify a balance between
local and global searches (intensification and randomization) [3]. To solve high-dimension
nonlinear optimization problems including task-resource assignment, these flexible nature-
inspired meta-heuristic methods are used. These approaches can fully use the entire
data pertaining to the population in order to identify precise solutions. Evolution the-
ory has received a lot of attention to date. Genetic algorithms (GAs) [4,5] are based
on the gradient-free approach that mimics evolution. Since then, several meta-heuristic
nature-inspirated techniques have been formulated; these include particle swarm opti-
mization (PSO) [6–8], evolutionary strategy (ES) [9], firefly algorithm (FA) [10], ant colony
optimization (ACO) [11], differential evolution (DE) [12], probability-based incremental
learning (PBIL) [13], big bang–big crunch algorithm [14], biogeography-based optimiza-
tion (BBO) [15], harmony search (HS) [16], cuckoo search (CS) [17], animal migration
optimization (AMO) [18], krill herd method (KH) [19], bat algorithm (BA) [20], teaching–
learning-based optimization (TLBO) [21], and charged system search (CSS) [22]. KH is a
modern swarm intelligence optimization technique inspired by krill herding behaviour [23].
In KH, the krill movement objective function is determined by the krill distance, krill swarm
density, and food density. Krill location comprises three mechanisms: (i) movement due to
other krill, (ii) foraging movement, and (iii) physical diffusion. The KH algorithm is benefi-
cial because of its simplicity, facilitating easy implementation in parallel computing [24].

Additionally, KH is a new population-dependent swarm intelligence algorithm [24]
considering the Lagrangian and evolutionary activities of krill in their natural environment.
This algorithm can help understand and use krill behaviour for optimizing real-world
problems. Although the KH based algorithm is convenient for many optimization problems,
it cannot avoid local optima and therefore is inappropriate to determine a global optimal
solution [25]. Several techniques are used in the literature to enhance the fundamental KH
technique and improve its performance [26].

In order to address this concern, Wang et al. [27] suggested using an enhanced algo-
rithm based on chaotic patterns. Chaotic maps have been implemented for preventing local
optima and directly reaching the globally optimal solution [24]. Furthermore, this tech-
nique requires less computation time to reach a solution. Hence, it is feasible to avoid local
optima and provide rapid convergence, which makes this technique usable in real-world
applications for addressing optimization problems with distinct conditions.

This study introduces the Chaotic KH-based technique (CKH) for increasing the KH
convergence rate. Numerous one-dimensional chaotic maps replace KH parameters. To
generate chaotic sequences efficiently and rapidly, Chebyshev maps has been implemented
in the CKH algorithm. The suggested technique is tested on benchmark problems in order
to estimate the domain of attraction (DA). It is expected that CKH will provide better
performance than the techniques like those developed in [28,29], specified in the literature.
The primary reason for performance increase is the use of deterministic chaotic patterns
instead of linearly declining values.

Stability is the most critical factor in the study of nonlinear dynamic systems. For most
applications, knowing the asymptotic stability associated with an equilibrium position is
typically inadequate because it is essential to consider the maximum distance between
the initial state and equilibrium position to ensure asymptotic stability. Consequently,
the principle of the domain of attraction was born. Since the publication of the stability
theorem in 1892, the challenge of precisely evaluating or estimating the DA has remained
unresolved. In general, evaluating the DA is very complex [30,31]; hence, the problem
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concerning the computation of the most significant invariant DA subset is also taken
into account. Lyapunov and non-Lyapunov methods are the two types of DA estimation
methods [30].

The maximal Lyapunov function (LF) can be used to calculate the precise DA of a
nonlinear system. A rational LF can be used to approximate such an expression [31,32].
Lyapunov quadratic functions typically compute stability area approximations conserva-
tively. Regardless, quadratic LFs are widely employed for stabilization [33]. Moreover,
these functions are used to build asymmetric LF used for forecasting DA associated with
linear systems concerning asymmetrical extrinsic action [34].

In contrast, research indicates that random LFs fulfilling Lyapunov constraints offer
DA estimates concerning control systems of the nonlinear polynomial type [35]. The set of
LFs appropriate for computing DA was augmented using a proposition proved in [36]. A
novel technique for computing LFs was formulated; its degrees of freedom were higher
than the traditional technique [37]. Imprecise polynomial expressions concerning non-
polynomial systems must be estimated in order to apply Lyapunov polynomial functions
for computing the DA specific to non-polynomial systems [38]. Several approximation tech-
niques that rely on the multi-parameter polynomial method to assess residual expression
were formulated in [39]. The DA can also be computed using piecewise affine functions
used as LFs [40–42].

Presently, nonlinear system stability and formulation of new DA estimates typically
rely on the Pupov criterion, The Zubov technique [43], LaSalle’s theorem, the circular
criterion, and the framework of central manifolds [29].

In a majority of the situations, the problem concerning DA estimation is simplified to
a convex or non-convex optimization problem [44]. This is addressed using optimization
techniques such as SOS [45], LMI [46], intelligent optimization techniques [47], integration
of the genetic algorithm and LMI [4]. In comparison to optimization approaches, a swift
and computationally efficient technique formulated for real-time applications relies on an
algorithm that identifies the most-extensive sublevel set pertaining to the LF under the
constraint its time derivative is negative [28].

Predicting DA pertaining to inexact scenarios is highly challenging, specifically for
situations comprising large scale systems [48]. An internal DA approximation pertaining
to a type of inexact nonlinear systems can be determined using a novel technique that
LFs independently of parameters [49]; moreover, the branch and bound technique is also
used [50]. Furthermore, researchers [51] proposed an updated technique to compute sliding
mode control stability under uncertain conditions. Filling measures have been widely used
for stochastic control applications; these measures are required for computing the DA [52].

DA approximation is also performed using the non-Lyapunov trajectory inversion
technique that relies on topological aspects. However, computational complexity is one
challenge associated with this technique; this can be addressed by integrating the approach
with Lyapunov techniques [53,54]. Formulating reachable sets is a different approach
sometimes used for evaluation of DA. Formulating reachable sets using an approximate
calculation method is specified in [55].

This paper suggests a metaheuristic scheme for Lyapunov-based methods to determine
DA corresponding to several nonlinear systems. This technique is intended to have better
computational effectiveness and to be helpful for real-time implementations. When a
potential LF is selected, an evolutionary algorithm explores the biggest sublevel LF set
under the constraint that the derivative with respect to time is negative for all values
in the sublevel set. A heuristic optimization scheme is set up, comprising a tangency
restriction concerning level set and LF sign requirements. These restrictions facilitate
skipping numerous potential local solutions specific to the nonlinear optimization process.

In [56] a hybridized monarch butterfly optimization method has been proposed. Two
state-of-the-art swarm intelligence approaches have been implemented and the designed
technique was enhanced to be applied to a convolutional neural network scheme problem.
In [57], the authors created a general model, the adaptive network-based fuzzy inference
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system code, that has been applied for estimating nanofluids’ relative viscosity. A statistical
analysis has proved the precision of the synthesized model.

The main contribution of this paper consists in combining the CKH algorithm with
position updating equations in a chaotic map to compute the best solution related to the
DA estimation problem. The implemented CKH algorithm in this work will guarantee a
high convergence speed in computing the radius of the maximal estimated DA. Moreover,
the coordinates of the tangency point between the LF and its derivative will be computed
and efficiently determined. Along with this valuable performance, a minimal optimization
routine time budget will be insured, favoring trajectory tracking engineering control
problems. To obtain the maximal expanded DA, a particular optimization problematic
is investigated in this work. This later includes a delicate tangency constraint related to
the LF sign and its derivative. The challenging objective consists in avoiding important
potential dummy and local solutions for the applied optimization routine. The designed
strategy will permit the tangency point to be fixed accurately and converge to the solution
in a reduced running time. The assumption behind the investigated research is that the
designed method could tackle problems better at hand than peer methods; indeed, no
efficient procedure has been formulated to determine this particular point.

This paper discusses a novel approach for modifying the shape and increasing the
size of the DA specific to nonlinear systems. Section 2 details how iterative techniques are
set up to formulate the LF that optimizes DA. Section 3 details the CKH-specific parameter
choice. Section 4 details simulation results of prevalent numerical problems. Section 5
presents a comparison of the proposed algorithm with other techniques; additionally, there
are analyses of the results and discussion concerning algorithmic efficiency assessment.
Summarizing conclusion and perspectives are provided in Section 6. An appendix com-
prising an overall discussion concerning the class of systems and several basic notions has
been provided at the end of the paper.

2. Estimation of the Domain of Attraction
2.1. Fundamentals of the Domain of Attraction

The constraints defined in Theorem 1 (see Appendix A) will be used with a Lyapunov
to compute the inner approximations corresponding to this set. The entire section is based
on the assumption that V : Rn → R a is positive and differentiable function satisfying
V(x0) = 0 and V(x) > 0 when x 6= x0. DA approximations obtained using Lyapunov-
based schemes typically use statements like [30], if for positive c and ε.

V(x) ≤ c⇒ ∂V(x)
∂x

f (x) ≤ −εV(x) (1)

The following expression defines the set correlated to the LF:

Ω = { x ∈ Rn : V(x) ≤ c} (2)

The negative time derivative area is specified as:

υ =
{

x ∈ Rn :
.

V(x) < 0
}
∪ {0} (3)

Then, Ω is an approximation of the DA corresponding to the origin, such that Ω ⊆ υ.
An unsophisticated initial technique for broadening this analysis requires being dis-

joint from the area specified by:

∑ =
{

x ∈ Rn :
.

V(x) ≥ 0
}

(4)

We try to determine an area specified using a set of smooth “Derivative LF”
.

V(x) : Rn → R
where no failure areas are considered. The points corresponding to

.
V(x) = 0 are known

as “barriers”.
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Hence, we can determine a solution that is true for all x in the following expression:

x ∈ Rn ∈ Ω ∩∑=
{

x|V(x) ≤ c,
.

V(x) ≥ 0
}

(5)

this is a part of the area of attraction and is also positively invariant.
Put differently, these constraints evaluate the “safe set” ∑ created using the intersec-

tion of functions meeting
.

V(x) = 0, while the c-sublevel set corresponding to V(x) is the
latest DA inner approximation.

The present study is based on a function V(x) that is quadratic with respect to the
state x.

V(x) = xT Px, P = PT ∈ Rn×n, P > 0 (6)

We assume that P has two dimensions, which helps simplify the presentation. The
outcomes can be generalised for bigger matrices. It is supposed that:

P =

[
p1 p2
p2 p3

]
(7)

Then
V(x) = p1x2

1 + 2p2x1x2 + p3x2
2 (8)

This form of a LF is used for specifying a general ellipsoid present in the (x1, x2) plane,
as described by the equation:

Ω =
{

x ∈ Rn : V(x) = p1x2
1 + 2p2x1x2 + p3x2

2 = c, c > 0
}

(9)

The DA is the region that comprises the convergence of all system trajectories to a
particular equilibrium position, as specified using Equation (9).

2.2. Concept Illustration for Enlarging the DA

The concept objective is to determine the guaranteed large value of DA specific to a
particular nonlinear polynomial system corresponding to a LF and research the state space
using a meta-heuristic technique. This concept is illustrated in Figure 1.

Figure 1. DA concept for a nonlinear system using a QLF.
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2.2.1. Research on Maximum DA

As per (9), a greater level set value c corresponds to relatively precise DA estimation.
The computation of the LF’s maximum level set relates to DA estimation. It can be
determined by solving the pseudo-optimization as specified below:{

max
c, x

c

s.t.{x belong to level set V(x)− c = 0}
(10a)

{x is any point belonging to region Ω contained in D} (10b)

The basis of problem (10) is to determine the maximum level set corresponding to
V(x) (10a), which lies entirely within the definitive negative region of

.
V(x) (10b). It may

be obtained by determining the globally optimal solution for the following problem:
min
c, x

c

s.t. V(x)− c = 0
.

V(x) = 0
c > 0

(11)

The intent behind using problem (11) is to determine the minimum level set corre-
sponding to function V(x), as contained in the level set

.
V(x) = 0. The required solution is

one point located in the state space that correlates to the level sets V(x) = c and
.

V(x) = 0
coming in contact. The nonlinear nature of model (11) is highlighted; consequently, it
might have several local solutions. To be able to converge to an acceptable estimate, global
optimality must be attained. This concept is graphically presented using Figure 2. The
optimisation problem defined in (11) is nonlinear, and several solutions can be identi-
fied. Nevertheless, most solutions are inappropriate for estimating the DA. The following
schematic version is assessed for additional evaluation of this concept.

Figure 2. The problem of the global minimum.

Figure 2 presents the global optimization problem qualitatively.
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The expression mentioned below indicates a hypersurface:

dV(x)/dt = 0, x 6= 0 (12)

This is related to the area boundary where
.

V(x) is negative definite, where we intend
to determine the guaranteed estimation Ω. Such expressions corresponding to QLF denote
the inside of the ellipsoid specified using (9).

Distinct points on this figure can be derived as optimization problem solutions (11).
The requirements for optimisation (11) apply for points x5 and x7. The LF and its differenti-
ated version verify the sign change corresponding to a particular area in the state space.
However, other paths cross the predicted DA transversally. These solutions correspond to
local minima and are considered dummy; hence, these are not considered. Furthermore,
coordinates x1, x2, x4, x6, and x8 validate this inference. Considering the intended DA,
several transversal intersections can be found.

Nevertheless, it can be observed that x3 is considered as a global minimum in Figure 2.
It should be noted that all system paths intersect the computed DA tangentially. It is crucial
to verify the below-mentioned constraint in order to specify the optimisation problem (11)
in a refined way.

Constraint 1: 
V(x) = c
.

V(x) < 0
c > 0

(13)

Constraint 2: The optimal solution must correspond to a state-space area prior to a sign
change corresponding to V(x) and its derivative tackles as |x| approaches infinity.

Constraint 3: The level set specified by:

V(x) = c (14)

corresponds to a global minimum.

It is necessary to ensure that these three constraints are met so that “dummy solutions”
can be avoided and the determined globally optimal formulation (11) outputs tangential
coordinates. To have detailed examples related to this concept, the reader can consult the
following reference [58].

2.2.2. Algorithm of Computing the DA

We now specify algorithmic aspects that enhance DA estimates iteratively using
numerous calculations of V(x) that help determine the state x where the first constraint is
fulfilled. These cycles enhance the approximation of the radius of the contained ellipse (9).

Before algorithm execution begins, the origin is in an asymptotically stable state.
Hence, as specified by the linear theory, there exists a locally applicable QLF:

V(x) = xT Px (15)

where P is a positive definite, symmetric matrix having n × n dimension. The below
mentioned Lyapunov expression is solved to compute P.

PA + AT P = −Q (16)

corresponding to a positive definite matrix Q having n× n dimension where A denotes
the Jacobian of f (x) at equilibrium.

The derivative of the LF is computed as:

.
V(x) =

dV(x)
dx

f (x) (17)
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State-space sampling facilitates an instantaneous assessment of V(x) and
.

V(x).
This technique changes lower and upper bounds corresponding to c denoted cmin and

cmax, respectively. When combined, these values provide a more precise DA estimate. The
lower bound cmin is zero, while the upper bound cmax is infinite when the algorithm begins
execution. Considering a randomly selected x(i) and conditions

.
V
(

x(i)
)
< 0 and cmin <

V
(

x(i)
)
< cmax are met, the lower bound is changed to the LF‘s value, i.e., cmin = V

(
x(i)
)

.

On contrast, if
.

V
(

x(i)
)
≥ 0 and V

(
x(i)
)
< cmax conditions are met, then the upper bound

is changed to V
(

x(i)
)

. When the sampling process has processed numerous samples,
the lower bound increases; however, the increase is not always monotonic. The final
convergence point c and most significant sublevel set Ω(cmin) is determined. Furthermore,
cmax exhibits a monotonic decrease and eventually converges down to c.

When the requirements for Theorem 1 are met corresponding to state x(i), then V
(

x(i)
)

represents a probable estimate of c therefore, it is retained in an array. This condition ensures
that the approximate DA values calculated using cmin satisfy the conditions corresponding
to Theorem 1, thereby providing more precise estimates. Array = initially contains zero.

Considering that conditions
.

V
(

x(i)
)

< 0 and V
(

x(i)
)

< cmax are met, = stores

the value of V
(

x(i)
)

, i.e., Ω
(

V
(

x(i)
))

, which is a probable DA estimate. If conditions
.

V
(

x(i)
)
≥ 0, V

(
x(i)
)
< cmax and cmin ≥ cmax are met, then the method tries to select a

new lower bound from the values stored in the array. Condition cmin < cmax is considered
when trying to identify the maximum value from the array. Choosing an existing lower
bound value meets the constraint

.
V
(

x(i)
)
< 0 for the identified sublevel set Ω(cmin). The

lower bound is zero, considering the worst-case situation.
The sampling technique used in this study is conservative; however, there could be

a substantial overestimation of DA. One example is the region
.

V
(

x(i)
)
< 0 not having

a simple connection. Here, the technique might not disregard tiny holes inside the area
where

.
V
(

x(i)
)
≥ 0. Presently, there is no assurance that this algorithm always converges;

however, empirical data obtained using numerous simulations and real-world tests indicate
that this method converges to the precise level set if the sample count is large.

Algorithm 1 presents a series of steps for identifying the DA corresponding to the
origin of (A1). Ensuring that Lyapunov theory concepts are met, the following steps
are followed:

Algorithm 1 DA estimation

Initialization: Initialize the parameters c, cmin, cmax, = = {0}
Liniarization: The Jacobian of system (A1) at the origin and determine the matrix LF

A← ∂ f /∂x(x) ‖x=0
P← solution o f PT A + AP = −I

V(x) = xT Px
for i = 1 : n do
Evaluate V

(
x(i)
)

,
.

V
(

x(i)
)

for each state

if (V
(

x(i)
)
= cmax) && (

.
V
(

x(i)
)
= 0)

= =
{

V(x(i))
}

else if (V
(

x(i)
)
< cmax) && (

.
V
(

x(i)
)
≥ 0)

cmax = V(x(i))
If cmin ≥ cmax
cmax = max{c ∈ =, c ≤ cmax}
end
end
end for
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Result: Return the best value of DA

Draw the graphic Domain definite by Ω =
{

V
(

x(i)
)
= cmax

}
;

End.

Our technique relies on ascertaining state x in space where DA radius is maximised,
corresponding to a particular ellipsoid having boundaries situated within the negative time
derivative area. This technique is not feasible for higher dimensions; moreover, state–space
discretisation and several simulations would be needed.

3. Proposed Krill Herd Algorithm for State Assessment
3.1. The Motivation for Using the Krill Herd Method

Extensive research has been conducted to determine the mechanisms that result in the
formation of non-random patterns by marine animal populations [18]. Several mechanisms
have been understood: safety from predators, feeding, environmental characteristics, and
better reproduction [23].

The Antarctic krill is one of the most commonly researched marine species [24]. In
fact, the krill herd is characterized by several uncertainties regarding its representative
distribution [25]. Various conceptual frameworks have been proposed to explain the pattern
of krill herds [26]. The results suggest that krill swarms are the fundamental organizational
unit of this species.

Marine predators such as sea birds or penguins attack krill by leading individual krill
to an area with lesser krill density. Following the predatory attack, krill herd formation has
two primary objectives: (1) enhance krill density and (2) access to food. Krill behaviour to
enhance the density and locate food are identified as the objective function. Subsequently,
herding is observed around local minima. Individual krill movement is such that the best
solution can be found in this search for food and increased density.

3.2. Krill Herd

Gandomi and Alavi first proposed the Krill Herd (KH) algorithm in 2012. KH [27] is a
novel meta-heuristic technique for addressing optimisation problems. Krill swarm patterns
during food search are the motivation for this algorithm. The position of individual krill is
affected by three aspects specified below [27]:

i. Krill movement due to other individuals;
ii. Foraging behaviour;
iii. Random diffusion;

A simple Lagrangian model [27] can be formulated for the three aspects of KH.
Equation (18) specifies this model:

dXk
dt

= Nk + Fk + Dk (18)

where
Nk: krill motion due to other individuals;
Fk: foraging-specific movement;
Dk: is the physical diffusion corresponding to the kth individual krill;
k: denotes a single krill;
t: generation count;

3.2.1. Krill Movement Due to Other Individuals

The first movement direction is approximated using three characteristics: repulsive
effect, target effect, and local effect. The movement of an individual krill ith is modelled as:

Nnext
k = Nmaxαk + ωdNpresent

k (19)
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where
αk = αlocal

k + α
target
k (20)

and
Nmax denotes the maximum induced speed,
ωd denotes inertia weight in the range [0,1],
Npresent

k denotes the previous induced motion of the ith individual krill
α

target
k and αlocal

k denote the target and local effects, respectively.

3.2.2. Foraging Movement

Two primary aspects determine the second movement: location of food, and prior
experience concerning the location of food. This motion can be modelled for the ith krill as
specified below [27]:

Fnext
k = Vf βk + ω f Fprevious

k (21)

where
βk = β

f ood
k + βbest

k (22)

and
Vf denotes foraging speed; for the present study, Vf is set to 0.02 [27].
ω f denotes inertia weight in the range [0,1],

Fprevious
k denotes previous foraging movement,

β
f ood
k denotes food attraction

βbest
k is the influence of best fitness

3.2.3. Random Diffusion

The third motion is fundamentally random. Two factors are used for expressing the
model corresponding to this motion: random vector and highest diffusion speed. The
model expression is specified below [27]:

Dk = DmaxδVf (23)

where,
Dmax is the maximum induced speed;
δ denotes the random directional vector [0,1]

3.3. Movement in KH

Typically, the motions specified in KH change often with respect to krill position to
attain the best position. The two subsequent motions (2nd and 3rd) caused by other krill
comprise two local and two global techniques used concurrently to make KH an efficacious
and potent technique. The following equations specify the location of individual krill i in
the [t, t + ε] time interval:

Xk(t + ε) = Xk(t) + ε
dXk
dt

(24)

where ε is a crucial constant (speed vector scaling factor).
Equation (25) may be used to determine the value of ε

ε = Pcst

Nv

∑
j=1

(
Uj − LJ

)
(25)

where,
Nv: denotes the total variable count
Uj, LJ : denotes the upper and lower bounds corresponding to the jth variables
Pcst: position constant in the [0,2] range.
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To achieve better optimisation and enhanced convergence speed, multiplication and
crossover aspects specific to the algorithm are integrated with KH [27].

3.3.1. Crossover

The crossover probability (Cr) parameter regulates the crossover process. The position
of every individual krill is changed based on its interaction with other krill. The jth
component corresponding to the ith krill may be specified as [27]:

Xi.j =

{
Xm,j i f rand ≤ Cr
Xi,j i f rand > Cr

(26)

where, m = 1, 2, . . . , N and N denotes krill population and zbest
i : is the best historical

meeting point for krill i.

3.3.2. Mutation

The mutation probability (Mr) parameter regulates the mutation process; it may be
specified as [27]:

Xi.j = Xbest,j + θ
(
Xs,j − Xt,j

)
(27)

where,
Xbest,j: globally best vector,
Xs,j, Xt,j: two random vectors,
θ: scalar in the [0,1] range.
The updated Xi.j value is expressed as [27]:

Xmod
i, j =

{
Xnew

i, j i f rand ≤ Mr
Xi, j i f rand > Mr

(28)

3.4. Computation of the Fitness Function

Execution of the KH algorithm comprises the determination of the fitness function as
its primary step. Correspondingly, particle quality assessment is made using the domain
of attraction. Ω =

{
x ∈ Rn : V

(
x(i)
)
≤ c
}

, c > 0 is the objective function expression that

must be maximised. Considering the ith particle position x(i), the third step of Algorithm 2
needs to be verified. States x(i) and the domain of attraction Ω

(
V
(

x(i)
))

can be used as
per the below-mentioned process to determine the fitness function corresponding to the
ith particle.

3.5. KH Computation Procedure

Algorithm 2 lists the computational steps for this process.

3.6. Fundamentals of Chaotic KH (CKH)

All metaheuristic algorithms share a similar search scheme divided into two parts:
exploration and exploitation. During the exploration phase, the search space is evaluated
extensively to generate additional solutions. In contrast, the exploitation phase comprises
a rapid convergence of the algorithm to the global optimum. These two steps are sophis-
ticated aspects required to determine the global optimum; here, an accurate solution is
typically balanced between these two factors. However, a significantly complex optimisa-
tion such as a DA problem with an unknown search space presents challenges. Hence, the
most appropriate trade-off between exploitation and exploration cannot be ascertained.
In order to focus on these two aspects in the search space, we have considered several
adaptive and random variables along with the KH.
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Algorithm 2 The KH computional process

Begin
Initialization. Set the initial values for the population size (Np), the maximum induced speed

(Nmax
obj ), the foraging speed

(Nmax
obj ), the maximum diffusion speed Nmax

obj ), the generation counter (m) and the maximum
number of fitness function evaluations (Nmax

obj ).
Fitness evaluation. Evaluate the fitness function and randomly set up the position n x(i);i = 1,2,

. . . ,Np set of each krill individual then assess the fitness function value for all individuals.
While m < (Nmax

obj ) or the stopping criteria are not accomplished do
Organize the population initiating from the best to worst.
Keep the best krill individual in “STORE”
for i = Np do
Compute the:

a) Physical diffusion
b) Foraging motion
c) Induced motion

Implement genetic operators
Update the krill individual position in the search domain
Assess each krill individual based on its updated position
end for

Organize the population from best to worst and fix the current best one. Increment the counter
m
m = m + 1
end while
Results: Presentation of the results and visualition;
End.

Chaos is among the mathematical techniques that have recently been used for en-
hancing exploitation and exploration [27]. Chaos theory provides the leading method for
enhancing evolutionary algorithm performance concerning the ignorance of local optima
and enhancing convergence rate; moreover, the chaos technique does not rely on random
parameters. Additionally, except for chaotic maps, another fundamental enhancement is
the integration of the elitism approach to the CKH framework. Like other optimisation
schemes, we add elitism in some form to retain the optimal krill population.

The elitism scheme which is implemented in the CKH algorithm is considered as
one of the most important enhancements offered by this. As with peer population-based
optimization strategies, some kinds of elitism are typically combined so as to retain the
best solutions in the investigated population. In the main cycle of the CKH, to start with,
the KEEP best population results are saved in a variable KEEPKRILL. Generally, the KEEP
worst solutions are eventually replaced by the KEEP best solutions. This later elitism
process can ensure that the whole population cannot be declined to the population with
worse fitness than the former. This avoids the best population from being abandoned by
the dynamic of the motion calculation operator. Note that the elitism strategy is used to
save the feature of the krill that has the best fitness in the CKH process, so even though
motion calculation operation degrades its matching krill, this later has been stored and can
be recovered by its previous good status if required.

Inertia weights ωd, ω f are the primary parameters that regulate the convergence rate
of KH. To enhance search efficacy and ensure convergence to the best solution, the chaos
concept is integrated with the KH framework for this study’s scope. Considering that
Chebyshev maps are the most-extensively used chaotic behavioural maps, it is possible
to generate chaotic sequences rapidly and efficiently. Furthermore, there is no need to
retain long sequences. Chebyshev maps used during the CKH method change the value of
randomised parameters ωchebychev =

(
ωd, ω f

)
in KH.
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Chebyshev maps update parameters ωd and ωf in accordance with the Equations (19)
and (21):

ω
chebychev
j = cos

(
j ∗ cos−1

(
ω

chebychev
j−1

))
(29)

Equation (29) produces a chaotic sequence in the [0,1] range. For every independent exe-
cution of equation (29), ω

chebychev
0 is output randomly. The chaotic value ω

chebychev
j produced

using a logistical map with 300 runs and ω
chebychev
0 = 0.001 is depicted in Figure 3.

Figure 3. Weights generated ωchebychev =
(

ωd, ω f

)
using a Chebychev chaotic map over 300 iterations.

In the case of CKH, Equations (19) and (21) can be written as:

Nnext
k = Nmaxαk + ω

chebychev
d, j Npresent

k (30)

Fnext
k = Vf βk + ω

chebychev
f , j Fprevious

k (31)

Algorithm 3 presents the pseudocode for the CKH computation process.

Algorithm 3 The CKH computional process

Begin
Initialization. Initialize the CKH’s parameters m, (Np), (Nmax

obj ), (Nmax
obj ), (Nmax

obj ) and (Nmax
obj )

Set up the chaotic maps value in random way and inertia weights ωchebychev = (ωd, ωf) as well.
STORE: number of the best krill swarm to retain from one generation to the next.

Fitness evaluation. Evaluate the fitness function and randomly set up the position x(i);i = 1,2,
. . . ,Np set of each krill individual, then assess the fitness function value for all individuals.
While m < Nmax

obj or the stopping criteria are not accomplished do
Organize the population initiating from the best to worst.
Keep the best krill individual in “STORE”
for i = 1: Np do
Compute the:

a) Physical diffusion
b) Foraging motion
c) Induced motion

Implement genetic operators
Update the krill individual position in the search domain
Assess each krill individual based on its updated position
end for
Update the “STORE” with the new best value;
Organize the population from best to worst and fix the current best one Increment the

counter m: m = m + 1
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end while
Results: Presentation of the results and visualition;
End.

The flowchart describing the developed strategy is described in Figure 4.

Figure 4. Flowchart of the CKH algorithm applied for the DA estimation problem.
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4. Illustrative Examples
4.1. Example 1

The nonlinear dynamic expression below might be assumed as a model for a pendu-
lum [28]. { .

x1 = x2.
x2 = − sin(x1)− 0.5x2

(32)

where the pendulum, having angular velocity x2, is at an angle x1 with the vertical axis.
The state vector is specified as: x = [x1, x2]

T . We use the proposed approach with
several chaotic map distributions to find an approximate DA corresponding to the stable
equilibrium x = (0, 0). To calculate a potential LF, we linearise the dynamic model for a
pendulum. Hence, the objective is to identify an acceptable stability domain:

Ω = { x ∈ Rn : V(x) ≤ c}, c > 0 (33)

where c is a real non-zero constant and V(x) denotes the positive definite QLF expression
specified below:

V(x) = xT P x, PT = P (34)

P denotes a symmetric and positive matrix that is ascertained by determining the solution
of the Lyapunov expression.

AT P + PA = −Q (35)

Q is an identity matrix as specified below:

Q = I (36)

In this case,

P =

[
2.25 0.5
0.5 1

]
(37)

The computed LF is:

V(x) = xT
[

2.25 0.5
0.5 1

]
x (38)

which can be expressed as:

V(x) = 2.25x2
1 + x1x2 + 2x2

2 (39)

In the case the derivative of V(x), as defined by the expression below, is negative
definite, and the nonlinear model has assured stability.

.
V(x) =

.
xT Px + xT P

.
x (40)

This equation may be specified as:

.
V(x) = 4x1x2 − x2

2 − x1 sin(x1)− 4x2 sin(x1) (41)

In this regard, we start encoding variables where particle position is defined according
to the below-mentioned vector:

x(i) =

(
x(i)1

x(i)2

)
; i = 1, . . . , Np (42)

Initially, we consider that the LF has quadratic nature.
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Consider
V
(

x(i)
)
= 2.25x2(i)

1 + x(i)1 x(i)2 + 2x2(i)
2 ; i = 1, . . . , Np (43)

whose time derivate is specified below.

.
V
(

x(i)
)
= 4x(i)1 x(i)2 − x2(i)

2 − x(i)1 sin
(

x(i)1

)
− 4x(i)2 sin

(
x(i)1

)
; i = 1, . . . , Np (44)

Fitness value can be determined using maximum
.

V(x) = 4x1x2 − x2
2 − x1 sin(x1)−

4x2 sin(x1) for which the algorithm has an acceptable solution, as mentioned in the pseu-
docode specified in Section 3.

Subsequently, the proposed approach is used to ascertain V
(

x(i)
)

,
.

V
(

x(i)
)

and c.
The settings used for the CKH technique are specified as follows. The scenario is

based on a population size of 25, maximum diffusion speed of 0.005, foraging speed of
0.02, running for 150 iterations and a krill number of 25. The CKH algorithm was executed
25 times, and evolution was recorded in Figure 5a–d. These figures depict how the objective
function evolved. After evaluating the optimisation outcome, the following was selected:

x(i) =

(
x(i)1

x(i)2

)
=

(
1.746
0.747

)
(45)

while the domain is:

Ω =
{

x ∈ Rn : V(x) = 2.25x2
1 + x1x2 + 2x2

2 = 9.2870
}

(46)
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The dynamic of the state variables initialized from the tangency point state locus
is represented in Figure 6. This is just to confirm the reliability of the obtained solution;
indeed, the state variables converges asymptotically to the stable equilibrium point.

Figure 6. State variables dynamics initialized on the tangency point.

4.2. Example 2

The below-mentioned expression is the state-space equivalent of the Van der Pool
equation [28]. { .

x1 = −x2.
x2 = x1 − x2 + x2

1x2
(47)

Here, x = [x1, x2]
T denotes the state vector. We use our approach comprising several

chaotic maps for estimating the general DA corresponding to a stable equilibrium x = (0, 0).
Initially, the dynamic model of Van der Pol is linearised in proximity to the equilibrium to
determine a potential LF.

A =
∂ f
∂x

∥∥∥∥
(0,0)

=

[
0 −1
1 −1

]
(48)

The symmetric matrix P is positive definite, and it is computed by solving the Lya-
punov expression:

AT P + PA = −Q (49)

Q is an identity matrix.
Q = I (50)

In this case,

P =

[
1.5 −0.5
−0.5 1

]
(51)

The potential LF is specified as:

V(x) = xT
[

1.5 −0.5
−0.5 1

]
x (52)

which can be expressed as:
V(x) = 1.5x2

1 − x1x2 + x2
2 (53)
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The stable region corresponding to the nonlinear model is assured if the derivate
of V(x)

.
V(x) =

.
xT Px + xT P

.
x (54)

is negative definite.
.

V(x) = −x2
1 − x2

2 − x3
1x2 + 2x2

1x2
2 (55)

In this regard, the following vector is initially employed for variable encoding related
to particle position.

x(i) =

(
x(i)1

x(i)2

)
; i = 1, . . . , Np (56)

We initially assume that the LF is quadratic.
Let

V
(

x(i)
)
= 1.5x2(i)

1 − x(i)1 x(i)2 + x2(i)
2 ; i = 1, ..., Np (57)

Then its time derivative can be specified as:

.
V
(

x(i)
)
= −x2(i)

1 − x2(i)
2 − x3(i)

1 x(i)2 + 2x2(i)
1 x2(i)

2 ; i = 1, ..., Np (58)

Fitness value can be specified using the maximum c∗ where a feasible solution exists
for the algorithm specified as pseudocode in Section 3.

Subsequently, use the proposed approach to determine V
(

x(i)
)

,
.

V
(

x(i)
)

and c.
The CKH algorithm was configured as: 0.02 foraging speed, 150 iteration count,

0.005 maximum diffusion speed, 25 population size. The CKH algorithm was executed
20 times. Objective function evolution history is specified in Figure 7a and the DA show in
Figure 7b. Considering the optimisation outcomes, we identify:

x(i) =

(
x(i)1

x(i)2

)
=

(
−0.8538

0.7534

)
(59)

while the more extensive domain is:

Ω =
{

x ∈ Rn : V(x) = 1.5x2
1 − x1x2 + x2

2 = 2.3045
}

(60)

Mathematics 2021, 9, x FOR PEER REVIEW 23 of 36 
 

 

( ) T TV x x Px x Px= + +    (54)

is negative definite. 

( ) 2 2 3 2 2
1 2 1 2 1 22V x x x x x x x= − − − +  (55)

In this regard, the following vector is initially employed for variable encoding related 
to particle position. 

( )
( )

( )
1

2

; 1,...,
i

i
pi

x
x i N

x

 
=   =
 
 

 (56)

We initially assume that the LF is quadratic. 
Let 

( ) 2( ) ( ) ( ) 2( )
1 1 2 2( ) 1.5 ; 1,...,i i i i i

pV x x x x x i N= − + =  (57)

Then its time derivative can be specified as: 

( )( ) 2( ) 2( ) 3( ) ( ) 2( ) 2( )
1 2 1 2 1 22 ; 1,...,i i i i i i i

pV x x x x x x x i N= − − − + =  (58)

Fitness value can be specified using the maximum *c  where a feasible solution ex-
ists for the algorithm specified as pseudocode in Section 3. 

Subsequently, use the proposed approach to determine ( )( )iV x , ( )( )iV x and c . 

The CKH algorithm was configured as: 0.02 foraging speed, 150 iteration count, 0.005 
maximum diffusion speed, 25 population size. The CKH algorithm was executed 20 times. 
Objective function evolution history is specified in Figure 7a and the DA show in Figure 
7b. Considering the optimisation outcomes, we identify: 

( )
( )

( )
1

2

0.8538
0.7534

i
i

i

x
x

x

  − 
=   =      

 (59)

while the more extensive domain is: 

( ){ }2 2
1 1 2 2: 1.5 2.3045nx R V x x x x xΩ = ∈ = − + =  (60)

 

 
(a) 

Figure 7. Cont.



Mathematics 2021, 9, 1743 20 of 30
Mathematics 2021, 9, x FOR PEER REVIEW 24 of 36 
 

 

(b) 

(c) 

 
(d) 

Figure 7. (a) Evolution of DA optimization process using CKH corresponding to example 2.
(b) Swarm plot diagrams using CKH corresponding to example 2. (c) Box diagram using CKH
corresponding to example 2. (d) Ellipsoid and phase trajectory that originates from the tangency
point on the largest ellipsoid.
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The dynamic of the state variables initialized from the tangency point state locus
is represented in Figure 8. This is just to confirm the reliability of the obtained solution;
indeed, the state variables converges asymptotically to the stable equilibrium point.

Figure 8. State variable dynamics initialized on the tangency point.

Unlike existing techniques, the developed method can be applied for both polynomial
and rational LF. Indeed, it allows the development of a chaotic operative optimization
algorithm which ensures the convergence to an enlarged DA in a significantly limited
running time. Despite the performance, offering a larger accurate DA at high speed
converging time, CKH is valuable for real-time trajectory tracking control problems

5. Discussion

This section comprises an in-depth discussion of a comparative analysis and assess-
ment of the formulated CKH technique and peer-reviewed methods [28,29].

Table 1 lists the approximate DA features corresponding to six dynamic nonlinear
benchmark models having a quadratic LF, computed using the literature [28,29]. The
nonlinear polynomial and nonpolynomial variants of the investigated examples are pre-
sented. E1, E2, E3 and E4 are second-order systems. Nevertheless, E5 and E6 are nonlinear
polynomial and nonpolynomial third-order models. The DA remains the primary assess-
ment criteria. The observed outcomes are better, concerning DA values. Figure 9 shows
the approximated DAs for the origins in examples E1–E6 described in Table 1 using the
CKH method.

Furthermore, the formulated technique offers a comprehensive solution that com-
prises the definition of a LF, concluding with an enhanced DA. This outcome is ob-
tained for every example assessed in this study. Implementation was straightforward
and less time-intensive.

Every example uses the CKH technique to maximise the permissible domain value.
These values are contrasted against the results identified using a peer optimisation-specific
method mentioned in the literature [28,29]. It is evident from Table 1 that the six as-
sessed samples yield better domains of attraction when identified using the CKH method
as compared to optimisation-based techniques. Formulation (11) comprises nonlinear
optimisation for a problem with numerous solutions having improper DA estimations
corresponding to the system being studied. For instance, consider the many solutions of
problem (11) corresponding to systems in E1 and E2, as indicated in Figures 10 and 11.
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Table 1. Estimated DA features for CKH, ref. [28,29] methods.

Example Systems Dynamics Lyapunov Function
Estimated DA Optimization Algorithm

Convergence Time (ms) Tangency Point (Best Solution)

[29] [28] CKH [29] [28] CKH [29] [28] CKH

E1
{ ·

x1 = −2x1 + x1x2
·
x2 = −x2 + x1x2

V(x) = x2
1 + x2

2 4.0804 4.112 4.0955 - 6.6 0.350 - -
{

x1 = 1.223
x2 = 1.611

E2
{ ·

x1 = −x2
·
x2 = x1 − x2 + x2

1x2

V(x) = 1.5x2
1 − x1x2 + x2

2 2.09 2.318 2.3045 - 6.7 0.542 - -
{

x1 = 0.852
x2 = −0.755

E3
{ ·

x1 = x2
·
x2 = −0.2x2 + 0.81 sin(x1) cos(x1)− sin(x1)

V(x) = x2
1 + x1x2 + 4x2

2 0.699 0.708 0.6993 - 7.2 0.236 - -
{

x1 = 0.741
x2 = −0.307

E4
{ ·

x1 = −0.25x1 + ln(1 + x2)
·
x2 = −0.3750x1 − 0.2x1x2 + (0.125x1 − x2) cos(x1)

V(x) = x2
1 + x2

2 0.2737 0.278 0.2737 - 8.3 0.258 - -
{

x1 = 0.443
x2 = −0.277

E5

·
x1 = −x1 + x2x2

3·
x2 = −x2 + x1x2
·
x3 = −x3

V(x) = x2
1 + x2

2 + x2
3 4.9188 4.971 4.969 - 8.4 0.77 - -


x1 = 1.200
x2 = 1.452

x3 = −1.190

E6

·
x1 = 1 + x3 + 0.125x2

3 − e(x1)

·
x2 = −x2 − x3
·
x3 = −x2 − 2x3 − 0.5x2

1

V(x) = x2
1 + x2

2 + x2
3 2.655 2.887 2.6617 - 8.6 0.813 - -


x1 = −1.325
x2 = 0.611

x3 = −0.728
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Figure 9. Approximated DAs for the origins in examples E1–E6 described in Table 1 using the CKH method.
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Figure 10. Approximated DAs for the origins of examples E1 described in Table 1 using the CKH method. (a) DA using the sampling method [28]. (b) DA using the LMI method [29].
(c) DA using CKH method.

Figure 11. Approximated DAs for the origins of examples E2 described in Table 1 using the CKH method. (a) DA using the sampling method [28]. (b) DA using the LMI method [29].
(c) DA using CKH method.
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Figures 10 and 11 depict LF level sets that are indicated using a solid line. Dashed
lines are used to depict the time derivative level set at level zero. It is also noteworthy that,
like the previous instance, E1 has a unique solution corresponding to V

(
x(i)
)
= c. The

discussion ahead specifies a unique solution which does not satisfy the tangency constraint
for the method described in [28]. The later weakness is well clarified in Figure 10a where a
clear intersection between the LF and its derivative is shown. Consequently the value of
solution V

(
x(i)
)
= c = 4.112 provided in Table 1 is not realistic. The solution correspond-

ing to E2 solves the problem (11), where c is less than the required estimate in Figure 11a.
This solution correlates to a transversal intersection between level sets V

(
x(i)
)
= c and

·
V
(

x(i)
)
= 0. It may be observed that these level sets intersect at a significant distance from

the origin. Hence, a minor fraction of the level set V
(

x(i)
)

provides an actual DA estimate
(the small circle close to the origin).

For the Van der Pool model, all techniques specified in the literature provide different
results. Using the proposed method, we found V(x) = 2.3045, while for the technique
in [28], the corresponding value is 2.318, which corresponds to an explicit intersection
between the LF and its derivative and should be rejected as a solution. At the same time,
Hachiho’s technique yields a value of 2.09. All these methods were assessed using identical
LF: V(x) = 1.5x2

1 − x1x2 + x2
2. Figure 11 depicts the numerous solutions corresponding to

the system (A1). The solid line indicates the distinct levels sets corresponding to the LFs.
The time derivative for zero value is also depicted using dashed lines.

The solution presented in Figure 11a addresses the problem (11), with c more than
the required estimate. When the solution point is determined, two solution points are
observed specific to the transversal intersection of level sets described by V(x) = 2.318

and
·

V(x) = 0. Nevertheless, neither of these two are precise DA estimates. Considering
that all solutions depicted in Figure 11a are applicable to the problem (11), but none are
appropriate, these solutions are therefore considered “dummy”.

In Figure 11c, we have indicated that V(x) = 2.09 and level set
·

V(x) = 0 do not
intersect. The solution presented in the figure corresponds to the problem (11) having a c
value less than the required DA estimation. Nevertheless, DA estimation size is insufficient
since the LF level set and that corresponding to its derivative do not intersect.

Considering Figure 11b, it can be observed that the LF intersects its derivative tan-
gentially at two coordinates owing to symmetry. One result is reported because the two
solutions are similar concerning DA estimation.

An important observation related to the time cost shown by the compared methods
involves the superiority of the CKH hybrid method developed in this paper. Indeed, in [29]
no further data have been reported regarding the time cost. In [28] authors reported more
than 5 ms time cost overall for the studied examples. It is interesting to notice that CKH
involves less than 0.5 ms as a consuming time in the overall investigated example. This is
to emphasize the fact that CKH is the better and more appropriate technique to be used
in online trajectory tracking problems. Table 2 summarises qualitatively the analytical
technique given in [29], the sampling method given in [28] and the CKH optimizing
method developed in this work. The comparison criterion focuses mainly on the ability
to implement the related algorithms easily and to avoid local optimizing solutions, while
ensuring convergence [24].
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Table 2. Summary comparative key performance of the investigated methods [28,29] in contrast with the designed
CKH method.

Method Pros Cons

CKH

- High accuracy in defining the solution characterizing the
tangency point coordinates and the DA radius.

- Reliable meta-heuristic technique, high convergence
speed due to the induced chaotic movement parameter
with strong robustness.

- Global enhanced search ability.
- Local optimum avoidance.
- Dummy DA solution avoidance.
- No random space research is needed.
- Interesting feasibility for a wider range of

benchmark models.
- Performs easily and simply, and no need of

parameter tuning.
- Efficient for both polynomial and rational function
- Reasonable amount of computational requirements

allowing to solve control tracking problems.
- Smaller number of parameters

- Suitable chaotic map should
be selected.

- Suitable algorithm parameter
values should be initialized.

Sampling technique

- Perform easily and simply.
- Efficient for both polynomial and rational

Lyapunov function.

- May diverge
- Needs intensive numerical

simulationto fix the solution.
- Risk of stagnation in local

optimum.

Analytical method

- A step by step recursive algorithm is well
defined analytically.

- No dummy solution can be found.

- May diverge
- Delicate algebraic and analytical

developments
are indispensable.

- Risk of stagnation in
local optimum

- Polynomial function
approximation is needed.

An advanced metaheuristic strategy pointing to maximizing the DA of stable equi-
libriums using Lyapunov theory is established in this work. The estimated region is fully
bounded by the domain of the LF negative definiteness and its time derivative. The CKH
optimizer is designed such that the requirements on the sign of the LF and the tangency con-
straint between the level sets are satisfied. As a result, numerous potential local solutions
have been avoided by such constraints.

Unlike existing techniques, the developed method can be applied for both polynomial
and rational LF. Indeed, it allows the development of a chaotic operative optimization
algorithm which ensures the convergence to an enlarged DA in a significantly limited
running time. Despite the performance, offering a larger accurate DA at high speed
converging time, CKH is valuable for real-time trajectory tracking control problems.

To highlight the performance of the CKH technique a comparative analysis is per-
formed with a swarm-intelligence based approach. The study compares the CKH with the
CPSO technique while considering the performance criteria as the DA radius, the running
time (ms) and the capability to provide an accurate description of the tangency point. The
result of this study is summarized in Table 3.
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Table 3. Estimated DA features for CKH and CPSO methods.

Example Systems Dynamic Lyapunov Function
Domain Radius Running

Time (ms) Tangency Point

CPSO CKH CPSO CKH CPSO CKH

E2 [28,29]
{ ·

x1 = −x2
·
x2 = x1 − x2 + x2

1x2

V(x) = 1.5x2
1 − 0.5x1x2 + x2

2 2.3045 2.3045 1.821 0.542
{

x1 = −0.8575
x2 = 0.7483

{
x1 = 0.852
x2 = −0.755

It appears in this table that both methods are highly comparable in term of provided
performance. However, the CKH showed a superiority in the operating consumed time.
This concludes that the CKH is an efficient, fast and accurate optimization technique.

6. Conclusions

The CKH algorithm provided the largest solution for the DA optimization. It was
implemented in this work to compute the QLF, and allows expanding of the DA for a large
class of nonlinear systems. The main objective of computing the largest sublevel set of the
DA was perfectly achieved. The CKH-based iterative technique was developed to calculate
DA lower bound by exploiting CKH capacity and implementing a novel enhanced KH. The
synthesized design establishes chaotic maps for global optimization analysis and encodes
the systems’ states that will be determined as particle positions.

The observations and conclusions of this study are summarized below:

• The CKH technique suggested in the present study is straightforward, flexible, and
easily understood. There are no challenges concerning the timing of parameter tuning;
hence, it may be implemented for complex computational optimizations.

• The outcomes of the CKH algorithm, when benchmarked against the results of other
popular optimization techniques, indicate the flexibility of the suggested approach.

• The proposed CKH technique requires less CPU time compared to other techniques
because of the integration of chaos maps that provide chaotic maps benefits.

Hence, the benefits associated with the proposed technique used for estimating the
DA showed that the concurrent use of KH with chaotic maps leads to rapid convergence
and provides superior performance and better results. The chaotic maps produce a search
space different from that produced by the KH process.

Motivated by the efficient results attained for the studied benchmark examples, the
developed approach can be applied for real time tracking control problems with delicate
time budget constraints. Theoretical concerns related to rational LF are a challenging aspect
and a key perspective promoting this work.
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Appendix A. Theoretical Background, Fundamentals and Notations

Equation (A1) describes a dynamical nonlinear affine autonomous model:

.
x = f (x), x ∈ Rn; x0 = x(t0) (A1)

Consider x = x as an asymptotically stable equilibrium position corresponding
to (A1).

Preserving generality, we assume that x corresponds to the origin of the state space
x = 0. Now, let x(t, x0) define the trajectory of a system with an initial state x0 at time t0.

Definition A1 (Equilibrium Point). A point x corresponds to a system equilibrium if

f (x) = 0 (A2)

Definition A2 (Asymptotic Stability). Considering the system (A1), the equilibrium x = 0 is
asymptotically stable if a constant λ > 0 can be identified to satisfy the below-mentioned condition:
when ‖x‖ > λ,

lim
t→∞

x(t, x0) = 0 (A3)

Definition A3 (Khalil [30]). The domain or region of attraction (DA) specific to the origin of (A1)
is specified as:

S =

{
x0 ∈ Rn : lim

t→∞
x(t, x0)→ 0

}
(A4)

Lyapunov stability concepts offer a way to evaluate equilibrium stability using LF.

Definition A4 (La Salle and Lefschetz [29], Lyapunov Function (LF), Hahn [39]). Consider
V(x) as a real function that is continuously differentiable and specific on the domain D ⊆ Rn

having the origin. Then, V(x) is a LF for the system (A1) if the following requirements are met:

• V(x) has a positive and definite value in D,
• Considering the trajectories of system (A1), the time derivative of V(x)

.
V(x) = [∇V(x)]T . f (x) (A5)

is semidefinite and negative in D.

Definition A5 (Negative and positive definite functions). Consider a continuously differen-
tiable real function φ(x) specified using domain D ⊆ Rn and containing the coordinate x = 0.
The function is positive definite if the specified constraints are met:

φ(0) = 0 (A6)

φ(x) > 0 ∀x ∈ {D/0} (A7)

If −φ(x) is positive definite, then φ(x) is negative definite.

Theorem A1 (Guaranteed estimation of the domain of attraction, La Salle and Lefschetz [29]).
Consider V(x) as a continuous real function that is differentiable in its domain. Assume V(x) to be
a LF corresponding to system (A1) equilibrium x = 0. Consider that dV(x)

dt is negative definite in
the area specified by the following expression:

Ω(0) = {x : V(x) = c, c > 0} (A8)

Under these conditions, the origin is asymptotically stable; all trajectories defined within Ω(0)
approach zero as time approaches infinity.
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