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Abstract: Semi-Markov processes generalize the Markov chains framework by utilizing abstract
sojourn time distributions. They are widely known for offering enhanced accuracy in modeling
stochastic phenomena. The aim of this paper is to provide closed analytic forms for three types of
probabilities which describe attributes of considerable research interest in semi-Markov modeling:
(a) the number of transitions to a state through time (Occupancy), (b) the number of transitions or the
amount of time required to observe the first passage to a state (First passage time) and (c) the number
of transitions or the amount of time required after a state is entered before the first real transition is
made to another state (Duration). The non-homogeneous in time recursive relations of the above
probabilities are developed and a description of the corresponding geometric transforms is produced.
By applying appropriate properties, the closed analytic forms of the above probabilities are provided.
Finally, data from human DNA sequences are used to illustrate the theoretical results of the paper.

Keywords: semi-Markov modeling; occupancy; first passage time; duration; non-homogeneity;
DNA sequences

1. Introduction

Human populations can be divided into categories (states and classes) taking into
account some of their basic characteristics, such as place of residence, social class or rank
in a hierarchy system. People usually move from a category to another category in a
probabilistic manner and a person’s history contains a sequence of sojourn times in the
various categories and a set of transitions that have taken place. These are the basic
parameters that construct a semi-Markov chain (SMC), according to which a mathematical
model can be developed for the study of those systems [1,2]. These systems do not
necessarily have to include humans, instead, they can describe any potential system
characterized by and composed of historical observations, such as stay times in situations
as well as transitions from one category to another. If, for the study of a population
system, we reside on a Markov chain, we assume that the probability of transition from
one category in another does not depend on the length of stay. Nonetheless, this time
dependence is, in some cases, desirable to include in the process since it provides additional
useful information. In this case, the transitions of such a system are not merely described
by a typical Markov chain procedure and Semi-Markov models are introduced as the
stochastic tools that provide a more rigorous framework accommodating a greater variety
of applied probability models [3–5]. Various applications of semi-Markov processes include
manpower planning, credit risk, word sequencing and DNA analysis [6–14].

In addition to semi-Markov processes, the non-homogeneous semi-Markov system
(NHSMS) was defined, introducing a class of broader stochastic models [15,16] that provide
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a more general framework to describe the complex semantics of the system involved. Semi-
Markov systems, which deploy a number of Markov chains evolving in parallel, are
mostly applied in manpower planning, where the most important issues pertain to the
evolution, control and asymptotic behavior [17–19]. In the last two decades, there has
been an extended body of literature regarding the theory and results about NHMS [20–29].
The dynamic characteristics of the semi-Markov systems influence the number of times
the chain occupies a state, of how long it takes to leave a state as well as the probability
of first passage to a state. Therefore, in order to accompany the basic parameters of the
semi-Markov chain and to enhance the modeling framework, additional attributes of
critical interest are the occupancy, first passage time and duration probabilities, which are
described as follows

1. Occupancy probabilities. These probabilities describe the distribution of the random
variables that define the number of times the SMC has visited a specific state during
an arbitrary time interval.

2. First passage time probabilities. These are the probabilities that describe the transition
from a state to a different state for the first time. The properties of the first passage
time probabilities have been investigated for Markov processes and some specific
types of semi-Markov processes [30–35]. Details for the first passage time probabilities
have been also presented for various stochastic processes [36].

3. Duration probabilities. These probabilities describe the distribution of random variables
that define the time needed for the SMC to transfer to a different state.

DNA sequences are usually studied using probabilistic models, as nucleotide appear-
ances are inter-correlated and attempts to use Markov models to model them have been
reported [10,37]. One of the earliest studies applied a Markov model on the nucleotide
alphabet {A, C, G, T} to estimate the transition probability matrix and the number of dou-
blets and triplets [38]. Several statistics have been proposed to test the dependency order
of the sequence, e.g., the Markov order, such as the phi-divergent statistics and conditional
mutual information [39–41]. More advances in the subject include hidden-Markov models
that are able to model different regions of DNA sequences [42]. Word occurrences are also
of interest in DNA analysis [43]. Previous studies have examined the distribution, moments
and properties of successive word occurrences [44,45]. Papadopoulou has provided some
examples of semi-Markov models on modeling biological sequences [46]. Furthermore,
algorithmic applications for estimating the first passage time probabilities in genomic
sequences have been reported [47].

The aim of this study is to provide insight on the actual mechanism of the recursive
relations of the probabilities mentioned above. Section 2 presents the basic parameters
of a SMC, the interval transition probabilities and the entrance probabilities. Section 3
presents the main results of the paper, that is, the closed analytic solutions for the occupancy,
duration and first passage time probabilities. The final section applies these theoretical
results to human genome DNA strands. For the first illustration, the aim is to find the
corresponding probabilities between nucleotide words and their symmetric complements
by using the analytic form of the first passage time probabilities. Finally, for the second
illustration, the frequency of the dinucleotide GC is examined for two distinct DNA
sequences, using the occupancy probabilities.

2. Basic Framework

We can consider the semi-Markov chain {Xt}t≥1 with state space S = {1, 2, . . . , N} as
a discrete stochastic process in which the successive states are defined by the transition
probability matrix and the sojourn time in each state is described by a random variable
conditioned on the current and the next state to be transitioned into. Thus, during the
transition times, the process is equivalent to a Markov process. We call this Markovian
process the embedded process. Let transition probabilities pij(t) be the probability of a SMC
provided that it entered state i during its last transition at time t to transition to state j
in the next transition. The transition probabilities should satisfy the same equations of a
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Markovian process, that is, pij ≥ 0, ∀i, j ∈ S and ∑N
j=1 pij = 1, ∀i ∈ S. When the process

enters state i at time t, we assume that this state determines the next transition to state
j, which occurs according to the transition probabilities. However, before making the
transition from state i to state j and after the next state j is selected, the chain holds in
state i for time τij. The sojourn time τij is a positive random variable with density function
hij(·), which is called the function of sojourn time to transition from state i to state j. Thus,
Prob[τij = m] = hij(m), for m = 1, 2, .., and i, j ∈ S. We assume that the mean values of
the distributions of sojourn times are finite and hij(0) = 0. In matrix notation, the basic
parameters of the semi-Markov chain are the sequence of transition matrices {P(t)}∞

t=0
and the sequence of sojourn time matrices {H(m)}∞

m=1. The probabilities of the waiting
times wi(t, m) are defined as follows:

wi(t, m) =
N

∑
j=1

pij(t)hij(m) = Prob[τi = m|t],

where τi is the holding time of the SMC in state i. The core matrix of the SMC connects the
transition probabilities and the sojourn times and it is defined as follows:

C(t, m) = {cij(t, m)}ij∈S = P(t) ◦ H(m).

The operator {◦} denotes the element-wise product of matrices (Hadamard product).
Using the core matrix, we define qij(k|t, n), which is the joint probability that the SMC
will be in state j at time t + n and that it has made k transitions during the time interval
(t, t + n], given that at time t the process has entered state i. In order to calculate the
probability qi,j(k|t, n), we distinguish two cases. First, we consider that during the time
interval (t, t + n] the number of transitions is zero. Then, in order for the process at time
t + n to be in state j, given that no transitions were made, it must be that the states i, j
are the same. Secondly, assume that the SMC makes the first transition to state r at time
t + m, 0 < m < n. Then, in the time interval (t, t + m], we have one transition to state r
and, in the remaining time interval (t + m, t + n], we have the remaining k− 1 transitions,
with a final transition to state j. Thus, the resulting formula is as follows:

qij(k|t, n) = δijδ(k)>wi(t, n) +
N

∑
r=1

n

∑
m=0

cir(t, m)qrj(k− 1|t + m, n−m).

where >wi(t, n) = ∑∞
k=n+1 wi(t, k) indicates the survival function of wi(t, n) and δ(k) = 1

if k is zero, otherwise it is zero. If we are not interested in counting the number of transitions
up to the final state j, we can deduce the following recursive relationship.

qij(t, n) = δ>ij wi(t, n) +
N

∑
r=1

n

∑
m=0

cir(t, m)qrj(t + m, n−m).

We also define the quantity ei,j(k|t, n), which is the probability that the SMC enters
state j at time t + n and the total number of transitions in the time interval (t, t + n] is k,
given that the SMC has entered state i at the initial position. Here, we can distinguish
two cases. First, we assume that the number of transitions in the time interval (t, t + n]
is zero. Then, to enter in state j at time t + n, the states i and j must be the same since
state i was entered at the initial time. For the second case, suppose that the SMC at time
t + m, 0 < m < n makes its first transition to state r. Then, at the time interval (t, t + m] we
have a transition to state r and, at the time interval (t + m, t + n], we have the remaining
k − 1 transitions, with the final transition to state j. These facts result in the following
recursive relationship.

eij(k|t, n) = δijδ(n)δ(k) +
N

∑
r=1

n

∑
m=0

cir(t, m)erj(k− 1|t + m, n−m).
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If we are not interested in the number of transitions up to the final state j, we can
reduce the recursive relationship to the quantity eij(t, n), which are the probabilities that
the SMC will enter state j at time n, provided that, at the initial position at time t, the SMC
has entered state i. The equation for calculating the probabilities eij(t, n) is given by
the following.

eij(t, n) = δijδ(n) +
N

∑
r=1

n

∑
m=0

cir(t, m)erj(t + m, n−m).

The interval transition probabilities and entrance probabilities are connected by the
following relationship.

qij(k|t, n) =
n

∑
m=0

eij(k|t, m)>wj(t + m, n−m).

3. Theoretical Results: Analytic Solutions of the Recursive Equations
3.1. First Passage Time

The first passage times provide a measure of how long it takes to reach a given state
from another. We can think of first passage times either in terms of transitions or of time or
both. Thus, let fij(k|t, n) be the probability that k transitions and time n will be required for
the first passage from state i to state j given that the SMC entered state i at time t. Applying
a probabilistic argument, we can provide the following recursive formula.

fij(k|t, n) =
N

∑
r 6=j

n

∑
m=0

cir(t, m) frj(k− 1|t + m, n−m) + δ(k− 1)cij(t, n). (1)

The first term of equation (1) corresponds to the case where k > 1 and the SMC makes
a transition to some state r different from j at time t + m and then makes a first passage
from r to j in k − 1 transitions during the interval (t + m, n− m]. The term is summed
over all states and holding times that could describe the first transition. The second term
corresponds to the case where k = 1 and the process moves directly to state j at time
t + n. If we are not interested in counting the transitions, then the recursive formula of the
probabilities fij(t, n) is provided by the following.

fij(t, n) =
N

∑
r 6=j

n

∑
m=0

cir(t, m) frj(t + m, n−m) + cij(t, n). (2)

Theorem 1. For each non-homogeneous SMC with discrete state space S = 1, 2, . . . , N, a sequence
of transition probability matrices {P(t)}∞

t=0 and a sequence of sojourn time matrices {H(m)}∞
m=1,

the probability matrices of first passage times F(k|t, n) = { fij(k|t, n)}i,j∈S are given by the
following relationships:

1. F(1|t, n) = C(t, n), for every n.
2. F(k|t, n) = 0, if k > n or k = 0.

3. F(k|t, n) = ∑n−k+1
m1=1 ∗∑n−k+2

m2=1+m1
∗ . . . ∗∑n−1

mk−1=1+mk−2
∏k−1

r=0
{B}

C(t + mk−r−1, mk−r −mk−r−1),
for each 1 < k ≤ n,

where B = U− I, U = {uij = 1}i,j∈S , I is the N × N identity matrix and

k−1

∏
r=0

{B}C(s + mk−r−1, mk−r −mk−r−1) =

= C(s, m1){C(s + m1, m2 −m1){. . . {C(s + mk−1, n−mk−1) ◦ B} ◦ B} . . .} ◦ B}.

Proof. Appendix A.1.
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3.2. Duration

Transitions of a SMC can be divided into two categories: virtual and real. The first
category refers to transitions made from one state to the same state, while the second
category refers to transitions from one state to a different state. Based on those two
categories, one can define the duration as the number of transitions or the time required
for the SMC to leave the initial state and to move to a different state, i.e., a real transition to
take place for the first time and not a virtual one. Therefore, it is of interest to study the
duration probability di(k|t, n) defined as the probability that the SMC moves for the first
time to a different state that the initial one after n time units and k transitions during the
interval (t, t + n], given that the process entered state i at time t. We note here that out of
the total k transitions in the above case, k− 1 transitions are virtual and one transition is
real. The duration probabilities for k ≤ n are provided by the following.

di(k|t, n) =
n

∑
m=0

cii(t, m)di(k− 1|t + m, n−m) + δ(k− 1)(wi(t, n)− cii(t, n)). (3)

In the case that k > n or k = 0, then di(k|t, n) = 0. The rationale of this relationship
can be deconstructed into two parts. In the first part, we can assume that the SMC has at
least one virtual intermediate transition, while it starts from state i at time t, holds at the
state i for m time units and finally transfers to state i again. At this point, the associated
probability is di(k − 1|t + m, n − m). In the second scenario, we assume that the SMC
makes no transition up to time t + n. Therefore, the chain holds at state i for exactly n time
units and then moves to a state j different than i. Thus, the duration defined in the present
measures how long it takes to leave a given state.

Theorem 2. For each non-homogeneous SMC with discrete state space S = 1, 2, . . . , N, a se-
quence of transition probability matrices {P(t)}∞

t=0 and a sequence of sojourn time matrices
{H(m)}∞

m=1, the duration probability matrices D(k|t, n) = diag{di(k|t, n)}i∈S are provided by
the following relationships:

1. D(1|t, n) = [W(t, n)− C(t, n) ◦ I], for every n.
2. D(k|t, n) = 0, if k > n or k = 0.
3. D(k|t, n) = ∑n−k+1

m1=1 ∗∑n−k+2
m2=1+m1

∗ . . . ∗∑n−1
mk−1=1+mk−2

(C(t, m1) ◦ I)(C(t + m1, m2 −m1) ◦ I)
. . . (C(t + mk−2, mk−1 −mk−2) ◦ I)(W(t + mk−1, n−mk−1)− C(t + mk−1, n−mk−1) ◦ I),
for each 1 < k ≤ n,

where W(t, n) = diag{wi(t, n)}i∈S.

Proof. Appendix A.2.

3.3. Occupancy

We define vij(t, n) to be the number of times the SMC makes transitions to a state
j in time interval of length equal to n, provided that in the initial time t the SMC had
entered state i. If the initial state is the same as j, that is when i = j, then the initial state is
not counted in vij(t, n). We call the quantity vij(t, n) as the occupancy measure of state j at
time t + n, provided that the SMC entered state i at time t. Clearly, the quantity vij(t, n)
is a discrete random variable. We define as ωij(·|t, n) the probability mass distribution
of vij(t, n), which is ωij(x|t, n) = Prob[vij(t, n) = x]. The recursive relationship of the
occupancy probabilities is given by the following:

ωij(x|t, n) =
N

∑
r=1
r 6=j

n

∑
m=0

cir(t, m)ωrj(x|t + m, n−m)+

+
n

∑
m=0

cij(t, m)ωjj(x− 1|t + m, n−m) + δ(x)> wi(t, n),

(4)
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where i, j ∈ S, n = 0, 1, . . . , and x = 0, 1, . . ..

Assumption 1. In what follows, we assume that the embedded Markov chain is homogeneous,
i.e., {P(t)}∞

t=0 = P, for each t.

Considering the above assumption, one can use the double geometric transform of
the occupancy probabilities as follows.

ω
gg
ij (y|z) =

∞

∑
x=0

∞

∑
n=0

ωij(x|n)znyx.

Moreover, from the Equation (4), we can write the double geometric transform of the
occupancy probabilities as follows.

ω
gg
ij (y|z) =

N

∑
r=1

cg
ir(z)ω

gg
rj (y|z)− (1− y)cg

ij(z)ω
gg
jj (y|z) +

>wg
i (z).

In matrix notation, we can use the previous results to obtain the following [3]:

Ωgg(y|z) = 1
1− z

U− 1− y
1− z

[I− Cg(z)]−1Cg(z)
(

yI + (1− y)[I− Cg(z)]−1 ◦ I
)−1

,

where U is the unit matrix, Ωgg(y|z) =
{

ω
gg
ij (y|z)

}
i,j∈S

is the double geometric transform

of Ω(x|n) = {ωij(x|n)}i,j∈S and Cg(z) =
{

cg
ij(z)

}
i,j∈S

.

The occupancy probabilities are connected with the corresponding homogeneous first
passage time probabilities through the following relationship.

ωij(x|n) = δ(x)> fij(n) +
n

∑
m=0

fij(m)ωjj(x− 1|n−m).

Using the double geometric transform, we can present the occupancy probabilities in
matrix form according to the geometric transforms of the first passage time probabilities:

Ωgg(y|z) = >Fg(z) + yFg(z)
[
>Fg(z) ◦ I

]
[I− y(Fg(z) ◦ I)]−1,

which could be further simplified by using >f g
ij(z) =

1− f g
ij (z)

1−z (Appendix B.1) resulting in
matrix notation in (Appendix B.2).

Ωgg(y|z) = 1
1− z

U− 1− y
1− z

Fg(z)[I− yFg(z) ◦ I]−1.

We now provide Theorem 3 and Lemma 1 that will be used to prove the main
Theorem 4 of the occupancy probabilities with respect to the core matrix.

Theorem 3. For a SMC with core matrix C(·), we have the following:

Ωg(z|n) = (z− 1)∑n−1
j=1

[
C(j) +

[
∑

j
i=2

(
C(i− 1) + ∑i−2

k=1 Si(k, mk)
)

C(j + 1− i)
]
[Ωg(z|n− j)] ◦ I

]
+z
[
C(n) + ∑n

j=2

(
C(j− 1) + ∑

j−2
k=1 Sj(k, mk)

)
C(n + 1− j)

]
+

+

[
∑n

j=2

(
C(j− 1) + ∑

j−2
k=1 Sj(k, mk)

)>
W(n + 1− j) + >W(n)

]
,

where Si(k, mk) = ∑i−k
mk=2 ∑i−k+1

mk−1=1+mk
. . . . . . ∑i−1

m1=1+m2
∏k−1

r=−1 C(mk−r−1 −mk−r), ∀i, j ∈ S and n =

0, 1, 2, . . . Please note that the (j, r) element of Si(k, mk) is the probability of moving from state j to state r
after i− 1 time units and k intermediate transitions during the interval (t, t + i− 1] for every t due to the
time-homogeneity assumption.
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Proof. Appendix A.3.

Lemma 1. The product Ωg(z|n) ◦ I is equal to the following:

Ωg(z|n) ◦ I =− (z− 1)
n−1

∑
j=1

[[
j

∑
i=1

a−1
1i C(j + 1− i)

]
◦ I

]
[Ωg(z|n− j) ◦ I]

− z
n

∑
j=1

[
a−1

1j C(n + 1− j)
]
◦ I +

n

∑
j=1

[
−a−1>

1j W(n + 1− j)
]
◦ I,

∀i, j ∈ S and n = 0, 1, 2, . . ., where
−a−1

1i = C(i− 1) + ∑i−2
k=1 Si(k, mk).

Proof. Appendix A.4.

We now provide Theorem 4, which describes the analytic solutions of the occupancy
probabilities. In order to facilitate the presentation and proof of Theorem 4, we begin with
some aggregate notation. Let the following be the case:

Aj = C(j) +
j

∑
i=2

(
C(i− 1) +

i−2

∑
k=1

Si(k, mk)

)
C(j + 1− i),

Bn,j =

[
n−j

∑
w=2

[(
C(w− 1) +

w−2

∑
k=1

Sw(k, mk)

)
>W(n− j + 1− w)

]
◦ I + >W(n− j)

]
◦ I,

Mu = −
[

C(u− 1) +
u−1

∑
i=2

(
C(i− 1) +

i−2

∑
k=1

Si(k, mk)

)
C(u− i)

]
◦ I +

u−2

∑
k=1

(−1)k+1Ru(k, mk),

M′u =

[
C(u− 1) +

u−1

∑
i=2

(
C(i− 1) +

i−2

∑
k=1

Si(k, mk)

)
C(u− i)

]
◦ I,

M′′u =

[
C(u− 1) +

u−1

∑
i=2

(
C(i− 1) +

i−2

∑
k=1

Si(k, mk)

)
C(u− i)

]
◦ I +

[
u−2

∑
k=1

(k + 1)(−1)kRu(k, mk)

]
,

M′′′u =

[
C(u− 1) +

u−1

∑
i=2

(
C(i− 1) +

i−2

∑
k=1

Si(k, mk)

)
C(u− i)

]
◦ I−

[
u−2

∑
k=1

(k + 2)(−1)kRu(k, mk)

]
,

En =
n

∑
j=2

(
C(j− 1) +

j−2

∑
k=1

Sj(k, mk)

)
>W(n + 1− j) +> W(n),

Fx,u = x(x− 1)
u−2

∑
k=x−3

[
x−4

∏
r=−1

(k− r)

]
(−1)(k−x+3)Ru(k, mk)− x

[
u−2

∑
k=x−2

[
x−3

∏
r=−1

(k− r)

]
(−1)(k−x+2)Ru(k, mk)

]
,

Gu,n,j = C(n− j + 1− u) ◦ I +
n−j+1−u

∑
w=2

[(
C(w− 1) +

w−2

∑
k=1

Sw(k, mk)

)
C(n− j + 2− u− w)

]
◦ I,

Hx,u = x
u−2

∑
k=x−2

[
x−3

∏
r=−1

(k− r)

]
(−1)k−(x−2)Ru(k, mk)−

u−2

∑
k=x−1

[
x−2

∏
r=−1

(k− r)

]
(−1)k−(x−1)Ru(k, mk),

Qu,n,j =
n−j+1−u

∑
w=2

[(
C(w− 1) +

w−2

∑
k=1

Sw(k, mk)

)
>W(n− j + 2− u− w)

]
◦ I +

[
>W(n− j + 1− u)

]
◦ I,

where



Mathematics 2021, 9, 1745 8 of 17

Ru(k, mk) =
u−k

∑
mk=2

u−k+1

∑
mk−1=1+mk

. . .
u−1

∑
m1=1+m2

k−1

∏
r=−1

[
mk−r−1−mk−r

∑
i=1

(
−a−1

1i

)
C(mk−r−1 −mk−r + 1− i)

]
◦ I,

Si(k, mk) =
i−k

∑
mk=2

i−k+1

∑
mk−1=1+mk

. . .
i−1

∑
m1=1+m2

k−1

∏
r=−1

C(mk−r−1 −mk−r),

and

−a−1
1i = C(i− 1) +

i−2

∑
k=1

Si(k, mk).

Theorem 4. For a SMC with core matrix C(·), by adopting the above notations, we have that
the following:

Ω(0|n) = −
n−1

∑
j=1

Aj

[
Bn,j +

n−j

∑
u=2

MuQu,n,j

]
+ En,

Ω(1|n) =
n−1

∑
j=1

Aj

[
Bn,j −G1,n,j −

n−j

∑
u=2

[
Mu + Gu,n,j

]
− 2

n−j

∑
u=2

M′′′u Qu,n,j

]
,

Ω(2|n) =
n−1

∑
j=1

Aj

[
2G1,n,j +

n−j

∑
u=2

u−2

∑
k=1

[
(−2k− 4)(−1)kRu(k, mk)Gu,n,j

]
− 4

n−j

∑
u=2

M′uGu,n,j

+2
n−j

∑
u=2

M′uQu,n,j −
n−j

∑
u=2

u−2

∑
k=1

(k + 1)(k + 2)(−1)k−1Ru(k, mk)Qu,n,j

]
,

Ω(3|n) =
n−1

∑
j=1

Aj

[
6

n−j

∑
u=2

M′′uGu,n,j − 3
n−j

∑
u=2

u−2

∑
k=1

k(k + 1)(−1)k+1Ru(k, mk)Gu,n,j

−
n−j

∑
u=2

(k− 1)k(k + 1)(−1)k−2Ru(k, mk)Qu,n,j + 3
n−j

∑
u=2

u−2

∑
k=1

k(k + 1)(−1)k−1Ru(k, mk)Qu,n,j

]
,

and

Ω(x|n) =
n−1

∑
j=1

[
Aj

n−j

∑
u=2

[
Fx,u + Gu,n,j + Hx,uQu,n,j

]]
, ∀ x ≥ 4.

Proof. Appendix A.5.

4. Illustration

In this section we will accompany the theoretical results of the paper with two appli-
cations related to DNA sequences. It is known that a DNA strand consists of a sequence of
adenine (A), guanine (G), cytosine (C) and thymine (T), which are the four nucleotides. We
assume that a DNA sequence could be described by a homogeneous discrete SMC {Xt}∞

t=0
with state space S = {w1, w2, . . . , wN}, where wi, i = 1, 2, . . . , N is a specific word that
is a combination of the letters of the DNA alphabet S = {A, C, G, T} with length l and t
denoting the position of the word inside the sequence.

4.1. Inverted Repeats

The main focus of the following approach is the appearance of specific words formed
from the alphabet A, C, G, T and their symmetric complements (inverted repeats). In-
verted repeats are commonly found in eukaryotic genomes [48]. The presence of inverted
repeats could form DNA cruciforms that have been shown to play an important role in the
regulation of natural processes involving DNA. The cruciform structures are important
for various biological processes, including replication, regulation of gene expression and
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nucleosome structure. They have also been implicated in the development of diseases
including cancer, Werner’s syndrome and others [49].

For each DNA word w, there exists a reversed complement of the word w′. For exam-
ple, the word w = ACG has the word w′ = CGT as an inverted repeat. The main question
that we will attempt to address by applying the analytic relationships derived earlier is the
following: Given that the SMC entered at the initial position in the word w, we want to
estimate the probability of the reversed complement word w′ appearing for the first time
after a certain range of letters n. We define the distance, d, between two words as the num-
ber of letters between the first letter of the initial word that has appeared and the first letter
of the following word that subsequently appears. For the sake of simplicity, we consider
only the scenario where d > l. The DNA sequence that was used for this illustration is
the first chromosome of the human genome consisting of 248,956,422 base-pairs that are
publicly available from the website of the National Center for Biotechnology Information
(NCBI) [50].

For the first illustration, three words of length l = 7 were chosen that have been
previously shown to exhibit different distances between them and their inverted comple-
ments [51]. The words were w1 = GGCTCAC, w2 = ATATATG and w3 = CCACAAT.
For each word, the state space of the SMC consisted of the word and its reversed comple-
ment, e.g., S = {wi, w′i}. First, the basic parameters of the SMC were estimated, namely
the transition probability matrix and the sequence of sojourn times. The sojourn time was
defined as the distance, i.e., the number of nucleotides that occur between each word and
its inverted repeat. The transition matrix and the empirical distribution of the sojourn
times were estimated using the empirical estimators. The sequence of the core matrices
was calculated as the Hadamard product of the transition matrix with the sequence of
the sojourn time matrices. For each word w ∈ S, the first passage time probability was
calculated between the word w and its reversed complement w′ according to the proposed
analytic relationship (Theorem 1). For a maximum distance, (n = 1000), the highest first
passage time probabilities of the three words and their inverted repeats, along with the
corresponding distances are illustrated in Figure 1. Concretely, the first passage time
probabilities were calculated for the human Chromosome 1, aiming to estimate the most
probable distances between words and their symmetrical complements. More specifically,
as presented in Figure 1, we have noted that, for the first passage time probabilities, we
have argmax( fw1w′1

) = 210, argmax( fw2w′2
) = 10 and argmax( fw3w′3

) = 132 approximating
the numerical results of previous studies with corresponding values for the arguments
210, 15 and 133 for the three words, respectively [51]. This highlights the fact that specific
DNA words exhibit different behaviors and the distance between them and their inverted
repeats demonstrates variability.

4.2. CpG Islands

Usually, in vertebrate DNA sequences, the dinucleotide CG occurs less frequently than
expected [52]. For the second illustration, we considered CpG islands, which are genomic
regions that contain an elevated number of the dinucleotide CG. The human genome
contains approximately 30 thousand CpG islands. The APRT gene is an example of a CpG
region and it was used for this analysis [53]. This gene provides instructions for making an
enzyme called adenine phosphoribosyltransferase (APRT). APRT contains approximately
2500 nucleotides and it had been shown to include an elevated amount of the dinucleotide
GC [54]. We modeled the sequence of this DNA region as a homogeneous SMC with state
space containing all the two-letter words from the DNA alphabet. The transition probability
matrix and the sojourn times were estimated using the empirical estimators. The occupancy
distribution ωGCGC(x|n) for a fixed length of n = 100 was calculated using the analytic
relationship from Theorem 4 in order to estimate the occupancy distribution of specific
words up to a specified sequence length. For comparison, we also applied the model to an
intron sequence of human’s phosphodiesterase gene (PDEA) [55]. The two sequences are
publicly available from the NCBI. The occupancy probabilities are presented in Figure 2 up



Mathematics 2021, 9, 1745 10 of 17

to length n = 50. It is confirmed that the number of occupancies of the dinucleotide GC will
be greater in the CpG island compared to the intron sequence. As expected, the occupancy
probabilities applied on the two sequences indicated that the occurrences of GCs were
more frequent in the CpG sequence.

(a) w1 = GGCTCAC

(b) w2 = ATATATG

(c) w3 = CCACAAT
Figure 1. First passage time (FPT) probabilities for distance n ≤ 1000.
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Figure 2. Occupancy probabilities of APRT and PDEA genes.

5. Concluding Remarks

In this article, three classes of important probabilities of a semi-Markov process,
namely the first passage time, the occupancy and the duration probabilities were defined
and their closed analytic forms were proved by using the basic parameters of the process.
The study of the first passage time probability provides information regarding the distribu-
tion of the time elapsed to reach a state from another for the first time, either in terms of
transitions or time. The second category of duration probabilities provides information
about the distribution of the number of virtual transitions taking place before an actual
transition to a different state occurs. Finally, the third class of probabilities provides insight
information regarding the distribution of the number of times the SMC makes transitions
to some state in a time interval of a given length. We provided analytic forms on the actual
behavior of the recursive relations of the aforementioned probabilities and included these
results into specific propositions and theorems.

The analytical results were accompanied with two illustrations on human genome
DNA strands which are often studied using probabilistic modeling and, specifically, Marko-
vian models. Although, in the relevant literature, there exist several algorithmic approaches
analyzing the occupancy and appearance of words in DNA sequences, the results of the
illustration section strongly suggest that the proposed modeling framework could also be
used for the investigation of the structure of genome sequences.

Of course nothing comes without limitations and motivation for further research.
For example, additional research effort could aim towards high-order dependencies since
DNA sequences often show long-range correlations. This could result in a more coherent
modeling approach. Furthermore, additional parameters could be included in the model,
for example the length of sequence or specific mutations, resulting in more realistic rep-
resentations regarding the different structures of complex genome of humans and other
organisms. Finally, the proposed model could be applied in completely different contexts,
such as natural language processing, linguistics, text similarity and anomaly detection,
i.e., areas of machine learning that appear to be amongst the most popular areas in the last
decade in data science and stochastic modeling.
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 1

The results for (1) and (2) are obvious. For the third part, we used the matrix notation
of the first passage time probabilities:

F(k|t, n) =
n−k+1

∑
m=1

C(t, m){F(k− 1|t + m, n−m) ◦ B}+ δ(k− 1)C(t, m),

with F(k|t, n) = 0 if k > n or k = 0. For k = 1 and m = mi we have shown the results for
the case where k > 1 can be proved by induction. Thus, we assume that this result holds
for k− 1 and we will show that it also holds for each k ≤ n. Here we note that the recursive
relationship of the first passage time probabilities could be reformulated as follows.

fij(k|t, n) =
n−k+1

∑
m1=1

∑
x1 6=j

cix1 (t, m1)

 n−k+2

∑
m2=1+m1

∑
x2 6=j

cx1x2 (t + m1, m2 −m1)

. . .

 n−1

∑
mk−1=1+mk−2

∑
xk−1 6=j

cxk−2xk−1 (t + mk−2, mk−1 −mk−2)cxk−1 j(t + mk−1, n−mk−1)


 . . .

+ δ(k− 1)cij(t, n).

Using matrix notation, we can express the previous relationship as the following.

F(k|t, n) =
n−k+1

∑
m1=1

C(t, m1)

{
n−k+2

∑
m2=1+m1

C(t + m1, m2 −m1)

}
{

. . .

{
n−1

∑
mk−1=1+mk−2

C(t + mk−2, mk−1 −mk−2){C(t + mk−1, n−mk−1) ◦ B}
}
◦ B

}
. . . ◦ B

for 0 < k ≤ n.

The initial conditions are F(k|t, n) = 0 for k > n or k = 0 and F(1|t, n) = C(t, n).
By using the following notation:

n−k+1

∑
m1=1

{
n−k+2

∑
m2=1+m1

{
. . .

{
n−1

∑
mk−1=1+mk−2

=
n−k+1

∑
m1=1

∗
n−k+2

∑
m2=1+m1

∗ . . . ∗
n−1

∑
mk−1=1+mk−2

,

we obtain the following.

F(k|t, n) =
n−k+1

∑
m=1

C(t, m)

{{
n−m−k+2

∑
m1=1

∗
n−m−k+3

∑
m2=1+m1

∗ . . . ∗
n−m−1

∑
mk−2=1+mk−3

C(t, m1)

}}
{C(t + m1, m2 −m1){. . . {C(t + m + mk−2, n−m−mk−2) ◦ B} ◦ B} . . .} ◦ B.

https://www.ncbi.nlm.nih.gov/nuccore/CM000663
 https://www.ncbi.nlm.nih.gov/gtr/genes/353/
 https://www.ncbi.nlm.nih.gov/gtr/genes/353/
 https://www.ncbi.nlm.nih.gov/nuccore/1059792111
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By the appropriate substitution of the time indices and by the definition of the follow-

ing operation ∏2
r=1
{B}

Ar = A1 ∗B A2 = A2(A1 ◦ B) for the matrices A1, A2, B, we obtain
the desired result.

Appendix A.2. Proof of Theorem 2

The results for (1) and (2) are obvious. For the third part, we used induction. By
using matrix notation on the recursive relationship, it holds that, for k = 2, we have
the following.

D(2|t, n) =
n−1

∑
m1=1

(C(t, m1) ◦ I)(W(t + m1, n−m1)− C(t + m1, n−m1) ◦ I)

Now assume that the relationship hold for k− 1, which is the following.

D(k− 1|t + m, n−m) =
n−m−k+2

∑
m1=1

∗
n−m−k+3

∑
m2=1+m1

∗ . . . ∗
n−m−1

∑
mk−2=1+mk−3

(C(t + m, m1) ◦ I)

(C(t + m + m1, m2 −m1) ◦ I) . . . (C(t + m + mk−3, mk−2 −mk−3) ◦ I)
(W(t + m + mk−2, n−m−mk−2)− C(t + m + mk−2, n−m−mk−2) ◦ I).

Therefore, the following obtains.

D(k|t, n) =
n−k+1

∑
m=1

∗
n−m−k+2

∑
m1=1

∗ . . . ∗
n−m−1

∑
mk−2=1+mk−3

(C(t + m, m1) ◦ I)

(C(t + m + m1, m2 −m1) ◦ I) . . . (C(t + m + mk−3, mk−2 −mk−3) ◦ I)
(W(t + m + mk−2, n−m−mk−2)− C(t + m + mk−2, n−m−mk−2) ◦ I).

By appropriately substituting the time indices with m′0 = 0, m′1 = m, m′2 = m + m1,
. . . m′i = m + mi−1,...,m′k−1 = m + mk−2, i = 1, 2, . . . , k − 1, where 1 + mi−1 ≤ mi ≤
n−m− k + i + 1, we obtain the following:

D(k|t, n) =
n−k+1

∑
m′1=1

∗
n−k+2

∑
m′2=1+m′1

∗ . . . ∗
n−1
∑

m′k−1=1+m′k−2

(
C
(
m′1
)
◦ I
)(

C
(
m′2 −m′1

)
◦ I
)(

C
(
m′3 −m′2

)
◦ I
)

. . .
(

C
(

m′k−1 −m′k−2

)
◦ I
)(

W
(

n−m′k−1

)
− C

(
n−m′k−1

)
◦ I
)

,

which results in the stated relationship.

Appendix A.3. Proof of Theorem 3

Assuming homogeneity in time, Equation (4) is provided by the following:

ωij(x|n) =
N

∑
r=1
r 6=j

n

∑
m=0

cir(m)ωrj(x|n−m)+

+
n

∑
m=0

cij(m)ωjj(x− 1|n−m) + δ(x)>wi(n),

(A1)

where i, j ∈ S, n = 0, 1, . . . and x = 0, 1, . . .. Equation (A1) can be written as follows.

ωij(x|n) =
N

∑
r=1

n

∑
m=0

cir(m)[ωrj(x|n−m)(1− δrj) + ωrj(x− 1|n−m)δrj] + δ(x)>wi(n).

(A2)
Equation (A2) in matrix notation is the following.

Ω(x|n) =
n

∑
m=1

C(m)[Ω(x|n−m) ◦ (U− I) + Ω(x− 1|n−m) ◦ I] + δ(x)>W(n).
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By applying the geometric transform to the above, we obtain the following:

Ωg(z|n) =
n

∑
m=1

C(m)Ωg(z|n−m) + (z− 1)
n

∑
m=1

C(m)[Ωg(z|n−m) ◦ I] +> W(n),

with initial condition Ωg(z|0) = I. Following the methodology of Vassiliou and Pa-
padopoulou (1992), we derive the result of the Theorem 3. [15]

Appendix A.4. Proof of Lemma 1

By using the Hadamard product on Theorem 3, we have the following.

Ωg(z|n) ◦ I =− (z− 1)
n−1

∑
j=1

[[
j

∑
i=1

a−1
1i C(j + 1− i)

]
[Ωg(z|n− j) ◦ I]

]
◦ I

− z
n

∑
j=1

[
a−1

1j C(n + 1− j)
]
◦ I−

n

∑
j=1

[
a−1>

1j W(n + 1− j)
]
◦ I.

By using the following property:

(A(B ◦ I)) ◦ I = (A ◦ I)(B ◦ I).

we obtain the following:

[[
j

∑
i=1

a−1
1i C(j + 1− i)

]
[Ωg(z|n− j) ◦ I]

]
◦ I =

[[
j

∑
i=1

a−1
1i C(j + 1− i)

]
◦ I

]
[Ωg(z|n− j) ◦ I].

which completes the proof.

Appendix A.5. Proof of Theorem 4
An early version of the proof of Theorem 4 can be found in [56]. We analytically

present here all necessary steps of the proof. Using the equations provided by the results
of Theorem 3 and by substituting Ωg(z|n) ◦ I with the result found in Lemma 1, we can
obtain the analytic relation for the geometric transforms of Ωg(z|n), which is as follows:

Ωg(z|n) = (z− 1)
n−1

∑
j=1

Aj

 zG1,n,j + z ∑
n−j
u=2

[
(z− 1)M′u + ∑u−2

k=1 (z− 1)k+1Ru(k, mk)
]
Gu,n,j

+Q1,n,j + ∑
n−j
u=2

(
(z− 1)M′u + ∑u−2

k=1 (z− 1)k+1Ru(k, mk)
)

Qu,n,j

+
+ zAn + En,

(A3)

where

Aj = C(j) +
j

∑
i=2

(
C(i− 1) +

i−2

∑
k=1

Si(k, mk)

)
C(j + 1− i),

M′u =

[
C(u− 1) +

u−1

∑
i=2

(
C(i− 1) +

i−2

∑
k=1

Si(k, mk)

)
C(u− i)

]
◦ I,

En =
n

∑
j=2

(
C(j− 1) +

j−2

∑
k=1

Sj(k, mk)

)
>W(n + 1− j) +> W(n),

Gu,n,j = C(n− j + 1− u) ◦ I +
n−j+1−u

∑
w=2

[(
C(w− 1) +

w−2

∑
k=1

Sw(k, mk)

)
C(n− j + 2− u− w)

]
◦ I,

Qu,n,j =
n−j+1−u

∑
w=2

[(
C(w− 1) +

w−2

∑
k=1

Sw(k, mk)

)
>W(n− j + 2− u− w)

]
◦ I +

[
>W(n− j + 1− u)

]
◦ I.

Then, by applying properties of the inverse geometric transforms by using the equa-
tion Ω(x|n) = 1

x!
d(x)

dzx Ωg(z|n)
∣∣∣
z=0

and by repeatedly taking the derivatives of Ωg(z|n) with
respect to z, we obtain the result of the Theorem 5 for x ≥ 1.
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Finally, for the special case where x = 0, by substituting z = 0 in expression (A3), we
obtain the following:

Ω(0|n) = −
n−1

∑
j=1

Aj

[
Bn,j +

n−j

∑
u=2

MuQu,n,j

]
+ En,

where the following results.

Bn,j =

[
n−j

∑
w=2

[(
C(w− 1) +

w−2

∑
k=1

Sw(k, mk)

)
>W(n− j + 1− w)

]
◦ I +> W(n− j)

]
◦ I,

Mu = −
[

C(u− 1) +
u−1

∑
i=2

(
C(i− 1) +

i−2

∑
k=1

Si(k, mk)

)
C(u− i)

]
◦ I +

u−2

∑
k=1

(−1)k+1Ru(k, mk).

Appendix B

Appendix B.1

>fij(n) = 1− fij(n)⇒> f g
ij(z) = ∑∞

n=0 >fij(n)zn = ∑∞
n=0
(
1− fij(n)

)
zn =

= ∑∞
n=0 zn −∑∞

n=0 fij(n)zn = 1
1−z −∑∞

n=0
(
∑n

m=0 fij(m)
)
zn =

= 1
1−z −∑∞

m=0 ∑∞
n−m=0 fij(m)zmzn−m = 1

1−z −
f g
ij (z)
1−z =

1− f g
ij (z)

1−z .

Appendix B.2

ω
gg
ij (y|z) =

> f g
ij(z) + y f g

ij(z)
> f g

jj(z)(
1− y f g

jj(z)
)

=
1− f g

ij(z)

1− z
+

y f g
ij(z)(

1− y f g
jj(z)

) 1− f g
jj(z)

1− z

=

(
1− f g

ij(z)
)(

1− y f g
jj(z)

)
+ y f g

ij(z)
(

1− f g
jj(z)

)
(1− z)

(
1− y f g

jj(z)
)

=
1− y f g

jj(z)− f g
ij(z) + y f g

jj(z) f g
ij(z) + y f g

ij(z)− y f g
ij(z) f g

jj(z)

(1− z)
(

1− y f g
jj(z)

)
=

(
1− y f g

jj(z)
)
− f g

ij(z) + y f g
ij(z)

(1− z)
(

1− y f g
jj(z)

)
=

(
1− y f g

jj(z)
)
− (1− y) f g

ij(z)

(1− z)
(

1− y f g
jj(z)

) .
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