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Abstract: In this work, we investigate the properties of a stochastic model, in which two coupled
degrees of freedom are subordinated to viscous, elastic, and also additive random forces. Our
model, which builds on previous progress in Brownian motion theory, is designed to describe water-
immersed microparticles connected to a cantilever nanowire prepared by polymerization using
two-photon direct laser writing (TPP-DLW). The model focuses on insights into nanowires exhibiting
viscoelastic behavior, which defines the specific conditions of the microbead. The nanowire bending
is described by a three-parameter linear model. The theoretical model is studied from the point
of view of the power spectrum density of Brownian fluctuations. Our approach also focuses on
the potential energy equipartition, which determines random forcing parametrization. Analytical
calculations are provided that result in a double-Lorentzian power density spectrum with two
corner frequencies. The proposed model explained our preliminary experimental findings as a
result of the use of regression analysis. Furthermore, an a posteriori form of regression efficiency
evaluation was designed and applied to three typical spectral regions. The agreement of respective
moments obtained by integration of regressed dependences as well as by summing experimental
data was confirmed.

Keywords: nanowire cantilever; stochastic model; double Lorentzian spectrum

1. Introduction

Many of the problems addressed by current nanosciences can be traced back to statis-
tical mechanics and the concept of fluctuations. Fundamental problems constantly arise
in nanosciences that go beyond conventional findings, complementing the emphasis and
motivations of statistical mechanics. Related fields, now broadly referred to as stochastic
processes, continue to pose a mathematical challenge.

Stochastic oscillations of anchored mechanical systems immersed in fluidic media
or kept in vacuum have attracted significant attention in the past and are important in
many ways today. The Brownian motion of a millimeter-sized mirror suspended from a
torsion wire was utilized by Kappler back in 1931 to measure the Avogadro constant [1].
The thermal fluctuations of resonant micron-scale mechanical oscillators have been studied
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extensively, mostly in connection with AFM (atomic force microscopy) cantilevers and
MEMS-based (micro- electromechanical) resonators [2–6]. Thermal fluctuations of glass
nanofibers and silicon nitride cantilevers have been used to characterize and calibrate
such systems for single-molecule force measurements [7,8]. Brownian motion has also
been used at a smaller scale in TPM (tethered particle motion) experiments to investigate
the properties of linear macromolecules such as DNA [9–11]. In contrast, thermal noise
represents the main disturbing and limiting factor in experiments that rely on highly
sensitive mechanical and opto-mechanical systems. Examples are inertial sensors [12,13] as
well as recently proposed gravitational-wave and dark matter sensors [14–16].

Under certain conditions, system noises and their corresponding statistical quanti-
ties can become valuable, measurable features of technological devices and measurement
instruments. When a particle immersed in a dissipative medium is simultaneously ex-
posed to thermal noise, it reaches an equilibrium state with time, which provides a good
possibility to measure statistical properties. Mechanical system fluctuations may also be
related to intrinsic damping mechanisms such as internal friction, thermoelastic losses,
or losses to the anchor system. Theoretical and experimental interest may then be di-
rected toward elucidating the relationships between damping strength and noise. The
well-known “fluctuation-dissipation theorem”, which is also used in this work, addresses
these general relationships.

The significance of the outputs of the monitored processes is clearly influenced by
the equipment parameters and laboratory conditions. As a result, analytical methods
differ. The power spectrum of thermal fluctuations can be derived for the case of damped
harmonic oscillators [17], which is a good approximation for AFM cantilevers in liquids
and gases [3]. The basic oscillator theory was modified by Saulson [17] to account for the
thermal noise of mechanical systems, whose losses are dominated by processes occurring
inside the material. High external dissipation conditions represent another extreme, which
usually happens for low-stiffness micron-scale [7] or even smaller (molecular) systems [18].
When immersed in viscous liquids, these structures operate in a non-resonant, overdamped
regime. Interestingly, the same overdamping conditions are present in optical tweezers
experiments, where the fluctuation theory was elaborated thoroughly [19,20].

In this work, we investigate the thermal fluctuations of micron-scale viscoelastic
mechanical systems submerged in water. In this particular case, as we show below, both
the dissipation to the surrounding fluid and the intrinsic damping play an important role.

We are interested in the stochastic motion of microbeads attached to cantilevered
photopolymer nanowires prepared by two-photon polymerization direct laser writing
(TPP-DLW) (see Figure 1a,b) [21,22]. The nanowire thickness can be tuned during the fabri-
cation process [23]. In the limiting case of thin nanowires, the stochastic thermal forces ex-
erted on the microbeads cause clearly detectable Brownian motion behavior (see Figure 1c),
specifically in the direction perpendicular to the nanowire axis, as depicted in Figure 1d).
Moreover, as recently demonstrated, photopolymer nanowires possess viscoelastic ma-
terial properties [24,25], which define the specific confinement forces investigated in the
present work.
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Figure 1. The main steps from sample preparation to measurement. (a) Light-sensitive (photoresist)
material exposed to the laser beam. Single photon (left part, in blue) and two-photon (right part,
in red) polymerization is depicted separately. (The exceptional spatial resolution can be reached by
the two-photon process. The polymerized material is indicated in gray.) (b) The illumination used
to produce three-dimensional design in the photoresist volume employing TPP-DLW. (c) Setup for
motion detection and data production. The application of a CMOS image sensor, which provides
encoded light information about position x(t) that can be converted into digital data records by
particle tracking algorithms. (d) A closer look at the mechanics of Brownian fluctuations under
anchoring conditions. The studied fluctuations in the horizontal plane are indicated by the arrows.

Our present work is closely related to the preceding study focused on the bending
recovery motion of photopolymer microbead-nanowire systems [25]. A three-parameter
linear mechanical model of viscoelastic behavior has been found to provide a good expla-
nation of the recovery time-dependence in this study. We aim to use the above theoretical
description to include the thermal motion of the microstructure. This can be done analo-
gously to other works. The original mechanistic model, which was first developed and
validated in [25], can be generalized to reflect random forces. The problem can then be
solved using the Fourier transform within the limits of the stochastic steady state in ac-
cordance with the experimental setup. The aim is to obtain the corresponding power
spectrum and autocorrelation function of Brownian motions of the microstructure analyti-
cally. To summarize, our present approach promotes a practical and empirically supported
transition from deterministic to stochastic frameworks.
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2. Initial Considerations and Model Assumptions

Our main objective is to describe the stochastic motion of viscoelastic microstructures
composed of cantilevered nanowires and spherical beads (see Figure 1) immersed in
Newtonian liquids. The 18 µm long nanowire equipped with a 5 µm sphere (both made
of Ormocomp) was prepared in a similar way as described in [25]. The previous work
also provides all relevant experimental details. We assume that the nanowire bending
is characterized by a 3-parameter linear mechanical model of viscoelastic behavior ( see
Figure 2). In the thin nanowire limit, the external viscous damping and the external
thermal forces acting on the nanowire itself are neglected. In this approximation, the
liquid surroundings interact only with the attached bead. We focus our attention on the
nanowire bending oscillations in the horizontal plane perpendicular to the nanowire axis
(see Figure 1d).

The equivalent mechanical model, which consists of ideal spring and dashpot elements
(shown in Figure 2), contains two parts. The left branch (A) stands for the nanowire forces
exerted on the microbead. The photopolymer viscoelastic properties are characterized by
the two elastic terms k1, k2 and the viscoelastic damping coefficient δ. The right branch (B)
includes the damping of the surrounding medium, with γ denoting the hydrodynamic
resistance. The inertia of the particle and the displaced fluid are neglected. Therefore,
the results obtained represent a low-frequency approximation [20].

Figure 2. The schematic depiction of the linear mechanical model for the microbead motion. Arms
A and B represent the nanowire and the hydrodynamic damping by the surrounding medium,
respectively. The internal characteristics x1, x2 are related to the total observable parameter x.

The basic mechanical model (i.e., model depicted in Figure 2, which is free of ran-
dom forces FT1 = FT2 = 0) is identical to the one given in [25]. This original form is
amended here by adding stochastic forces to the system. In agreement with the fluctuation-
dissipation theorem, uncorrelated Gaussian random forces (FT1 and FT2) are introduced in
parallel with the dissipative elements δ and γ. Due to random excitation terms, the two
displacement coordinates x1 and x2 fluctuate stochastically, which translates to the overall
microbead displacement x = x1 + x2. Unlike x1 and x2, the value of x can be observed
experimentally. The power spectral density and the autocorrelation function of the mi-
crobead stochastic oscillations are derived by solving the system of Langevin equations
describing the proposed model.

Research Design

Technological advances in microprinting 3D polymer patterns can stimulate and
motivate progress in the formulation of appropriate mathematical and physical models.
In this paper, we present a research framework associated with advanced two-photon
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microfabrication that can be applied in both practical and theoretical directions. Linear
relationships are used to characterize the viscous and elastic properties of micromechanical
systems (microbead nanowire systems) operating under stochastic (thermal) dynamic
conditions. To evaluate observable coordinate changes, digital data from a CMOS image
sensor is processed. This data can be represented mathematically as a one-dimensional
time series.

The present study is motivated by experimental results, which, after analyzing the
power spectral densities of the corresponding time series, show a kind of double Lorentzian
form. The double Lorentzian form of the spectrum appears to us as an attractive research
problem but also as a feature that has not yet been explored under the experimental
conditions described above.

We use a regression approach with an objective function containing position-dependent
weights in the spectrum to compare the theoretical model with experiments and perform
the best model parameter finding as well. In addition, our analysis focuses on a validation
strategy based on comparisons of differently obtained spectral moments.

Our study reflects the assumption that statistical mechanics models can reveal efficient
ways to parameterize optically fabricated systems that exhibit significant fluctuations due
to their size.

3. Model

The model consisting of two first-order stochastic differential equations is obtained
based on the following considerations: (i) the forces acting in the upper and lower part of
branch A are equal, and (ii) the sum of branch A and branch B forces is zero. We study the
stochastic system for two displacement coordinates

δ
dx2

dt
+ k2x2 − k1x1 = FT1 ,

γ

(
dx1

dt
+

dx2

dt

)
+ k1x1 = FT2

(1)

formulated for the uncorrelated stationary Gaussian and white noise in time t random
forces FT1(t), FT2(t). In such a framework, a set of assumptions applies to the mean values

〈FT1(t)〉 = 0 , 〈FT2(t)〉 = 0 ,

〈FT1(t)FT2(t + t′)〉 = 0 for all t, t′ ;

〈FT1(t)FT1(t + t′)〉 = CFT1 δ̂( t′ ) ,

〈FT2(t)FT2(t + t′)〉 = CFT2 δ̂( t′ )

(2)

written by means of the Dirac delta function δ̂(.) (Here, the label δ̂ is selected to distinguish
it from the parameter δ). The details and the physical rationale regarding the new parameter
pair CFT1, CFT2 will be provided later in Section 4.3. To indicate the mean value in the
space of repetitive random variants, we use the symbol 〈. . .〉, which is identified with the
physical literature. Important here is the mathematical note that random forces are the
derivatives of the corresponding Wiener processes.
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4. Results
4.1. Solution of the Stochastic Problem

Using a linear transformation involving multiplication by the terms 1/δ, 1/γ, as well
as subtraction to remove the combination of derivatives on the left-hand side, we obtained
a more standard form of the stochastic differential equation[

d
dt

+ k1

(
1
γ
+

1
δ

)]
x1 −

k2

δ
x2 = FS1 ,(

d
dt

+
k2

δ

)
x2 −

k1

δ
x1 = FS2 ,

(3)

where the respective dissipative terms (∼dx1/dt, ∼dx2/dt) are counterbalanced by the
auxiliary random forces FS1, FS2. There are no more mixed derivatives of variables in one
equation, which results in a qualitative change from white to colored noise. The properties
of FS1, FS2 can be represented by the linear relations

FS1(t) =
FT2(t)

γ
− FT1(t)

δ
, FS2(t) =

FT1(t)
δ

. (4)

For computational purposes, the system of Equation (3) is converted to the Fourier
domain in a standard way. Fourier images (coefficients), which we begin to denote by a
tilde become functions of the angular frequency ω. Despite the fact that . . .(ω) or . . .(ω)
symbols implying frequency dependence may be redundant in the case of white noise, it
emphasizes the dependence on ω for general reasons in other situations. It is also worth
noting that the complex conjugate’s asterisk label appears after the transition to the Fourier
representation. Assuming that cross-correlations of Fourier images F̃T1, F̃T2 vanish as a
result of Equations (2) and (4), for the relations of the first and the second-order moments,
we have

〈F̃S1〉(ω) = 〈F̃S2〉(ω) = 0,

〈F̃∗S1 F̃S1〉(ω) =
1

γ2 〈F̃
∗
T2 F̃T2〉(ω) +

1
δ2 〈F̃

∗
T1 F̃T1〉(ω) ,

〈F̃∗S2 F̃S2〉(ω) =
1
δ2 〈F̃

∗
T1 F̃T1〉(ω),

〈F̃∗S1 F̃S2〉(ω) = 〈F̃∗S2 F̃S1〉(ω) = −
1
δ2 〈F̃

∗
T1 F̃T1〉(ω) .

(5)

Of course, the properties of the above averages are sufficient to determine multivariate
Gaussian random force statistics. More precisely, the consequences of the Gaussian process
from the postulates for FT1,2 towards the statements for FS1,2 can be easily justified.

According to the Equation (3), the respective coefficients x̃1(ω), x̃2(ω), F̃S1(ω), F̃S2(ω)
are present in

G(ω)

(
x̃1(ω)
x̃2(ω)

)
=

(
F̃S1(ω)
F̃S2(ω)

)
, (6)

where

G(ω) =

[
iω + k1

(
1
γ + 1

δ

)
− k2

δ

− k1
δ iω + k2

δ

]
. (7)

Note that here G(ω) is the label of newly introduced ω-dependent matrix. The
linearity of the problem implies that the solution(

x̃1(ω)
x̃2(ω)

)
= G−1(ω)

(
F̃S1(ω)
F̃S2(ω)

)
(8)
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can be expressed in the terms of the inverse matrix G−1(ω). The following elements of the
matrix represent a solution of the linear response type(

G−1)
11(ω) = 1

det(G(ω))

(
iω + k2

δ

)
,
(
G−1)

12(ω) = 1
det(G(ω))

k2
δ ,

(
G−1)

21(ω) = 1
det(G(ω))

k1
δ ,

(
G−1)

22(ω) = 1
det(G(ω))

[
iω + k1

(
1
γ + 1

δ

) ]
.

(9)

We see that the formulas contain det(G) = GR + iGI , in the form 1/det(G) = (GR −
iGI)/(G2

R + G2
I ) with the auxiliary real-valued components GR(ω) and GI(ω). We also

state that

GR(ω) = −ω2 +
k1k2

γδ
, GI(ω) = ω

[
k2

δ
+ k1

(
1
γ
+

1
δ

) ]
. (10)

Next, we will use

(det(G))∗ det(G) = G2
R + G2

I (11)

often reflected in the results.

4.2. Statistical Averages, Responses to Random Perturbations

This section is about the change to mean values, which are important for the mea-
surement process, interpretation, and data processing. Only the statistics of the sum
x̃1(ω) + x̃2(ω), not isolated x̃1(ω), x̃2(ω) is observable in the experiment and allows
comparison with the model. Thus, for many aspects of the study, only the behavior of
x̃1(ω) + x̃2(ω) needs to be used to determine experimentally relevant correlations. To
understand the statistics of x, we focus on the Fourier spectrum of autocorrelation function

Cxx(ω) ≡ 〈 ( x̃∗1(ω) + x̃∗2(ω) )( x̃1(ω) + x̃2(ω) ) 〉
= 〈 x̃∗1 x̃1 〉(ω) + 〈 x̃∗2 x̃2 〉(ω) + 〈 x̃∗1 x̃2 〉(ω) + 〈 x̃∗2 x̃1 〉(ω) .

(12)

It is of course convenient to divide it into four independent terms. In the following,
these are treated independently by means of Equation (8). Partial results (so far without an
emphasis on the ω dependence) are

〈 x̃∗1 x̃1 〉 =(G−1)∗11(G
−1)11〈F̃∗S1 F̃S1〉+ (G−1)∗11(G

−1)12〈F̃∗S1 F̃S2〉
+(G−1)∗12(G

−1)11〈F̃∗S2 F̃S1〉+ (G−1)∗12(G
−1)12〈F̃∗S2 F̃S2〉 ,

〈 x̃∗2 x̃2 〉 =(G−1)∗21(G
−1)21〈F̃∗S1 F̃S1〉+ (G−1)∗21(G

−1)22〈F̃∗S1 F̃S2〉
+(G−1)∗22(G

−1)21〈F̃∗S2 F̃S1〉+ (G−1)∗22(G
−1)22〈F̃∗S2 F̃S2〉 ,

〈 x̃∗1 x̃2 〉 =(G−1)∗11(G
−1)21〈F̃∗S1 F̃S1〉+ (G−1)∗11(G

−1)22〈F̃∗S1 F̃S2〉
+(G−1)∗12(G

−1)21〈F̃∗S2 F̃S1〉+ (G−1)∗12(G
−1)22〈F̃∗S2 F̃S2〉 ,

〈 x̃∗2 x̃1 〉 =(G−1)∗21(G
−1)11〈F̃∗S1 F̃S1〉+ (G−1)∗21(G

−1)12〈F̃∗S1 F̃S2〉
+(G−1)∗22(G

−1)11〈F̃∗S2 F̃S1〉+ (G−1)∗22(G
−1)12〈F̃∗S2 F̃S2〉 .

(13)
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We can achieve a clearer relationship by including the correlations between the initially
imposed random forces F̃T1 and F̃T2 from Equation (5). The pairwise correlations take
the form

〈 x̃∗s x̃m 〉 =
(
〈F̃∗T2 F̃T2〉

γ2 +
〈F̃∗T1 F̃T1〉

δ2

)
g1;s,m +

〈F̃∗T1 F̃T1〉
δ2 g2;s,m (14)

with s ∈ {1, 2}; m ∈ {1, 2}, which define the following eight coefficients

g1;1,1 = ĝ11,11 , g2;1,1 = ĝ12,12 − ĝsym
11,12 ,

g1;2,2 = ĝ21,21 , g2;2,2 = ĝ22,22 − ĝsym
21,22 ,

g1;1,2 = ĝ11,21 , g2;1,2 = ĝ12,22 − ĝ11,22 − ĝ12,21 ,

g1;2,1 = ĝ21,11 , g2;2,1 = ĝ22,12 − ĝ21,12 − ĝ22,11 .

(15)

For the relations above, we use a notation that also includes the auxiliary symbols ĝij,kl

and ĝ sym
ij,kl . They are interrelated to the combinations (G−1)∗ij (G

−1)ij of the prior G−1 terms

ĝij,kl = (G−1)∗ij(G
−1)kl , ĝ sym

ij,kl = ĝij,kl + ĝkl,ij . (16)

Obviously, the emphasis on the symmetry ĝ sym
ij,kl = ĝ sym

kl,ij will help us to handle the
complex numbers. Furthermore, we recognize that the identical pairs of indices provide
that ĝij,ij = (1/2)ĝsym

ij,ij . The advantage of the auxiliary notation by means of ĝ... is that we
obtain Cxx from Equation (12) in the compact form

Cxx =
〈F̃∗T2 F̃T2〉

γ2

(
ĝ11,11 + ĝ21,21 + ĝ sym

11,21

)
+
〈F̃∗T1 F̃T1〉

δ2 ( ĝ11,11 + ĝ12,12 + ĝ21,21 + ĝ22,22 (17)

+ ĝ sym
11,21 + ĝ sym

12,22 − ĝ sym
11,12 − ĝ sym

21,22 − ĝ sym
11,22 − ĝ sym

12,21

)
.

We continue the calculation to reveal the terms introduced by Equation (16)

ĝ11,11 = 1
G2

R+G2
I

[
ω2 +

(
k2
δ

)2
]

, ĝ21,21 = 1
G2

R+G2
I

(
k1
δ

)2
,

ĝ22,22 = 1
G2

R+G2
I

[
ω2 + k2

1

(
1
γ + 1

δ

)2
]

, ĝ12,12 = 1
G2

R+G2
I

(
k2
δ

)2
,

(18)

ĝ sym
11,21 = 1

G2
R+G2

I

(
2k1k2

δ2

)
, ĝ sym

12,22 = 1
G2

R+G2
I

(
2k2k1

δ

)(
1
γ + 1

δ

)
,

ĝ sym
11,12 = 1

G2
R+G2

I

(
2k2

2
δ2

)
, ĝ sym

21,22 = 1
G2

R+G2
I

(
2k2

1
δ

)(
1
γ + 1

δ

)
,

ĝ sym
11,22 = 1

G2
R+G2

I

[
2ω2 + 2k1k2

δ

(
1
γ + 1

δ

)]
, ĝ sym

12,21 = 1
G2

R+G2
I

(
2k1k2

δ2

)
.

(19)

Note that we used GR and GI from Equation (10) to express the result. After substitut-
ing these elements into Equation (17), we come to the relation

Cxx(ω) =
1

γ2 (G2
R + G2

I )

{
〈F̃∗T2 F̃T2〉

[
ω2 +

(
k1 + k2

δ

)2
]
+ 〈F̃∗T1 F̃T1〉

(
k1

δ

)2
}

, (20)

which is important to derive measurable results. We will apply a similar procedure later to
determine the pairwise correlations to prove the validity of the equipartition theorem.
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4.3. Towards Fusing of Theory and Experiment

Suppose that there are two finite formal limits relevant for the obtaining of the power
spectral density in the form

CFT1 = lim
Tmsr→∞

〈F̃∗T1 F̃T1〉
Tmsr

, CFT2 = lim
Tmsr→∞

〈F̃∗T2 F̃T2〉
Tmsr

. (21)

The formula is understood as a postulate, which introduces the duration of the
measurement time Tmsr [19] into a part of the procedure at the formal level. The correlations
in the Fourier domain can be formally taken as infinite for frequency f = ω

2π � 1/Tmsr. The
formal nature of the limits given by Equation (21) makes it evident that considerations are
not fully compatible with the Fourier framework because the measurement is dependent
on assumptions about the large time (Tmsr) of the measurement.

The occurrence of CFT1 and CFT2 later in Equation (23) can be interpreted as the
contribution of the power spectral densities of two random force variants given by the
Wiener–Khinchin theorem

lim
Tmsr→∞

〈F̃∗Tj F̃Tj〉
Tmsr

=
∫ ∞

−∞
dt′ e−2πi f t′ 〈 FTj(t)FTj(t + t′) 〉 = CFT j (22)

considered for j = 1, 2 alternatives (see Equation (2), where the correlation function is
defined and integrated). If we extend the application of the formal limit by dividing
Equation (20) with Tmsr, we obtain the power spectrum density in the form

Sxx( f ) = lim
Tmsr→∞

Cxx( f )
Tmsr

=
1

γ2 (G2
R + G2

I )ω=2π f

{
CFT2

[
4π2 f 2 +

(
k1 + k2

δ

)2
]
+ CFT1

(
k1

δ

)2
}

.
(23)

In this way, the physical meaning of the coefficients CFT 1,2 is revealed. They can also be
represented in an independent way by expressing their relation to the absolute temperature

CFT1 = 2kBTδ , CFT2 = 2kBTγ . (24)

However, this construct also provides information about the dissipative mechanisms.
This is built with the idea that fluctuations from random forces are dissipated by the
mechanisms represented by the parameters δ, γ. As provided below in Section 4.5, the
mean potential energy for the respective degrees of freedom can be compared to determine
the equilibrium level of energy flow controlled by CFT1 and CFT2. The Equation (24) given
above is essentially the case of the general fluctuation–dissipation theorem introducing the
natural heat unit kBT.

The fluctuation–dissipation theorem is a statistical thermodynamics statement that
explains how fluctuations in a detailed balanced system determine its response to applied
disturbances. According to this theorem, two opposing mechanisms are responsible for
creating a detailed equilibrium in mechanical systems. On the one hand, there are the
consequences of the dynamics of a microsphere attached to a nanowire that is damped
by the surrounding fluid. Contributions from the internal damping mechanisms of the
nanowire also fall into the same category. Even with this damping combination, the me-
chanical energy is converted into heat. On the other hand, the presence of damping is
necessarily accompanied by fluctuations born in the viscous environment. In the case of
the surrounding liquid, these fluctuations result in typical random Brownian collisions
of liquid molecules with the microbead. In a standard way, the process is interpreted so
that on microscopic scales, heat can be converted back into the mechanical energy of the
microbead. The internal damping inside the nanowire acts likewise. Summarizing the
above statements, we arrive at a specific form of the fluctuation-dissipation theorem, which
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states that a constant dissipation flux keeps the mean mechanical energy input invariant,
while ensuring the production of new fluctuations.

As a result, let us emphasize an important point: Equation (23) can be modified to
account for the temperature effect. With the intention of linking theory with experiment,
we attain the expression

Sxx( f ) =
2kBT

γ

4π2 f 2 + KA

( 4π2 f 2 − KB )
2 + 4π2 f 2 KC

. (25)

The asymptotic, high-frequency consequence of this general result is

Sxx( f ) ' kBT
2π2γ f 2 , f � 1

2π
max

{√
KA,

√
KB,

√
KC

}
. (26)

At this stage, we benefit from the choice of auxiliary parameters KA, KB, KC. Returning
to material details is possible using transformations

KA =

(
k1 + k2

δ

)2
+

γ

δ

(
k1

γ

)2
, KB =

k1k2

γδ
, KC =

[
k2

δ
+ k1

(
1
γ
+

1
δ

)]2
. (27)

These auxiliary parameters are positive for a given model specification that operates
exclusively with positive k1, k2, δ, γ. However, there is also another, more sophisticated
level of interpretation. It is interesting and also productive to assume that the result can be
written as a sum of two weighted Lorentzian functions

4π2 f 2 + KA

( 4π2 f 2 − KB )
2 + 4π2 f 2KC

!
=

1
Γ2 − Γ1

(
KA − Γ1

Γ1 + 4π2 f 2 +
Γ2 − KA

Γ2 + 4π2 f 2

)
. (28)

Here Γ1,2 play the role of free parameters, which incorporate information coming
from previously introduced KA, KB, KC. The change to Γ1,2 should be considered as
an intermediate step along with other consequences. The key consequence is double
Lorentzian form

Sxx( f ) =
kBT

2π2γ( f 2
C2 − f 2

C1)

( KA
4π2 − f 2

C1

f 2
C1 + f 2

+
f 2
C2 −

KA
4π2

f 2
C2 + f 2

)
. (29)

It is based on the assumption that there exist some relations between Γ1,2 and the
corner frequencies fC1,2. When Equations (28) and (29) are combined, we obtained

f 2
C1,2 =

Γ1,2

4π2 =
1

4π2

[
KC

2
− KB ∓

1
2

√
KC(KC − 4KB)

]
. (30)

In the above solution, we use the consensus that the plus sign corresponds to fC2. The
constraints that allow for such a solution are as follows:

KC
2
− KB ≥

1
2

√
KC(KC − 4KB) , KC ≥ 0 , KC ≥ 4KB . (31)

If we consider the transformation to physical parameters in the sense of Equation (27)
to analyze the satisfaction of the above constraints, we obtain

KC

2
− KB =

k2
1

2

(
1
γ
+

1
δ

)2
+

k1k2

δ2 +
k2

2
2δ2 ≥ 0 , (32)

KC − 4KB =

(
k2

δ
− k1

γ

)2
+

(
k1

δ

)2
+

2k1

δ

(
k2

δ
+

k1

γ

)
≥ 0 . (33)
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Using Equation (27), we confirm that KC ≥ 0. Moreover, the trivial K2
B ≥ 0 implies

(KC/2)− KB ≥ (1/2)
√

KC(KC − 4KB). Therefore, there is no obvious contradiction with
the fact that Γ1, Γ2 correspond to f 2

C1, f 2
C2. It is also notable that the inverse transformations

( fC1, fC2)→ (Γ1, Γ2)→ (KB, KC) become

KB =
√

Γ1Γ2 = 4π2 fC1 fC2 ,

KC = 2
(√

Γ1Γ2 +
Γ1 + Γ2

2

)
= 4π2( fC1 + fC2 )

2 .
(34)

The result is intriguing in terms of revealing the central tendency in KB(Γ1, Γ2) and
KC(Γ1, Γ2) as representatives of the pair Γ1, Γ2.

4.4. Autocorrelation Function

The findings presented above can be augmented by using direct time representation.
According to the well-known Wiener–Khinchin relation, we have the consequence for the
autocorrelation function in the form

Rxx(t) =
∫ ∞

−∞
d f Sxx( f ) exp(2πi f t) . (35)

As a result, for Equation (29) as a specific version of Sxx( f ), we obtain a two-exponential
autocorrelation function

Rxx(t) = R0

(
R1e−2π fC1|t| +R2e−2π fC2|t|

)
, (36)

where

R0 =
kBT

2πγ( f 2
C2 − f 2

C1)
, R1 =

KA
4π2 − f 2

C1

fC1
, R2 =

f 2
C2 −

KA
4π2

fC2
. (37)

It is worth noting that corner frequency parameters have a significant impact on
autocorrelation decrease over time. At a first glance, we can see the essential property
here where a pair of frequencies in the Lorentz form corresponds to a pair of damping
terms with the typical decay times proportional to 1/ fC1 and 1/ fC2. It should also be
noted that, assuming that the physical parameters are constant, the temperature is directly
manifested only in the amplitude R0. The calculations above were performed with the
help of a well-known auxiliary relation∫ ∞

−∞
d f

exp(2πi f t)
f 2 + f 2

C
=

π

fC
exp(−2π|t| fC ) (38)

with some auxiliary parameter fC.

4.5. Sharing of Elastic Energy; Rationale for Choosing C FT1, CFT2

According to the principle of energy equipartition, average energy is evenly dis-
tributed among the various degrees of freedom of ergodic systems. As shown here, the im-
plications of this principle are valuable tools for calculating the amplitudes (CFT1, CFT2)
of a pair of random forces. The equipartition principle can be applied to the mean elastic
energies. We start by writing the energy for the Fourier modes corresponding to ω. It
is worth noting that since the inertial term is considered negligible, the zero limit of the
kinetic energy has no effect on the equipartition issues.
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Using the integration techniques already discussed, we continue to utilize the formal
limit approach (Tmrs → ∞) for the integration of the spectrum and averaging over the
respective potential energy fluctuations as follows

UP1 =
k1

2

∫ ∞

0
dω 〈x̃∗1 x̃1〉(ω) = IP11CFT1 + IP12CFT2 ,

UP2 =
k2

2

∫ ∞

0
dω 〈x̃∗2 x̃2〉(ω) = IP21CFT1 + IP22CFT2 .

(39)

The formulas below can be applied to complete the integration

IP11 = k1
2δ2 IE2 , IP12 = k1

2γ2

[
IE2 +

(
k2
δ

)2
IE0

]
,

IP21 = k2
2δ2

[
IE2 +

(
k1
γ

)2
IE0

]
, IP22 =

k2k2
1

2γ2δ2 IE0 .
(40)

These four coefficients include two spectral integrals

IE0 =
∫ ∞

0

dω

π

1
G2

R(ω) + G2
I (ω)

, IE2 =
∫ ∞

0

dω

π

ω2

G2
R(ω) + G2

I (ω)
. (41)

Going back to a spectral decomposition using a pair of Lorentzian forms (see Equation (29))
in combination with Equations (30) and (34) gives the following result

IE0 =
1

2(Γ2 − Γ1)

(
1√
Γ1
− 1√

Γ2

)
=

1
2KB
√

KC
,

IE2 =
1

2(Γ2 − Γ1)

(√
Γ2 −

√
Γ1

)
=

1√
KC

.
(42)

As a consequence, the following relationship IE2 = IE0 k1k2 /(γδ) can be used in the
mean potential energies listed below

UP1 =
k1k2

2γδ

[(
k1

δ

)
CFT1

δ
+

(
k1

γ
+

k2

δ

)
CFT2

γ

]
IE0 ,

UP2 =
k1k2

2γδ

[(
k1

γ
+

k2

δ

)
CFT1

δ
+

(
k1

δ

)
CFT2

γ

]
IE0 .

(43)

Finally, in accordance with Equation (24), we have the confirmation of the equipartition
in the form

UP1 = UP2 = KB
√

KC IE0 kBT =
1
2

kBT . (44)

4.6. The Spectrum Moments

In this subsection, we discuss the usefulness of introducing power spectral density
integrals in cases where the frequency domain over which we integrate is divided into
non-intersecting intervals. Frequency integration is motivated by the fact that providing
excessive detail for spectrum characterization may be unnecessary in certain contexts. The
second reason is that aggregation of data helps to suppress statistical errors. The third
reason is the possibility of comparing only a few moments with the moments estimated by
direct data processing.

Naturally, the analytical form of the model moments simplifies further processing.
In our case, the specificity of the moments corresponding to Lorentzian and related spectral
forms supports the overall validation process. Let the regression-related (rr) moments
obtained by analytical integration be referred to asMrr

Sxx( fL, fH). This notation is used to
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mean that integration has occurred within the range between the lowest fL and the highest
fH frequencies. Then

Mrr
Sxx( fL, fH) =

∫ fH

fL

d f Sxx( f )

=
R0

π

[
R1

(
arctan

(
fH

fC1

)
− arctan

(
fL

fC1

))
(45)

+R2

(
arctan

(
fH

fC2

)
− arctan

(
fL

fC2

))]
.

Because the interval length may diverge, we decided to use non-normalized moments.
Recall thatR1 andR2 are the two respective amplitudes of the exponentials corresponding
to the autocorrelation function (see Equation (37)). On this basis, using fC1, fC2 as natural
boundaries, we can define the system of three specific regression-related spectral moments

Mrr
Sxx(0, fC1) =

R0

π

[
R1

π

4
+R2 arctan

(
fC1

fC2

)]
,

Mrr
Sxx( fC1, fC2) =

R0

π

[
R1 arctan

(
fC2

fC1

)
−R2 arctan

(
fC1

fC2

)
+ (R2 −R1)

π

4

]
, (46)

Mrr
Sxx( fC2, ∞) =

R0

π

[
(2R1 +R2)

π

4
−R1 arctan

(
fC2

fC1

)]
with the total sum (1/2)R0 (R1 +R2). Other suitable boundary options are, of course,
possible, such as those that do not depend on regression results but instead emerge entirely
from generalized averaging procedures of the experimental spectrum.

4.7. Experimental Results and Their Regression

After the successful implementation of the experiment, we obtained data representing
the observed dynamics x(t), which we have then transformed into corresponding Fourier
images. The aim was to obtain an experimental power spectrum density { Sex

xx,j }
Nex

j=1 for

the system of Nex frequencies { f j }Nex

j=1 (see Figure 3). Some of the evaluations have been
performed according to the work of [19]. Preprocessing with grouping of the adjacent
experimental spectral points is a necessary methodological peculiarity. Frequency and
spectrum groupings with eight points over the frequency decade were introduced. The
effectiveness with which the representative grouping frequencies were allocated was eval-
uated. Naturally, the grouping process affects not only the locations of representative
frequencies, but also the statistics of spectral points, potentially increasing the regression’s
feasibility. The optimization of parametric combinations is made possible by data knowl-
edge. Let us formally encapsulate the unknown model parameters in a single symbol
Par, resulting in the parameterized form of the double Lorentzian model Sxx( f j,Par) (see
Equation (29)). In addition to identifying the optimum, we will focus on estimating errors
for various components of Par.

The problem-specific emphasis is on the asymptotic behavior of the spectrum. Despite
the fact that the density of the power spectrum decreases as ∼ f−2, the high frequency
domain must be properly included in the regression due to its physical significance. Hence,
a weighted regression of the squares of Sxx( f j,Par)−Sex

xx,j deviations has been implemented.
The preference can be defined as the minimization of the objective function

Obj_F(Par) ≡
Nex

∑
j=1

[
Sxx( f j,Par)− Sex

xx,j

Sex
xx,j

]2

. (47)
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Here, the parameters and their combinations appear to be formally merged into
the vector

Par ≡
(

fC1, fC2,
KA

4π2 ,
kBT

2π2γ

)
. (48)

This is subject to optimization. We used the standard global function optimizer, which
was built on the concept of the [26] work with the implementation (scypy.optimize.curve-
_fit(. . . )) to the SciPy library [27]. The regression corresponding to Obj_F provides the
corner frequencies

fC1 = ( 0.443± 0.093 ) (Hz ) , fC2 = ( 4.82± 0.23 ) (Hz ) . (49)

Along with them
KA

4π2 = ( 0.47± 0.19) (Hz2 ) . (50)

Finally, there is also fixed corresponding parametric combination

kBT
2π2γ

= ( 3.53± 0.13 )× 10−15 (m2 Hz ) , (51)

which represents the constant factor in Sxx( f ,Par) as defined by Equation (29). The regres-
sion outcomes are depicted in Figure 3.

Figure 3. Power spectral density of microsphere fluctuations. The solid line belongs to the model
according to Equation (29). The fit was set after optimization of Obj_F(Par). Two Lorentzian
contributions spanning the entire spectrum are also shown.

Now there is a standard way to find out the autocorrelation function (see Equation (37))
via the respective parameters

R0

π
=

(
kBT

2π2γ

)
f 2
C2 − f 2

C1
= 1.532× 10−16 (m2/Hz ) ,

R1 = 0.623 (Hz ) , R2 = 4.723 (Hz ) .

(52)



Mathematics 2021, 9, 1748 15 of 18

A posteriori evaluation methodology following the regression results provides an
implication for the values of the regression-related spectral moments

Mrr
Sxx(0, fC1) = 1.414× 10−16 (m2 ) ,

Mrr
Sxx( fC1, fC2) = 5.682× 10−16 (m2 ) , (53)

Mrr
Sxx( fC2, ∞) = 5.772× 10−16 (m2 ) .

We see that the sum of the moments 1.286× 10−15 (m2) equals (R0/2) (R1 +R2),
as predicted.

Adjusting the integration boundaries can be important for the design of some al-
ternative test moments. The premise of the adjustment is that these variants should be
more closely linked to the measurement process, conditioned by the need to avoid spectral
distortions known as “aliasing” and “motion blur”. The effects occur due to too superficial
and insufficient sampling of the signal x(t) captured by the camera. This means that the
calculations must focus on bands with frequencies less than fupp, which in our case was
set to around a quarter of the Nyquist frequency. The lower limit value flow prevents
the use of extremely low frequencies. Respecting the lower limit suppresses distortions
caused by the apparatus background noise. Numerically, the boundaries we introduce are
flow = 0.1333 [Hz] and fupp = 59.97 [Hz]. The following three moments

Mex
Sxx( flow, fC1) = 0.924× 10−16 (m2 ) ,

Mex
Sxx( fC1, fC2) = 5.687× 10−16 (m2 ) , (54)

Mex
Sxx( fC2, fupp) = 4.952× 10−16 (m2 )

were created to express the properties of the experimental data set, which was achieved by
partly reducing the impact of the regression results. Here we see that Simpson’s integration
quadrature based on uniform data sampling (without grouping) also provides us with
variants of spectral moments. However, even when using numerical integration, we must
be careful if we subsequently perform comparisons and interpretations. The reason is
that certain integrals approximated by a suitable summation can become dependent on
the previous regression only by their integration boundaries when these are linked to
regression parameters ( fC1 and fC2). Independence from regression can be achieved using
descriptive spectrum characteristics (analogous to descriptive statistics). This means using
characteristic frequencies in the role of integration boundaries. Then the results of the
calculation are generalized spectral averages. The fact that we do not present more moment
variants here is mainly related to the focus of this work.

When comparing the Equations (53) and (54), we see that only the central moments
for the [ fC1, fC2] band are close enough to each other, which means thatMrr

Sxx(0, fC1) and
Mrr

Sxx( fC2, ∞) are not sufficient approximations ofMex
Sxx( flow, fC1) andMex

Sxx( fC2, fupp),
respectively. Results show that in the case of regression-related moments, there is only a
slight and negligible rise in moments compared to the use of Simpson’s rule

∼ 1.2 % increase : (55)

Mrr
Sxx(0, fC1)−Mrr

Sxx(0, flow) = 0.935× 10−16(m2)

& Mex
Sxx( flow, fC1) ,

∼ 4.6 % increase :

Mrr
Sxx( fC2, ∞)−Mrr

Sxx( fupp, ∞) = 5.184× 10−16(m2)

& Mex
Sxx( fC2, fupp) .

5. Discussion

Two kinds of spectral moments (Mrr
Sxx(.) and Mex

SSx(.)) were designed, calculated
and compared for the experimental input data given. We have shown by analysis that
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subsequent regression-related and the numerical integration outputs can be globally or
locally compared and evaluated. This would have an effect on the choice of the overall
regression process or model, thereby affecting at least one of them.

The studied model is based on the assumption that a pair of different corner frequen-
cies is needed to describe the spectrum. Consider a situation that, under certain parametric
conditions, only a small gap between fC1 and fC2 is observable. Alternatively, one of the
two spectrum amplitudes before the terms 1/( f 2

C1 + f 2), 1/( f 2
C2 + f 2) may be negligible

(see Equation (29)). All these cases lead to a special limit of the single Lorentz power
spectral density.

It should be noted that we did not study beyond the level of a few phenomenological
parameters provided in Par on purpose. This is related to the reasons for which the
correct determination of the four constants k1, k2, γ, δ is part of a wider methodological
issue that demands the use of several independent observations. The nanowire material
properties, rather than the model’s less universal parameters, will likely be the focus of our
future research.

6. Conclusions

Nanowires prepared by TPP-DLW from Ormocomp possess viscoelastic material
properties. This viscoelasticity determines the mechanical behavior of microstructures
comprising such nanowires.

The bending recovery motion of cantilevered nanowire systems equipped with a
microbead at the free end and immersed in Newtonian liquids was studied previously [25].
The same microstructures, in isolation, exhibit significant thermal fluctuations. In this work,
the previous mechanical model was extended with stochastic forces to explain the power
spectral density and autocorrelation function of the microstructure thermal fluctuations. In
principle, the Brownian fluctuations of cantilevered nanowires can be utilized for micron-
scale viscosity measurements. Our results pave the way for a quantitative analysis of such
micro-viscometer systems.

The calculation of the correlation functions of the characteristic coordinate was car-
ried out in the frequency domain by introducing symmetric forms for the corresponding
coefficients. The implications of the calculation concern the steady state, which can be
alternatively characterized by the spectral power density. An interesting aspect of our
approach is that the weighted regression results for the spectra have been validated using
the spectral moment system.

Theoretical considerations confirmed the double-Lorentzian power density spectrum
and the doubly-exponential autocorrelation function. As we have shown by a special
implementation of weighted regression, reasonable agreement with our experimental
observations was obtained for the spectrum. Simultaneous weighted regression of multiple
functions, including autocorrelation, is reserved for further empirically oriented work.

It is concluded that the source of thermal fluctuations is related both to energy dis-
sipation inside the photopolymer material and the surrounding liquid. In this partial
dissipation problem, we have shown that the equipartition theorem allows us to correctly
parameterize random forces. Furthermore, we believe that the stochastic mechanical model
we present has the potential to be used for further analysis and prediction of characteristics
for similar nanowire-based systems.
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