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Abstract: In 2003, S. J. Dilworth, N. J. Kalton, D. Kutzarova and V. N. Temlyakov introduced the
notion of almost greedy (respectively partially greedy) bases. These bases were characterized in
terms of quasi-greediness and democracy (respectively conservativeness). In this paper, we show a
new functional characterization of these type of bases in general Banach spaces following the spirit
of the characterization of greediness proved in 2017 by P. M. Berná and Ó. Blasco.
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1. Introduction and Background

Assume that (X, ‖ · ‖) is a Banach space over the field F = R or C. Throughout the
paper, we assumed that B = (en)∞

n=1 is a seminormalized Markushevich basis, that is there
exists a unique sequence (e∗n)∞

n=1 ⊂ X∗ such that:

• span(en : n ∈ N) = X;
• e∗n(em) = δn,m;
• if e∗n( f ) = 0 for all n ∈ N, then f = 0;
• there are c1, c2 > 0 such that:

0 < c1 := inf
n

min{‖en‖, ‖e∗n‖} ≤ sup
n

max{‖en‖, ‖e∗n‖} =: c2 < ∞.

Hereinafter, by a basis for X, we mean a seminormalized Markushevich basis. Un-
der these conditions, for each f ∈ X, we have that f ∼ ∑∞

n=1 e∗n( f )en where (e∗n( f ))n ∈ c0.
The support of f ∈ X is denoted by supp( f ), where supp( f ) = {n ∈ N : |e∗n( f )| 6= 0}.
Finally, we use the following notation: X f in is the subspace of X with the elements with
finite support; if f , g ∈ X, f · g = 0 means that supp( f ) ∩ supp(g) = ∅, f̃ = (e∗n( f ))n∈N
and ‖ f̃ ‖∞ = supn∈N |e∗n( f )|. Moreover, if A and B are finite sets of natural numbers,
A < B means that maxn∈A n < minj∈B j; PA is the projection operator, that is PA( f ) =

∑n∈A e∗n( f )en; and Sk is the partial sum of order k, that is Sk( f ) = P{1,··· ,k}( f ).
In 1999, S. V. Konyagin and V. N. Temlyakov ([1])introduced one of the most studied

algorithms in the field of nonlinear approximation, the so-called thresholding greedy
algorithm: for f ∈ X and m ∈ N, we define a greedy sum of order m as:

Gm( f )[X,B] = Gm( f ) := ∑
n∈Am( f )

e∗n( f )en,

where Am( f ) is a greedy set of order m, that is |Am( f )| = m and:

min
n∈Am( f )

|e∗n( f )| ≥ max
n 6∈Am( f )

|e∗n( f )|.
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The collection (Gm)m∈N is the thresholding greedy algorithm. As for every algorithm,
one of the first questions that we can ask the audience is when the algorithm converges.
To solve that question, S. V. Konyagin and V. N. Temlyakov introduced in [1] the notion
of quasi-greediness.

Definition 1. We say that B is quasi-greedy if there is a positive constant C such that:

‖ f − Gm( f )‖ ≤ C‖ f ‖, ∀m ∈ N, ∀ f ∈ X. (1)

The least constant verifying (1) is denoted by Cq = Cq[X,B], and we say that B is
Cq-quasi-greedy.

Although this definition only talks about the boundedness of the greedy sums, P.
Wojtaszczyk showed in [2] that quasi-greediness is equivalent to the convergence of
the algorithm.

Theorem 1 ([2,3]). A basis B in a Banach (or quasi-Banach) space is quasi-greedy if and only if:

lim
m→+∞

‖ f − Gm( f )‖ = 0, ∀ f ∈ X.

Then, quasi-greediness is the minimal condition in the convergence of the algorithm,
but we are interested in others types of convergence. For instance, when does the algorithm
produce the best possible approximation? To study this question, in [1], the authors
introduced the notion of greediness: a basis B is greedy if there is a positive constant Cg
such that:

‖ f − Gm( f )‖ ≤ Cg inf{‖ f − ∑
n∈B

anen‖ : an ∈ F, |B| ≤ m}, ∀m ∈ N, ∀ f ∈ X.

There are several examples of greedy bases, for instance the canonical basis in the
spaces `p with 1 ≤ p < ∞, the Haar system in Lp((0, 1)) with 1 < p < ∞, or the
trigonometric system in L2(T). To study greedy bases, S. V. Konyagin and V. N. Temlyakov
gave a characterization in terms of unconditional and democratic bases, where a basis is
unconditional if the projection operator is uniformly bounded, that is there is K > 0 such
that, for any finite set A,

‖PA( f )‖ ≤ K‖ f ‖, ∀ f ∈ X.

Consider A a finite set, and define the set of the collection of signs in A, EA = {ε =
(εn)n∈A : |εn| = 1}, then take the indicator sum:

1εA = 1εA[X,B] := ∑
n∈A

εnen.

If ε ≡ 1, we use the notation 1A.

Definition 2 ([3–6]). We say that B is symmetric for the largest coefficients if there is a positive
constant C such that:

‖ f + 1εA‖ ≤ C‖ f + 1ε′B‖, (2)

for any pair of sets |A| ≤ |B| < ∞, A∩ B = ∅, for any f ∈ X such that supp( f )∩ (A∪ B) = ∅,
|e∗n( f )| ≤ 1 for all n ∈ N, and for any choice of signs ε ∈ EA, ε′ ∈ EB. The least constant verifying
(2) is denoted by ∆ = ∆[X,B], and we say that B is ∆-symmetric for the largest coefficients. If
(2) is satisfied with the extra condition that A < supp( f ) ∪ B, then we say that B is partially
symmetric for the largest coefficients with constant ∆pc.
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Definition 3. We say that B is super-democratic if there is a positive constant C such that:

‖1εA‖ ≤ C‖1ηB‖, (3)

for any pair of sets A, B ⊂ N, |A| ≤ |B| < ∞ and for any choice of signs ε ∈ EA, η ∈ EB. The least
constant verifying (3) is denoted by ∆s = ∆s[X,B], and we say that B is ∆s-super-democratic.

If (3) is satisfied for A < B, we say that B is ∆sc-super-conservative.
If (3) is satisfied for ε ≡ η ≡ 1, we say that B is ∆d-democratic, and if in addition, A < B,

we say that B is ∆c-conservative.

With these definitions, we can find the following characterizations of greedy bases.

Theorem 2. Assume that B is a basis in a Banach space X:

• B is greedy if and only if B is democratic and unconditional (see [1]). Moreover,

max{K, ∆d} ≤ Cg ≤ K + K2∆d;

• B is greedy if and only if B is super-democratic and unconditional (see [7]). Moreover,

max{K, ∆s} ≤ Cg ≤ K + K∆s;

• B is greedy if and only if B is symmetric for the largest coefficients and unconditional
(see [6]). Moreover,

max{K, ∆d} ≤ Cg ≤ K∆.

The last two characterizations were studied with the objective to improve the bound-
edness constant of greedy bases. Moreover, all the characterizations were given under the
assumption of unconditionality and one of the democracy-like properties, but in [8], we
found a new and interesting property that is very useful to give a new characterization
of greediness (see [8] Corollary 1.8). This property is the so-called Property (Q): there is a
C > 0 such that:

‖ f + 1A‖ ≤ C‖ f + g + 1B‖,

for any |A| = |B| < ∞, A ∩ B = ∅ and f , g ∈ X f in such that supp( f ) ∩ supp(g) = ∅,
‖ f̃ ‖∞ ≤ 1 and supp( f + g) ∩ (A ∪ B) = ∅.

In that paper, we focused our attention in a closed inequality to characterize the
so-called almost greedy and partially greedy bases.

Definition 4 ([4]). We say that B is almost greedy if there is a positive constant C such that:

‖ f − Gm( f )‖ ≤ C inf{‖ f − PB( f )‖ : |B| ≤ m}, ∀m ∈ N, ∀ f ∈ X. (4)

The least constant verifying (4) is denoted by Cal = Cal [X,B], and we say that B is Cal-almost
greedy.

Definition 5 ([4,5]). We say that B is partially greedy if there is positive constant C such that:

‖ f − Gm( f )‖ ≤ C inf
k≤m
‖ f − Sk( f )‖, ∀m ∈ N, ∀ f ∈ X. (5)

The least constant verifying (5) is denoted by Cp = Cp[X,B], and we say that B is Cp-
partially greedy.

Remark 1. In [4], the condition of partial greediness was introduced as follows:

‖ f − Gm( f )‖ ≤ C‖ f − Sm( f )‖, ∀m ∈ N, ∀ f ∈ X. (6)
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Under the condition of Schauder bases, (6) and (5) are equivalent notions, and in [5], the au-
thors proved that if (6) is satisfied with C = 1, then the basis is partially greedy.

Of course, every greedy basis is almost greedy and every almost greedy basis is par-
tially greedy. One example of an almost greedy basis that is not greedy is the Lindenstrauss
basis in `1 ([9]). Recently, one basis that is partially greedy and not almost greedy was
presented in ([10] Proposition 6.10).

It is well known that a basis is almost greedy if and only if the basis is quasi-greedy and
democratic and a basis is partially greedy if the basis is quasi-greedy and conservative ([4,10]).
Moreover, as for greedy bases, we have the following characterizations.

Theorem 3. Assume that B is a basis in a Banach space:

• B is almost greedy if and only if B is democratic and quasi-greedy ([4]). Moreover,

max{Cq, ∆d} ≤ Cal ≤ 8C4
q ∆d + Cq + 1;

• B is almost greedy if and only if B is super-democratic and quasi-greedy ([7]). Moreover,

max{Cq, ∆s} ≤ Cal ≤ Cq + Cq∆s;

• B is almost greedy if and only if B is symmetric for the largest coefficients and quasi-greedy
([7]). Moreover,

max{Cq, ∆} ≤ Cal ≤ Cq∆.

Theorem 4 ([4,5]). Assume that B is a basis in a Banach space:

• B is partially greedy if and only if B is conservative and quasi-greedy. Moreover,

max{Cq, ∆c} ≤ Cp ≤ Cq + C2
q(1 + Cq)∆c;

• B is partially greedy if and only if B is super-conservative and quasi-greedy. Moreover,

max{Cq, ∆sc} ≤ Cp ≤ Cq + Cq(1 + Cq)∆sc;

• B is partially greedy if and only if B is partially symmetric for the largest coefficients and
quasi-greedy. Moreover,

max{Cq, ∆pc} ≤ Cp ≤ Cq∆pc.

The purpose of this paper is to obtain a new characterization of almost greedy and
partially greedy bases following the ideas of ([8] Corollary 1.8) for greedy bases.

Definition 6. We say that B has Property (F) if there is a positive constant C such that:

‖ f + 1A‖ ≤ C‖ f + g + 1B‖, (7)

for any A, B, f , g satisfying the following conditions:

(i) |A| ≤ |B| < ∞ and A ∩ B = ∅;
(ii) f , g ∈ X f in, f · g = 0, supp( f + g) ∩ (A ∪ B) = ∅, ‖ f̃ ‖∞ ≤ 1, and ‖ f̃ ‖∞

≤ infn∈supp(g) |e∗n(g)|.
The least constant verifying (7) is denoted by F = F [X,B], and we say that B has Property

(F) with constant F .
Furthermore, if (7) is satisfied with the extra condition that A < supp(g) ∪ B, we say that B

has Property (Fp) with constant Fp.
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Definition 7. We say that B has Property (F∗) if there is a positive constant C such that:

‖ f + z‖ ≤ C‖ f + y‖, (8)

for any f , z, y ∈ X f in satisfying the following conditions:

(i) f · z = 0, f · y = 0, z · y = 0;
(ii) max{‖ f̃ ‖∞, ‖z̃‖∞} ≤ 1;
(iii) |D| ≥ |supp(z)|, where D = {n ∈ supp(y) : |e∗n(y)| = 1};
(iv) infn∈supp(y) |e∗n(y)| ≥ ‖ f̃ ‖∞.

The least constant verifying (8) is denoted by F ∗ = F ∗[X,B], and we say that B has Property
(F∗) with constant F ∗.

Furthermore, if (8) is satisfied with the extra condition that supp(z) < supp( f + y), we say
that B has Property (F∗p) with constant F ∗p .

The main theorems that we prove are the following.

Theorem 5. Let B be a basis in a Banach space X:

(a) If B is almost greedy with constant Cal , then B has Property (F∗) with constant F ∗ ≤
Cal(1 + 2Cal);

(b) If B has Property (F∗) with constant F ∗, then the basis is almost greedy with constant
Cal ≤ (F ∗)2.

Theorem 6. Let B be a basis in a Banach space X:

(a) If B is partially greedy with constant Cp, then B has Property (F∗p) with constant F ∗p ≤
Cp(1 + 2Cp);

(b) If B has Property (F∗p) with constant F ∗p , then the basis is partially greedy with constant
Cp ≤ (F ∗p )2.

The structure of the paper is the following: In Section 2, we show some basics about
Properties (F) and (F∗). In Section 3, we prove Theorem 5. In Section 4 we give a brief
summary about Properties (Fp) and (F∗p). In Section 5 we prove Theorem 6, and finally,
in Section 6, we give some density results that we use in the paper.

2. Properties (F) and (F∗)

This section is focused on the study of Properties (F) and (F*). In fact, we show that
these properties are equivalent. We show that we need some auxiliary lemmas about
convexity.

Lemma 1 ([3] Corollary 2.3). Let X be a Banach space, and let B be a basis for X and J a finite set:

(i) For any scalars (aj)j∈J with 0 ≤ aj ≤ 1 and any g ∈ X,

‖g + ∑
j∈J

ajej‖ ≤ sup{‖g + 1A‖ : A ⊆ J};

(ii) For any scalars (aj)j∈J with |aj| ≤ 1 and any g ∈ X,

‖g + ∑
j∈J

ajej‖ ≤ sup
ε∈EJ

‖g + 1εJ‖.

Lemma 2. Let B be a basis of a Banach space X. Then,

sup
ε∈EA

‖ f + 1εA‖ ≤ 5 sup
B⊆A
‖ f + 1B‖.
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Proof. If F = R, following the result in ([8] Lemma 2.3), we know that:

sup
εn=±1

‖ f + 1εA‖ ≤ 3 sup
B⊆A
‖ f + 1B‖.

We prove now the result for the complex case. In that case,

1εA = ∑
n∈A

Re(εn)en + i ∑
n∈A

Im(εn)en

= ∑
n∈A1

Re+(εn)en − ∑
n∈A2

Re−(εn)en

+ i

(
∑

n∈A3

Im+(εn)en − ∑
n∈A4

Im−(εn)en

)
, (9)

where Ai are the corresponding subsets of A. Then,

‖ f + 1εA‖ ≤ ‖ f + ∑
n∈A

Re(εn)en‖+ ‖ ∑
n∈A

Im(εn)en‖

≤ ‖ f ‖+ ‖ f + ∑
n∈A1

Re+(εn)en‖+ ‖ f + ∑
n∈A2

Re−(εn)en‖

+ ‖ f + ∑
n∈A3

Im+(εn)en‖+ ‖ f + ∑
n∈A4

Im−(εn)en‖

≤
Lemma 1

5 sup
B⊆A
‖ f + 1B‖.

Theorem 7. Let B be a basis in a Banach space X. The basis is democratic (or symmetric for the
largest coefficients) and quasi-greedy if and only if the basis has Property (F). Concretely:

(1) If B has Property (F) with constant F , then the basis is Cq-quasi-greedy and ∆d-democratic with:

max{Cq, ∆d} ≤ F ;

(2) If B has Property (F) with constant F , then the basis is Cq-quasi-greedy and ∆-symmetric for
the largest coefficients with:

Cq ≤ F , ∆ ≤ 5(F + 4F 2 + 4F 3);

(3) If B is ∆d-democratic and Cq-quasi-greedy, then the basis has Property (F) with constant:

F ≤ Cq(1 + (1 + Cq)∆d);

(4) If B is ∆-symmetric for the largest coefficients and Cq-quasi-greedy, then the basis has Property
(F) with constant:

F ≤ 3∆Cq.

Proof. First of all, we show (1). Assume that the basis has Property (F) with constant F .
To show that B is quasi-greedy, we take f ∈ X f in with t = ‖ f̃ ‖∞ and m ∈ N. Then, if we

take in the definition of Property (F) f ′ = f
t − Gm(

f
t ), g′ = Gm(

f
t ), and A = B = ∅, since

‖ f̃ ′‖∞ ≤ infn∈supp(g′) |e∗n(g′)|, we obtain that:

‖ f − Gm( f )‖ = t‖ f ′‖ ≤ F t‖ f ′ + g′‖ = F‖ f ‖,

so the basis is quasi-greedy with Cq ≤ F for elements with finite support. To obtain that B
is quasi-greedy for any f ∈ X, we use Corollary 1.
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We prove now that the basis is democratic. For that, we take C and D, two finite sets,
such that |C| ≤ |D|. Now, we perform the following decomposition:

D = (D ∩ C) ∪ D1 ∪ D2,

where |D1| = |C \ D| and D1 ∩ D2 = ∅. Hence, taking f = 1D∩C, g = 1D2 , A = C \ D, and
B = D1,

‖1C‖ = ‖1C∩D + 1C\D‖ ≤ F‖1D∩C + 1D2 + 1D1‖ = F‖1D‖.

Thus, B is democratic with ∆d ≤ F .
We now prove (2). We only have to show that B is symmetric for the largest coefficients.

For that, take f ∈ X f in, ‖ f̃ ‖∞ ≤ 1, A ∩ B = ∅, |A| ≤ |B| < ∞, supp( f ) ∩ (A ∪ B) = ∅,
ε ∈ EA, and η ∈ EB. Using Lemmas 1 and 2, we only have to show that there is some
absolute constant C such that:

‖ f + 1A′‖ ≤ C‖ f + 1ηB‖, ∀A′ ⊆ A.

Of course, since Property (F) implies quasi-greediness with constant Cq ≤ F by (1),
if we take the element h := f + 1ηB with ‖ f̃ ‖∞ ≤ 1, we have:

‖ f ‖ = ‖h− G|B|(h)‖ ≤ F‖h‖ = F‖ f + 1ηB‖. (10)

Furthermore, with respect to the set A′, we can have the following:

‖1A′‖ ≤ F‖1B‖ ≤ 4F 2‖1ηB‖, (11)

where in the last inequality, we used ([11] Proposition 2.1.11) or ([3] Lemma 3.2). (These
results affirm that for quasi-greedy bases, ‖1εA‖ ≤ 2κCq‖1ηA‖, for any η, ε ∈ EA and any
finite set A with κ = 1 if F = R and κ = 2 if F = C.)

Thus,

‖ f + 1A′‖ ≤ ‖ f ‖+ ‖1A′‖ ≤
(10)+(11)

F‖ f + 1ηB‖+ 4F 2‖1ηB‖

≤ (F + 4F 2)‖ f + 1ηB‖+ 4F 2‖ f ‖
≤ (F + 4F 2 + 4F 3)‖ f + 1ηB‖.

Finally, applying convexity,

‖ f + 1εA‖ ≤
Lemma 2

5 sup
A′⊆A

‖ f + 1A′‖ ≤ 5(F + 4F 2 + 4F 3)‖ f + 1ηB‖.

Therefore, the basis is symmetry for the largest coefficients for elements with finite
support with constant:

∆ ≤ 5(F + 4F 2 + 4F 3).

Applying Lemma 5, the result follows for any f ∈ X.
(3)Assume now that B is Cq-quasi-greedy and ∆d-democratic, and take f , g ∈ X f in

with f · g = 0, infn∈supp(g) |e∗n(g)| ≥ ‖ f̃ ‖∞, A ∩ B = ∅, |A| ≤ |B| < ∞, and supp( f + g) ∩
(A ∪ B) = ∅.

‖ f + 1A‖ ≤ ‖ f ‖+ ‖1A‖ ≤ ‖ f ‖+ ∆d‖1B‖. (12)

If we take h := f + g+ 1B, it is clear that supp(g+ 1B) is a greedy set of h. Then, if |supp(g+
1B)| = n,

‖ f ‖ = ‖h− Gn(h)‖ ≤ Cq‖h‖ = Cq‖ f + g + 1B‖. (13)
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Since infn infn∈supp(g)
|e∗n(g)| ≥ ‖ f̃ ‖∞ and ‖ f̃ ‖∞ ≤ 1, we can decompose g as g = g1 + g2,

where supp(g1) = {n ∈ supp(g) : |e∗n(g)| ≥ 1} and supp(g2) = {n ∈ supp(g) : |e∗n(g)| <
1}. Then, if we take u := f + g2 + 1B, B is a greedy set for u of order k := |B|, and taking
v = u + g1, supp(g1) is a greedy set of v of order p := |supp(g1)|. Thus,

‖1B‖ = ‖Gk(u)‖ ≤ (1 + Cq)‖u‖ = (1 + Cq)‖ f + g2 + 1B‖
= (1 + Cq)‖v− Gp(v)‖ ≤ (1 + Cq)Cq‖ f + g + 1B‖. (14)

Adding up (13) and (14) in (12), we obtain the result, that is the basis has Property (F)
with F ≤ Cq(1 + (1 + Cq)∆d).

(4)Finally, assume that B is ∆-symmetric for the largest coefficients and Cq-quasi-
greedy. Take f , g, A, and B as in Property (F). Then,

‖ f + 1A‖ ≤ ∆‖ f + 1B‖ ≤ ∆(‖ f + g1 + 1B‖+ ‖g1 + f ‖+ ‖ f ‖)
≤ 3Cq∆‖ f + g + 1B‖.

Thus, the basis has Property (F) with constant F ≤ 3Cq∆.

Theorem 8. Let B be a basis in a Banach space X. The basis has Property (F) if and only if the
basis has Property (F∗). Moreover, if F and F ∗ are the constants of the corresponding properties,
then:

F ≤ F ∗ ≤ 5F (1 + 2F + 8F 2).

Proof. Assume that we have Property (F∗) with constant F ∗, and take f , g, A, and B as in
Property (F), that is f · g = 0, A∩ B = ∅, |A| ≤ |B|, supp( f + g)∩ (A∪ B) = ∅, ‖ f̃ ‖∞ ≤ 1,
and ‖ f̃ ‖∞ ≤ infn∈supp(g) |e∗n(g)|. Taking z = 1A and y = g + 1B in Property (F∗), f , z, and y
verify the conditions established in Property (F∗). Then,

‖ f + 1A‖ = ‖ f + z‖ ≤ F ∗‖ f + y‖ = F ∗‖ f + g + 1B‖,

so the basis has Property (F) with F ≤ F ∗.
Assume now that we have Property (F), and take f , y, and z in X f in as in Property (F∗),

that is f · z = 0, f · y = 0, z · y = 0, max{‖ f̃ ‖∞, ‖z̃‖∞} ≤ 1, and |supp(z)| ≤ |D| where
D = {n : |e∗n(y)| = 1}|. Using Lemmas 1 and 2, it is enough to prove that there exists
C1 > 0 such that:

‖ f + 1A′‖ ≤ C1‖ f + y‖, ∀A′ ⊆ A,

where A = supp(z). Using Property (F), we have that:

‖h‖ ≤ F‖h + w‖, (15)

for any h and w such that h · w = 0 and infn∈supp(w) |e∗n(w)| ≥ ‖h̃‖∞.
Taking D = {n : |e∗n(y)| = 1}, observe that y = PDc(y)+ 1ηD, where η ≡ {sign(e∗n(y))}n.

Then, if A′ ⊆ A,

‖ f + 1A′‖ ≤ F‖ f + PDc(y) + 1D‖ ≤ F
(
‖ f + y‖+ ‖1ηD‖+ ‖1D‖

)
. (16)

If we decompose Dc = D1 ∪ D2 such that:

D1 = {n : |e∗n(y)| < 1}, D2 = {n : |e∗n(y)| > 1},

we obtain that:

‖1ηD‖ ≤ ‖ f + PD1(y) + 1ηD‖+ ‖ f + PD1(y)‖ ≤
(15)

2F‖ f + y‖. (17)
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Following the idea of (11), we can obtain that:

‖1D‖ ≤ 4F‖1ηD‖ ≤
(17)

8F 2‖ f + y‖. (18)

Using (17) and (18) in (16), we have:

‖ f + 1A′‖ ≤ F (1 + 2F + 8F 2)‖ f + y‖.

Using Lemma 1, we obtain:

‖ f + z‖ ≤ sup
ε∈EA

‖ f + 1εA‖ ≤
Lemma 2

5 sup
A′⊆A

‖ f + 1A′‖ ≤ 5F (1 + 2F + 8F 2)‖ f + y‖.

Therefore, the basis has Property (F*) with F ∗ ≤ 5F (1 + 2F + 8F 2).

To finish this section, we give the following nice characterization of Property (F∗) that
will be useful to show our main theorem.

Proposition 1. Let B be a basis in a Banach space X. The following are equivalent:

(i) There is a positive constant C such that:

‖ f + 1εA‖ ≤ C‖ f + g + 1ηB‖, (19)

for any f , g ∈ X f in such that f · g = 0, ‖ f̃ ‖∞ ≤ 1 and infn∈supp(g) |e∗n(g)| ≥ ‖ f̃ ‖∞, for any
pair of finite sets A and B such that A ∩ B = ∅, |A| ≤ |B|, supp( f + g) ∩ (A ∪ B) = ∅,
and for any ε ∈ EA, η ∈ EB;

(ii) The basis has Property (F*) with constant F ∗;
(iii) There is a positive constant C such that:

‖ f ‖ ≤ C‖ f − PA( f ) + y‖, (20)

for any f , y ∈ X f in with f · y = 0 and A ⊆ supp( f ) verifying:

(a) ‖ f̃ ‖∞ ≤ 1;
(b) infn∈supp(y) |e∗n(y)| ≥ ‖ f̃ ‖∞;
(c) |D| ≥ |A|, where D = {n ∈ supp(y) : |e∗n(y)| = 1}.
Moreover, if we denote by C1 and C2 the least constants verifying (19) and (20), respectively,

we have:
F ∗ ≤ C1, C2 ≤ F ∗, C1 ≤ C2.

Proof. First, we prove (i)⇒ (ii). Take f , z, y ∈ X f in as in the definition of Property (F∗):

• f · y = 0, f · z = 0, z · y = 0;
• max{‖ f̃ ‖∞, ‖z̃‖∞} ≤ 1;
• |D| ≥ |supp(z)|, where D = {n : |e∗n(y)| = 1};
• infn∈supp(y) |e∗n(y)| ≥ ‖ f̃ ‖∞.

If z = 0, just take A = B = ∅, and the proof is over. Consider now that z 6= 0, and
take supp(z) = A. If we divide y = 1ηD + PDc(y) with η ≡ {sign(e∗n(y))}, we have for all
ε ∈ EA,

‖ f + 1εA‖ ≤ C1‖ f + PDc(y) + 1ηD‖ = C1‖ f + y‖ (21)

Applying now Lemma 1, we obtain the result with F ∗ ≤ C1.
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Now, we show that (ii)⇒ (iii). Of course, if A = ∅, the result is trivial. Take f , y, and
A as in (iii) with A 6= ∅ and A ⊆ supp( f ). If in Property (F*), we take f ′ = f − PA( f ),
z′ = 1εA with ε ∈ EA and y′ = y,

‖ f ′ + z′‖ = ‖ f − PA( f ) + 1εA‖ ≤ F ∗‖ f ′ + y′‖ = F ∗‖ f − PA( f ) + y‖,

so applying Item (ii) of Lemma 1, (iii) is proven with C2 ≤ F ∗.
Finally, we give the proof to show that (iii)⇒ (i). Take f , g ∈ X f in such that f · g = 0,

‖ f̃ ‖∞ ≤ infn∈supp(g) |e∗n(g)|, |A| ≤ |B| < ∞, A ∩ B = ∅, supp( f + g) ∩ (A ∪ B) = ∅, and
ε ∈ EA, η ∈ EB.

Taking f ′ = f + 1εA and y = g + 1ηB,

‖ f + 1εA‖ = ‖ f ′‖ ≤ C2‖ f ′ − PA( f ′) + y‖ = C2‖ f + g + 1ηB‖,

so the proof is over, and C1 ≤ C2.

3. Proof of Theorem 5

To prove Theorem 5, we used one of the most important tools in the world of quasi-
greedy bases: the truncation operator. To define this operator, we take α > 0 and define,
first of all, the α-truncation of z ∈ C:

Tα(z) = αsign(z), if |z| ≥ α,

and:
Tα(z) = z, if |z| ≤ α.

Now, it is possible to extend Tα to an operator in the space X by:

Tα( f ) = ∑
n∈supp( f )

Tα(e∗n( f ))en = ∑
n∈∆α

α
e∗n( f )
|e∗n( f )| en + ∑

n 6∈∆α

e∗n( f )en,

where the set ∆α = {n ∈ N : |e∗n( f )| > α}. Of course, since ∆α is a finite set, Tα is well
defined for all f ∈ X.

Lemma 3 ([7] Lemma 2.5). Let B be a Cq-quasi-greedy basis in a Banach space. Then, the trunca-
tion operator is uniformly bounded, that is,

‖Tα( f )‖ ≤ Cq‖ f ‖, ∀α > 0, ∀ f ∈ X.

Proof of Theorem 5. Assume that B is almost greedy with constant Cal , and take f , z, and
y as in Property (F∗), then decompose y = PB1(y) + PB2(y) + 1ηB, where η ≡ {sign(e∗n(y))},
B1 ∪ B2 = Bc and:

B1 = {n : |e∗n(y)| < 1}, B2 = {n : |e∗n(y)| > 1}.

Taking now h := f + 1εA + PB2(y)+ 1ηB with A = supp(z), ε ∈ EA, and n = |B2|+ |B|,
we obtain:

‖ f + 1εA‖ = ‖h− Gn(h)‖ ≤ Cal‖h− PA(h)‖ = Cal‖ f + PB2(y) + 1ηB‖
≤ Cal(‖ f + y‖+ ‖PB1(y)‖) ≤ Cal(‖ f + y‖+ ‖ f + PB1(y)‖+ ‖ f ‖)
≤ Cal(‖ f + y‖+ 2Cal‖ f + y‖)
≤ Cal(1 + 2Cal)‖ f + y‖.

Thus, applying Lemma 1, the basis has Property (F∗) with constant
F ∗ ≤ Cal(1 + 2Cal).
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Assume now that the basis has Property (F∗). Take f ∈ X f in, m ∈ N, Gm( f ) = PG( f ),
and |A| ≤ m.

Consider now the elements f ′ = 1
t ( f − Gm( f )) with t = minn∈G\A |e∗n( f )|, B =

A \ G, y = 1η(G\A), and η ≡ {sign(e∗n( f ))}. Of course, f ′ · y = 0, ‖ f̃ ′‖∞ ≤ 1 since
|e∗n( f − Gm( f ))| ≤ t for n ∈ Gc and |G \ A| ≥ |B|. Then, applying these elements in Item
(iii) of Proposition 1, we obtain the following:

‖ f − Gm( f )‖ = t‖ f ′‖ ≤ tF ∗‖ f ′ − PB( f ′) + y‖
= F ∗‖ f − PG( f )− PA\G( f ) + t1η(G\A)‖
= F ∗‖P(A∪G)c( f − PA( f )) + t1η(G\A)‖. (22)

Since Property (F∗) implies that the basis is quasi-greedy with Cq ≤ F ∗
(Theorems 7 and 8), applying Lemma 3,

‖P(A∪G)c( f − PA( f )) + t1η(G\A)‖ = ‖Tt( f − PA( f ))‖ ≤ F ∗‖ f − PA( f )‖. (23)

Thus, by (23) and (22), the basis is almost greedy with constant Cal ≤ (F ∗)2 for
elements f ∈ X f in. Now, applying Corollary 2, the results follow.

4. Properties (Fp) and (F∗
p)

In all the results presented in Section 2, we can change democracy to conservativeness
or super-conservativeness and Properties (F) and (F∗) to Properties (Fp) and (F∗p) and obtain
the same results. Here, we only present the fundamental theorem that is the version of
Theorem 7 to study how the constants change.

Theorem 9. A basis B in a Banach space X has Property (Fp) if and only if B is quasi-greedy and
conservative. Moreover,

max{∆c, Cq} ≤ Fp ≤ 2 + Cq + 2Cq∆c.

Proof. Assume that B has Property (Fp) with constant Fp. Taking A = ∅, we have that:

‖ f ‖ ≤ C‖ f + 1B + g‖, (24)

for any f , g, and B as in the definition of Property (Fp). Now, taking B = ∅ and considering
f ′ := f − Gm( f ) and y = Gm( f ),

‖ f − Gm( f )‖ = ‖ f ′‖ ≤ Fp‖ f ′ + g‖ = Fp‖ f ‖, (25)

so the basis is quasi-greedy for elements with finite support. Applying Corollary 1, the basis
is quasi-greedy with Cq ≤ Fp. Now, on the other hand, taking f = g = 0, we obtain
conservativeness with constant ∆c ≤ Fp.

Now, take f , g, A, and B as in the definition of Property (Fp). If we have g = g1 + g2
where:

supp(g1) = {n ∈ supp(g) : |e∗n(g)| < 1},

‖ f + 1A‖ ≤ ‖ f + g + 1B‖+ ‖g + 1B‖+ ‖1A‖
≤ 2‖ f + g + 1B‖+ ‖ f ‖+ ‖1A‖
≤ (2 + Cq)‖ f + g + 1B‖+ ∆c‖1B‖
≤ (2 + Cq)‖ f + g + 1B‖+ ∆c‖ f + g1 + 1B‖+ ∆c‖ f + g1‖
≤ (2 + Cq)‖ f + g + 1B‖+ 2Cq∆c‖ f + g + 1B‖
= (2 + Cq + 2Cq∆c)‖ f + g + 1B‖.
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5. Proof of Theorem 6

Proof of Theorem 6. Assume now that B is Cp-partially greedy, and prove Property (F∗p).
Take f , z, y ∈ X f in satisfying from (i) to (iv) in the definition of Property (F∗p). We write
y = 1ηD + y1 + y2, where:

supp(y1) = {n ∈ supp(y) : |e∗n(y)| < 1}, supp(y2) = {n ∈ supp(y) : |e∗n(y)| > 1},

and η ≡ {sign(e∗n(y))}. Consider A = supp(z).
If A = ∅, applying Theorem 4, the basis is quasi-greedy with Cq ≤ Cp, and we can

conclude that ‖ f ‖ ≤ ‖ f + y‖.
Assume now that A 6= ∅, and consider m = maxA, then define B = {1, . . . , m} \ A. It

is clear that m = |A ∪ B| ≤ |B ∪D|. Now, for any choice ε ∈ EA, define h := f + 1εA + y2 +
1ηD + 1B.

Since partial greediness implies quasi-greediness with constant Cp (see Theorem 4),
we have:

‖ f + 1εA‖ = ‖h− Gm(h)‖ ≤ Cp inf
k≤m
‖h− Sk(h)‖ ≤ Cp‖ f + y2 + 1ηD‖

≤ Cp
(
‖ f ‖+ ‖y2 + 1ηD‖

)
.

For the first element of the sum, consider w := f + y, and we have:

‖ f ‖ = ‖w− Gn(w)‖,

with n = |supp(y)|. Then, applying quasi-greediness, we obtain ‖ f ‖ ≤ Cp‖ f + y‖. For the
second one, we write w = f + y1 + y2 + 1ηD, and using quasi-greediness, we have:

‖y2 + 1ηD‖ = ‖Gm(w)‖ ≤ (1 + Cp)‖ f + y‖,

where m = |supp(y2) ∪ D|.
Using both bounds, we obtain ‖ f + 1εA‖ ≤ Cp

(
1 + 2Cp

)
‖ f + y‖. Because of Lemma 1,

we conclude that ‖ f + z‖ ≤ Cp
(
1 + 2Cp

)
‖ f + y‖.

We now prove (b). Without loss of generality, we can assume that f ∈ X f in using
Corollary 3 and that ‖ f̃ ‖∞ ≤ 1. Start considering A = supp(Gm( f )), k ≤ m, and B =
{1, . . . , k}. If A = B, then the result is trivial. If A 6= B, we can decompose:

f − Gm( f ) = P(A∪B)c( f − Sk( f )) + PB\A( f ).

Let f ′ = 1
t P(A∪B)c( f − Sk( f )) and z = 1

t PB\A( f ) with t = minn∈A |e∗n( f )| and y =

1ε(A\B) with ε ≡ {sign(e∗n( f )}. Of course, f ′ · z = 0, f ′ · y = 0, and y · z = 0, ‖ f̃ ′‖∞ ≤ 1
since |e∗n(P(A∪B)c( f − Sk( f )))| ≤ t for n ∈ (A ∪ B)c and |A \ B| ≥ |B \ A|. Then, f ′, z, and
y verify the items of Property (F∗p), so:

‖ f − Gm( f )‖ = t‖ f ′ + z‖ ≤ tF ∗p‖ f ′ + 1ε(A\B)‖ = F ∗p‖P(A∪B)c( f − Sk( f )) + t1ε(A\B)‖.

It turns out that:

P(A∪B)c( f − Sk( f )) + t1εA\B = Tt( f − Sk( f )),

where Tt is the t-truncation operator. Now, since Property (F∗p) implies Property (Fp)
with the same constant, because of Theorem 9 and Corollary 1, the basis is quasi-greedy
with constant Cq ≤ F ∗p . Then, applying Lemma 3, we have that ‖Tt( f − Sk( f ))‖ ≤
F ∗p‖ f − Sk( f )‖. All together, we obtain ‖ f − Gm( f )‖ ≤ (F ∗p )2‖ f − Sk( f )‖ for all k ≤ m,
and hence, B is partially greedy.
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6. Annex

In this Annex, we write the main lemmas about density that we used in the paper.

Lemma 4 ([12] Lemma 7.2). Let B be a basis for a Banach space X. If A is a greedy set for f ∈ X,
for every ε > 0, there is y ∈ X f in such that ‖ f − y‖ ≤ ε and A is a greedy set for y.

Corollary 1. Assume that B is a Cq-quasi-greedy basis of a Banach space X for elements with finite
support. Then, B is quasi-greedy for every f ∈ X.

Proof. Take f ∈ X and A a greedy set of f of order m. By Lemma 4, there is y ∈ X f in such
that ‖ f − y‖ ≤ ε for every ε > 0 with A a greedy set for y. Then:

‖ f − PA( f )‖ = ‖ f − y− PA( f ) + y− PA(y) + PA(y)‖
≤ ‖ f − y‖+ ‖y− PA(y)‖+ ‖PA( f − y)‖
≤ ε(1 + ‖PA‖) + Cq‖y‖
≤ ε(1 + ‖PA‖) + Cq‖ f − y‖+ Cq‖ f ‖
≤ ε(1 + Cq + ‖PA‖) + Cq‖ f ‖.

Taking ε→ 0, we obtain the result.

Corollary 2. Let B be a basis for a Banach space X. If B is an almost greedy basis for all f ∈ X f in
with constant Cal , then the basis is almost greedy for every f ∈ X with the same constant.

Proof. Assume that B is almost greedy for elements with finite support. Take f ∈ X with
A a greedy set of order m. Applying Lemma 4, for any ε > 0, there is g ∈ X f in such that
‖ f − g‖ ≤ ε and A a greedy set for g. Consider the set B1 such that:

inf
|B|≤m

‖ f − PB( f )‖ = ‖ f − PB1( f )‖.

Case 1: B1 = ∅.

‖ f − PA( f )‖ = ‖ f − g + g− PA( f )− PA(g) + PA(g)‖
≤ ‖ f − g‖+ ‖g− PA(g)‖+ ‖PA( f − g)‖
≤ ε(1 + ‖PA‖) + Cal inf

|B|≤m
‖g− PB(g)‖

≤ ε(1 + ‖PA‖) + Cal‖g‖
≤ ε(1 + ‖PA‖) + Cal‖ f − g‖+ Cal‖ f ‖
≤ ε(1 + Cal + ‖PA‖) + Cal‖ f ‖.

Taking ε→ 0, we obtain the result.
Case 2: B1 6= ∅.

‖ f − PA( f )‖ = ‖ f − g + g− PA( f )− PA(g) + PA(g)‖
≤ ‖ f − g‖+ ‖g− PA(g)‖+ ‖PA( f − g)‖
≤ ε(1 + ‖PA‖) + Cal inf

|B|≤m
‖g− PB(g)‖

≤ ε(1 + ‖PA‖) + Cal‖g− PB1(g)‖
≤ ε(1 + ‖PA‖) + Cal‖g− f + f − PB1(g) + PB1( f )− PB1( f )‖
≤ ε(1 + ‖PA‖+ Cal) + Cal‖PB1( f − g)‖+ ‖ f − PB1( f )‖
≤ ε(1 + ‖PA‖+ Cal + Cal‖PB1‖) + ‖ f − PB1( f )‖

Taking ε→ 0, we obtain the result.
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With the same arguments, it is straightforward to show the next result.

Corollary 3. Let B be a basis for a Banach space X. If B is a partially greedy basis for all f ∈ X f in
with constant Cp, then the basis is partially greedy for every f ∈ X with the same constant.

Lemma 5 ([10] Lemma 3.2). Let X be a Banach space. Suppose D is a finite subset of N,
and f ∈ X \ {0} satisfies supp( f ) ∩ D = ∅. Then, for any ε > 0 there is y ∈ X f in, so that
‖ f − y‖ < ε, supp(y) ∩ D = ∅, and ‖ f̃ ‖∞ = ‖ỹ‖∞.
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