
mathematics

Article

Marketing Mix Modeling Using PLS-SEM, Bootstrapping the
Model Coefficients

Mariano Méndez-Suárez

����������
�������

Citation: Méndez-Suárez, M.

Marketing Mix Modeling Using

PLS-SEM, Bootstrapping the Model

Coefficients. Mathematics 2021, 9,

1832. https://doi.org/10.3390/

math9151832

Academic Editors: María del Carmen

Valls Martínez and Pedro Antonio

Martín Cervantes

Received: 8 July 2021

Accepted: 2 August 2021

Published: 3 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Market Research and Quantitative Methods, ESIC Business & Marketing School, Pozuelo de
Alarcón, 28223 Madrid, Spain; mariano.mendez@esic.edu

Abstract: Partial least squares structural equations modeling (PLS-SEM) uses sampling bootstrapping
to calculate the significance of the model parameter estimates (e.g., path coefficients and outer load-
ings). However, when data are time series, as in marketing mix modeling, sampling bootstrapping
shows inconsistencies that arise because the series has an autocorrelation structure and contains
seasonal events, such as Christmas or Black Friday, especially in multichannel retailing, making the
significance analysis of the PLS-SEM model unreliable. The alternative proposed in this research uses
maximum entropy bootstrapping (meboot), a technique specifically designed for time series, which
maintains the autocorrelation structure and preserves the occurrence over time of seasonal events or
structural changes that occurred in the original series in the bootstrapped series. The results showed
that meboot had superior performance than sampling bootstrapping in terms of the coherence of the
bootstrapped data and the quality of the significance analysis.

Keywords: partial least squares structural equation modeling (PLS-SEM); PLS-SEM bootstrapping;
PLS-SEM with time series; marketing mix modeling; maximum entropy bootstrapping

1. Introduction

Marketing mix models use multiple regression to measure marketing effectiveness and
efficiency [1]. In the case of multichannel retailers that sell online and offline and advertise
on both offline and Internet media, a common solution to the model marketing mix is
chaining multiple regression models (based on conversations with consulting experts), i.e.,
modeling first the impact of advertising on online sales and then using this information
to model offline sales. Recent research [2] proposed using partial least squares structural
equation models (PLS-SEM) to measure the simultaneous impact of advertising in mul-
tichannel retailer contexts and to measure the effectiveness of the different advertising
campaigns on web and store sales [3].

PLS-SEM has some desirable properties for marketing mix modeling because it is a
causal modeling approach aimed at maximizing the explained variance of the dependent
constructs, and because it is similar to multiple regression analysis, it is appropriate for
prediction [4]. Moreover, and very relevant, PLS-SEM avoids the problem of indeterminacy
and displays the factor scores [5], allowing the use of latent variable scores measured by
one or several indicators in subsequent analyses [6]. Consequently, PLS-SEM is particularly
useful for measuring the efficiency of marketing campaigns by attributing sales to each of
the advertising channels and calculating marketing ROI [3].

However, because PLS-SEM does not assume normality, lack of extreme values, or
symmetry in sample data [7], the parametric significance tests usually employed in linear
models cannot be applied to test whether outer loadings and path coefficients are significant.
Instead, PLS-SEM relies on a nonparametric sampling bootstrapping procedure [8] to
test the significance of estimated coefficients. This bootstrapping methodology involves
repeated random sampling with replacement from the original sample to create bootstrap
samples. It is a good procedure for estimating sampling distributions under independent
and identically distributed (i.i.d.) random variables [9], even in situations in which the
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i.i.d. setup is slightly violated [10], as with cases in which there might be changes in the
mean or variance (i.e., the survey is conducted in different countries or with heterogenous
respondents) [11,12].

Although sampling bootstrapping is a proper method to measure the significance of
the coefficients in most PLS-SEM applications, it is not recommended for marketing mix
time series because the data has internal structure and the sampling bootstrapping method
can change the dates of events, such as Black Friday or Christmas, or introduce several
additional events or none at all in a given year. It also does not respect the time intervals of
the structural changes that the series may have.

As an alternative to sampling bootstrapping, we propose maximum entropy (meboot)
bootstrapping [13], which maintains the individual basic shapes of time series and their
time dependence structures as the autocorrelation function (ACF) and the partial autocor-
relation function (PACF). Additionally, when applying meboot bootstrapping, the results
inherit the structure while respecting the dates of special events such as Black Friday as
well as the possible structural changes.

Despite its importance, little research has been done in the area of time series signifi-
cance analysis using PLS-SEM models, especially with regard to marketing mix analysis.
Furthermore, current research does not highlight the relevance and importance of the
application of consistent bootstrap methodologies for solving these types of problems; this
research makes important contributions by filling this void. For these reasons, the overall
aim of this paper is to provide a detailed empirical demonstration of the advantages of the
suggested meboot bootstrapping procedure in comparison with sampling bootstrapping
to calculate the significance of PLS-SEM model parameter estimates in a time series or
marketing mix modeling context. To this end, we based our analysis on standardized data
from a European consumer electronics multichannel company [2] containing web and store
sales and online and offline advertising activities.

Given this aim, the remainder of this paper is structured as follows. First, the theoreti-
cal foundations are explained. Then, the data used in this research is analyzed, and next,
both bootstrapping methods are applied to finally discuss the results.

2. Theoretical Foundation
2.1. PLS-SEM

PLS-SEM is a technique appropriate for solving marketing mix problems even when
very complex relationships exist [14] because the optimization algorithm maximizes the
variance explained of the model’s endogenous constructs, making it especially appro-
priate to identify key variables in situations of weak theory [15] or verify whether the
hypothesized relationships are empirically acceptable [16], for example, those involving
marketing mix model variables. Regarding its statistical properties, PLS-SEM admits single
item constructs without identification or convergence problems [17]; moreover, PLS-SEM
models can handle extremely non-normal data with asymmetries and very high levels
of skewness, for example, those corresponding to marketing events such as Black Friday.
PLS-SEM is also appropriate for the typical small sample sizes of marketing mix models,
such as in our case of 120 weekly observations corresponding to approximately 2.5 years of
weekly data.

Earlier applications of PLS-SEM to solve marketing mix problems focused on better
understanding the direct and cross effects of advertising on sales. Early research [18]
studied the impact of the interaction of radio and print advertising in the opening of
checking and savings accounts at a commercial bank, finding evidence of direct and cross
effects between both media. More recent research [19] added Internet advertising variables
to measure the impact of print advertising and paid search on a service company, finding a
crossover effect on online conversions.

Recently, [2] PLS-SEM applied to marketing mix showed evidence of the amplifying
effect of organic search queries on the advertising and, consequently, the sales of a mul-
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tichannel retailer. Additionally, the PLS-SEM [3] model was used to calculate the ROI of
offline and Internet advertising campaigns.

To verify the statistical significance of the PLS-SEM model parameters, the literature
proposes using sampling bootstrapping; the next section discusses the reasons.

2.2. Sampling Bootstrapping

The term bootstrapping is inspired by the story of the Baron of Munchausen [20], who
explained how he pulled himself and his horse out of a swamp by his own hair, meaning
that the Baron saved himself by his own means. In this sense, the homonymous statistical
technique developed by Efron [9] is similar because bootstrapping draws conclusions about
the characteristics of a population using the sample itself; in other words, given the absence
of information about the population, the sample is assumed to be the best estimate of the
population [21], making this method very appropriate when, as is the case with PLS-SEM,
there is no knowledge about the distribution of the parameters.

To find the empirical sampling distribution of a parameter, bootstrapping generates a
number of samples with repetition (recommended: 5000) [4], containing the same amount
of data as the original series to be sure that the samples obtained have the same statistical
properties as the original sample, i.e., if the data contains 120 observations, as in the present
research, 5000 samples with 120 observations are generated; in this way, each resample
has the same number of elements as the original sample, and the replacement method
transforms the finite sample into an infinite population. For each sample, a PLS-SEM model
is calculated, and the data on the coefficients of interest are stored, creating a distribution
of 5000 distinct coefficients, one for each of the path coefficients or outer loading models
of interest. For example, when analyzing the loadings of the indicator λ, we will obtain
5000 values of the estimate λ*, these values are then ordered from smallest to largest:

λ∗(1), λ∗(2), . . . , λ∗(5000) (1)

Then, the lower and upper bounds of the confidence intervals are identified, i.e., if the
desired confidence interval is 95%, the interval goes from the lower bound observation,
5000 × 0.025, to the upper 5000 × 0.975 observation, that is, from 125 observations to 4875.
The resulting confidence interval (CI) suggests that the population value of λ

CI =
[
λ∗(125), λ∗(4875)

]
(2)

will be somewhere in between λ∗(125) and λ∗(4875) with a 95% probability. Once the confi-
dence interval is calculated, if it does not include 0, we may consider that the coefficient is
significant at 95%.

However, as stated previously, in many cases, because of the nature of the data,
the distribution of the parameters is asymmetric and the percentile method is subject to
coverage error as stated by [7], meaning that, for example, a 95% confidence interval may
actually be a 90% confidence interval. Hence, it is recommended to construct bias-corrected
percentile confidence intervals to make statistical inferences when using PLS-SEM. Using
bias-corrected and accelerated (BCa) bootstrap confidence intervals solves this problem
by adjusting for biases and skewness in the bootstrap distribution [22]; for a detailed
step-by-step explanation of the methodology in a PLS-SEM context, see [23].

In the case of time series data as marketing mix model variables, this methodology
has a major drawback because, by definition, resampling does not preserve the order of the
data, the autocorrelation structure, or the exact time of marketing-associated events such as
Black Friday. To solve these problems, the present research proposes the maximum entropy
bootstrapping methodology for analyzing the significance of time series coefficients, which
will be explained next.
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2.3. Maximum Entropy Bootstrapping

Carlstein [24], aware that time series do not satisfy the i.i.d. hypothesis required
by bootstrapping and the problems generated by breaking the internal structure of time
series by shuffling the data, proposed a solution convenient for stationary time series
consisting of bootstrapping nonoverlapping blocks of observations instead of case-by-case
observations; on the basis of this idea, the methodology was improved with the proposal
of nonoverlapping moving blocks [25,26]. However, even after these improvements, the
methods faced the same problems with respect to violations of the required stationarity
property and therefore did not provide any remedy.

As a solution to time series bootstrapping, Vinod and López-de-Lacalle [13] proposed
the application of the principle of maximum entropy (ME), explained in depth by [27].
According to Vinod [28], ME is a powerful tool to avoid unnecessary distributional assump-
tions, such as i.i.d. or stationarity assumptions. ME constructs a population of time series,
called ensemble Ω, which can include regime switches, gaps, or jump discontinuities. With
f (x) being the density function of xt, the entropy H (Equation (3)) is defined as:

H = E(−log f (x)), (3)

Maximizing the entropy H in a density f (x) function, defined in terms of Shannon
information [29], means that we are finding the smoothest possible probability distribution
that meets the constraints derived from prior knowledge about the mean and variance of
the original series. The meboot algorithm constructs segments of ME density f (x) subject to
certain mass- and mean-preserving constraints.

The meboot algorithm [13] is a procedure that generates a large number of replicates,
e.g., 5000, of the original series, which can be used for statistical inference; it then applies
the “blocking” technique to break the time series into nonoverlapping blocks such that
the grand mean of all the simulated samples equals the time average of the original,
constructing bootstrap samples, or ensembles, that retain the basic shape and dependence
structure of the original data. Figure 1 shows the actual series of web sales used in this
research, explained in the next section, as well as two random ensembles generated with
the meboot algorithm.

Figure 1. Plot of the standardized EUR series of web sales data used in this research, explained in the next section, and two
random ensembles.
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Moreover, the approach can be applied in the presence of structural breaks, such as
economic crises or recoveries, as well as jumps due to Black Friday sales in which both
offline and online sales may “jump” sharply above the mean. For more information on
meboot, Vinod [30] provides extensive Monte Carlo evidence that supports the use of the
meboot in empirical work and suggests that the meboot confidence intervals are reliable.

3. Materials and Methods
3.1. Data

To conduct the present research, we used data from Méndez-Suárez and Monfort [2],
which contains a time series over 120 weeks from a European consumer electronics multi-
channel retailer, including information on investment in offline, Internet, and paid search
advertising, as well as Google queries containing the name of the retailer and the online
and offline sales. Table 1 depicts the descriptive statistics of the standardized values of
the original data; some variables, such as online Sales, queries, and retargeting, show high
levels of skewness and excess kurtosis.

Table 1. Descriptive statistics of the data.

Variables Median Min Max Skewness Kurtosis

Online Sales −0.2 −0.6 9.0 6.8 54.5
Offline Sales −0.3 −0.7 5.5 3.4 12.4

Queries −0.3 −0.8 6.7 4.7 26.7
Paid Search −0.1 −1.8 5.3 1.5 6.3
Store flyer 0.2 −1.1 2.4 0.2 −1.3

TV advertising 0.1 −1.4 4.6 1.1 3.7
Display 0.0 −1.3 3.5 1.3 2.4

Facebook −0.2 −1.5 3.7 1.0 1.2
Retargeting 0.0 −1.1 7.6 3.7 25.0

Twitter 0.0 −1.2 5.0 1.8 5.8
YouTube −0.2 −0.9 3.7 1.3 2.0

Christmas −0.2 −0.2 5.4 5.1 24.6
Note: Data represent standardized EUR with a mean of 0 and standard deviation of 1. Christmas is a dummy
binary variable representing Christmas Eve and Epiphany.

3.2. Methods

To compare the results of sampling versus meboot bootstrapping, we used the PLS-
SEM model from [2], depicted in Figure 2. The online and offline media in which the
multichannel retailer advertised during the period are represented as two reflective latent
constructs; the rest of the exogenous variables included in the structural model are single
item constructs.

The latent variable online advertising included display, Facebook, Retargeting, Twitter,
and YouTube, and the latent variable offline advertising contained store flyers and TV
advertising (Equation (4)).

Onlinet = Displaytλ1 + Facebooktλ2 + Retargetingtλ3 + Twittertλ4 + Youtubetλ5
O f f linet = Store f lyertλ6 + TV Advertisingtλ7

, (4)

The structural model contained four endogenous variables (Equation (5)), including
queries, explained by online and offline web and store sales, both explained by on and
offline advertising, paid search, and Christmas. Paid search was explained by queries.

Queriest = Onlinetβ1 + O f f linetβ2
WebSalest = Queriestβ3 + Onlinetβ4 + O f f linetβ5 + PaidSearchtβ6 + Christmastβ7

StoreSalest = Queriestβ8 + Onlinetβ9 + O f f linetβ10 + PaidSearchtβ11 + Christmastβ12
PaidSearcht = Queriestβ13

, (5)
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The PLS-SEM model from Figure 2 was used to bootstrap the latent variable outer
loadings and the path coefficients using sampling and meboot; the results are presented in
the following section.

Figure 2. The PLS-SEM model used to illustrate the sample and meboot bootstrapping results comparison. Figure adapted
with permission; the article was published in Journal of Business Research, 112, Méndez-Suárez, M.; Monfort, A. The
amplifying effect of branded queries on advertising in multichannel retailing, 254–260, Copyright Elsevier (2020).

4. Empirical Results

To compare the results of sampling and meboot, we bootstrapped 5000 subsamples of
the PLS-SEM model and calculated the bias-corrected and accelerated (BCa) confidence in-
tervals [7]. Bootstrapping of the structural model employed the R [31] packages, plspm [32],
and meboot [13]. The BCa confidence interval calculation in R followed that of Streukens
and Leroi-Werelds [23]. The discriminant validity of the model, heterotrait–monotrait
(HTMT) ratio of correlations, employed the R semTools package [33].

4.1. Correlations

The correlation of the original series and two random draws of the meboot and sample
bootstrap are shown in Table 2a–c. The results showed similar correlations between the
original and the bootstrapped variables; there were no significant differences to suggest
that one method is better than the other or that one of the methods has major flaws and
cannot be used to assess the significance of the results. Next, we analyze the results of the
bootstrapped confidence intervals.

4.2. Reliability, Validity, Structural Model, and Fit Assessment

Following [7], to assess the reflective measurement model, we evaluated the composite
convergent validity using the average variance explained (AVE), the internal consistency
reliability with Cronbach’s α, and the discriminant validity using HTMT. The mathematical
formulations are represented in Equation (6) (a–d), respectively.
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(a) AVEξ j =
1
Kj

Kj

∑
k=1

λ2
jk;(b) Cronbach′s α = N·c

1+(N−1)·c ;(c) Joreskog′s ρ =

(
N
∑

i=1
l1

)2

(
N
∑

i=1
l1

)2

+
N
∑

i=1
var(ei)

(d) HTMTij =
1

KiKj

Ki
∑

g=1

Kj

∑
k=1

rig,jh÷
(

2
Ki(Ki−1) ·

Ki−1

∑
g=1

Ki
∑

k=g+1
rig,ih· 2

Kj(Kj−1)
·
Kj−1

∑
g=1

Kj

∑
k=g+1

rjg,jh

) 1
2

(6)

Table 2. (a) Correlation coefficients of the time series, (b) correlation coefficients of one randomly selected series from
meboot, and (c) correlation coefficients of one randomly selected series from sampling bootstrap.

(a) Correlations of Original Series

1 2 3 4 5 6 7 8 9 10 11 12

1 Online Sales 100
2 Offline Sales 76 100

3 Queries 92 75 100
4 Paid Search 69 68 53 100
5 Store Flyers 33 30 38 19 100

6 TV Advertising 23 6 24 6 46 100
7 Display 32 7 38 12 42 66 100

8 Facebook 34 20 27 28 28 42 48 100
9 Retargeting 57 52 44 64 11 8 9 28 100

10 Twitter 32 3 23 19 17 58 64 51 12 100
11 YouTube 36 15 26 26 29 47 46 71 34 52 100

12 Christmas 32 57 29 34 6 2 −1 12 39 −4 12 100
(b) Correlation of one random series, meboot bootstrapping

1 2 3 4 5 6 7 8 9 10 11 12

1 Online Sales 100
2 Offline Sales 81 100

3 Queries 80 86 100
4 Paid Search 72 74 60 100
5 Store Flyers 35 37 45 26 100

6 TV Advertising 10 11 22 8 41 100
7 Display 14 28 40 14 38 67 100

8 Facebook 29 32 28 29 29 42 41 100
9 Retargeting 46 40 37 67 13 12 12 30 100

10 Twitter 8 28 20 20 17 55 62 53 12 100
11 YouTube 25 27 24 26 30 43 38 70 35 53 100

12 Christmas 56 18 22 31 4 1 −2 13 32 −4 14 100
(c) Correlation of one random series, sampling bootstrapping

1 2 3 4 5 6 7 8 9 10 11 12

1 Online Sales 100
2 Offline Sales 90 100

3 Queries 93 91 100
4 Paid Search 59 65 54 100
5 Store Flyers 39 33 40 18 100

6 TV Advertising 12 4 20 2 42 100
7 Display 41 33 46 23 47 63 100

8 Facebook 31 24 26 31 32 43 53 100
9 Retargeting 50 55 54 74 22 11 33 39 100

10 Twitter 44 23 30 33 28 54 61 59 30 100
11 YouTube 23 11 20 20 32 56 55 71 32 69 100

12 Christmas 5 36 7 34 −15 −19 −7 −4 24 −15 −11 100

Note: Data values are percentages. Bootstrapped.
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The AVE for construct ξj is defined as the average of the explained variances λ2 of
each reflective construct. In Cronbach’s α, N is the number of low-order components
(i = 1, . . . , N), and c is the average correlation between the lower-order components. In
Jöreskog’s ρ, li is the loading of the lower-order component i on a particular higher-
order construct, and var(ei) is the variance of the measurement error of the lower-order
component i. As explained by [34], the HTMT of constructs ξi and ξj with Ki and Kj
indicators, respectively, are the averages of the correlations of indicators across constructs
measuring different phenomena relative to the average of the correlations of indicators
within the same construct.

Table 3 shows the BCa confidence intervals of the reflective measuring model assess-
ment using both bootstrapping methodologies. For the external loadings of the latent
variables (Table 3a), there was agreement between the two methods in terms of the signifi-
cance of the loadings, but in this case, the width of the intervals is consistently larger when
using sampling bootstrapping, which means that there is a much larger level of dispersion
of the results when this methodology is used.

Table 3. Assessment of the reflective measurement model latent variables by meboot and sampling bootstrapping. (a) Con-
vergent validity of the outer model. (b) Reliability of the outer model. (c) Discriminant validity.

(a) Outer Loading Convergent Validity Bootstrap Results

Indicators Loadings 95% BCa CI
Meboot

CI
Amplitude >0.5? 95% BCa CI

Sampling
CI

Amplitude >0.5?

Store flyer 0.93 (0.87, 0.93) 0.10 Yes (0.75, 0.97) 0.22 Yes
TV

advertising 0.75 (0.64, 0.83) 0.14 Yes (0.58, 0.87) 0.30 Yes

Display 0.65 (0.65, 0.75) 0.09 Yes (0.24, 0.81) 0.57 No
Facebook 0.78 (0.71, 0.80) 0.11 Yes (0.53, 0.87) 0.34 Yes

Retargeting 0.66 (0.64, 0.79) 0.15 Yes (0.50, 0.88) 0.38 Yes
Twitter 0.67 (0.65, 0.76) 0.05 Yes (0.24, 0.86) 0.62 No

YouTube 0.80 (0.67, 0.82) 0.19 Yes (0.63, 0.88) 0.25 Yes

Latent
Variables AVE 95% BCa CI

Meboot
CI

Amplitude >0.5? 95% BCa CI
Sampling

CI
Amplitude >0.5?

Online ad 0.51 (0.51, 0.55) 0.04 Yes (0.35, 0.62) 0.27 No
Offline ad 0.72 (0.66, 0.76) 0.11 Yes (0.63, 0.8) 0.17 Yes

(b) Latent Variables Internal Consistency Reliability Bootstrap Results

Latent
Variables

Cronbach’s
Alpha

95% BCa CI
Meboot

CI
Amplitude 0.60–0.90? 95% BCa CI

Sampling
CI

Amplitude 0.60–0.90?

Online ad 0.78 (0.77, 0.8) 0.03 Yes (0.70, 0.84) 0.14 Yes
Offline ad 0.63 (0.6, 0.71) 0.11 Yes (0.44, 0.77) 0.34 No

Latent
Variables Jöreskog’s ρ

95% BCa CI
Meboot

CI
Amplitude >0.7? 95% BCa CI

Sampling
CI

Amplitude >0.7?

Online ad 0.85 (0.85, 0.87) 0.02 Yes (0.45, 1) 0.55 No
Offline ad 0.84 (0.82, 0.87) 0.05 Yes (0.50, 1.39) 0.89 No

(c) Latent Variables Discriminant Validity Bootstrap Results

Latent
Variables HTMT 95% BCa CI

Meboot
CI

Amplitude CI < 1? 95% BCa CI
Sampling

CI
Amplitude CI < 1?

Online ad &
Offline ad 0.80 (0.73, 0.89) 0.16 Yes (0.61, 0.99) 0.37 Yes

Note: As per Hair et al. [7], bootstrapped coefficients are corrected and accelerated (BCa).

However, the problems become especially severe when assessing the reflective con-
structs (Table 3b) because of the width of the sampling bootstrap intervals, which in all
cases is three times wider or more compared with the meboot intervals; consequently, the
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latent variables are not validated in terms of AVE, Cronbach’s Alpha, and Jöreskog’s ρ; the
HTMT is validated but by hundredths of a percent.

The confidence intervals from the regression coefficients (Table 4a) had similar am-
plitudes and showed similar results with respect to significance in all the paths, except
for the offline advertising path to web sales, for which the sampling bootstrap method
indicated that offline advertising had a non-significant coefficient on web sales; in other
words, offline advertising does not impact the sales of the web store.

Table 4. Evaluation of the structural model. (a) The model’s regression coefficients and their significance based on meboot
and sampling bootstrapping. (b) The model’s predictive accuracy based on meboot and sampling bootstrapping.

(a) Regression Coefficients Bootstrap Results

Endogenous
Variables

Exogenous
Variables

Path
Coefficient

95% BCa CI
Meboot

CI
Amplitude

Significance
(p < 0.05)?

95% BCa CI
Sampling CI Amplitude Significance

(p < 0.05)?

Web sales Online ad 0.14 (0.07, 0.32) 0.25 Yes (0.05, 0.24) 0.19 Yes
Web sales Offline ad −0.05 (−0.14, −0.002) 0.14 Yes (−0.12, 0.02) 0.14 No
Web sales Queries 0.75 (0.58, 0.89) 0.31 Yes (0.62, 0.85) 0.23 Yes
Web sales Paid Search 0.24 (0.06, 0.32) 0.26 Yes (0.15, 0.39) 0.23 Yes
Web sales Christmas −0.15 (−0.15, 0.13) 0.29 No (−0.14, 0.12) 0.26 No

Store sales Online ad −0.18 (−0.24, −0.04) 0.19 Yes (−0.36, −0.01) 0.35 Yes
Store sales Offline ad 0.05 (−0.02, 0.12) 0.14 No (−0.14, 0.16) 0.30 No
Store sales Queries 0.52 (0.27, 0.65) 0.38 Yes (0.42, 0.75) 0.34 Yes
Store sales Paid Search 0.39 (0.31, 0.52) 0.21 Yes (0.12, 0.59) 0.46 Yes
Store sales Christmas 0.32 (0.23, 0.44) 0.21 Yes (0.08, 0.53) 0.45 Yes

Queries Online ad 0.38 (0.27, 0.47) 0.20 Yes (0.12, 0.59) 0.47 Yes
Queries Offline ad 0.20 (0.13, 0.3) 0.17 Yes (0.08, 0.35) 0.27 Yes

Paid Search Queries 0.54 (0.36, 0.62) 0.26 Yes (0.36, 0.66) 0.30 Yes

(b) Predictive accuracy of the structural model evaluated with the magnitude of the explained variance, R2

Endogenous
Variables R2 95% BCa CI Meboot CI Amplitude

95% BCa CI
Sampling CI Amplitude

Queries 0.26 (0.17, 0.3) 0.13 (0.06, 0.36) 0.30
Paid Search 0.29 (0.13, 0.39) 0.25 (0.11, 0.42) 0.31
Store sales 0.79 (0.77, 0.94) 0.17 (0.68, 0.93) 0.25
Web sales 0.92 (0.91, 0.95) 0.04 (0.92, 0.97) 0.04

Note: As per Hair et al. [7], bootstrapped coefficients are corrected and accelerated (BCa).

As [35] stated, the different meaning of the term fit does not depend on whether
covariance-based SEM or variance-based SEM is used but on whether confirmatory or
explanatory research is performed (see [36]). Since in explanatory research, as in this case,
we would like to explain as much variation as possible in a dependent variable, the R2 is
the natural measure of fit; however, as occurred in the assessment of the reflective construct
outer loadings, the confidence intervals of the R2 (Table 4b) of the sampling bootstrapped
values were widespread and invalidated the model, contrary to the meboot values, which
showed high levels of fit in line with the results of the model application shown in Figure 3.

To understand what really explains the differences between the bootstrapping method-
ologies, we need to visually inspect the entire time series. Figure 3 shows the original series,
and two random paths of the sampling and meboot series both for online and offline sales.
The sampling bootstrapped series added jumps to sales corresponding to events such as
Christmas and Black Friday but at very different times from those occurring in the original
series, and, for example, in the case of offline sales (Figure 3a), it included up to 10 jumps,
only one of which corresponded to the date on which it occurred; however, at the times
these events occur, the sampling bootstrapped series did not reflect them. On the other
hand, in the meboot series, the jumps occurred at the same times as in the original series;
however, as expected for the maximum entropy modeling, some replicas of the original
series were more pronounced than others.
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Figure 3. (a,b) plot the original weekly Sales. Offline sales (a) and online sales (b) series and their respective sampling and
meboot counterparts. The horizontal axis represents time in weeks and the vertical axis represents the standard deviation of
the standardized sales series.

5. Discussion

PLS-SEM methodology using i.i.d. data has been very successful in areas such as
marketing, strategic management, management information systems, production, and
operations or accounting [37], and it is a promising methodology for time series, especially
marketing mix modeling [2,3]. However, to succeed in these areas, the traditional method
to measure the significance of the structural model and the outer loadings using sampling
bootstrapping should be reconsidered because this method shuffles the data without con-
sidering their internal structure or respecting the order of the sequence, the autocorrelation
structure, and the moments of occurrence of special events.

The present research presents a detailed analysis of the consequences of using sam-
pling bootstrapping for time series, especially marketing mix series, showing the risks
of the decision to trust in sampling bootstrap because the method destroys the internal
structure of the series and shows wider confidence intervals for the outer loadings of the
models. As a solution for these types of time-series analyses in PLS-SEM contexts, when
the exact colocation of the bootstrapped data is essential, as in marketing mix analyses, this
study recommends using meboot bootstrapping as an alternative and proves its suitability
for time series or marketing mix modeling with PLS-SEM.

Additionally, this research contributes to the development of PLS-SEM methodology
by providing a technique free of the risks associated with sampling bootstrapping in time
series analysis, broadening the scope and accuracy of the methodology in other areas of
research. Taken as a whole, the contributions of the present research provide valuable
insights into how the evaluation of time series dependencies can be effectively performed
using PLS-SEM analysis and why it is so relevant to apply a bootstrapping technique
specifically adapted to time series and a technique that is compatible with their time
structure to measure the significance of external loadings and path coefficients.

The managerial implications of this work are twofold: (1) practitioners have to be very
careful when analyzing time series using PLS-SEM if the data is not i.i.d. and smooth in
terms of shape because sampling bootstrapping shuffles the time series and destroys its
integrity. In this respect, the present research shows that the use of sampling bootstrapping
for time series involves very high risks, especially those associated with the assessment of
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the reflective and the path coefficient significance; this finding constitutes one of the main
contributions of this article. The meboot bootstrapping procedure respects the internal
structure of the data and maintains the colocation of special marketing events, making it a
trustable technique for time series analysis.

The methodology proposed in the present research can be an excellent source of
innovation for PLS-SEM methodology, extending its possible application to all areas that
use time series analysis for explanatory purposes and are susceptible to the potential
application of PLS-SEM predictive analysis, such as those related, for example, to quality
control in industrial processes or the evolution of natural ecosystems.

Three limitations of the present research may become avenues for future research. The
model in this study is limited to marketing mix series, and the proposed methodology
has not been tested in other time series contexts in which PLS-SEM models may be used.
Additionally, the proposed model and meboot bootstrap methodology were tested on a
time series of only 120 observations and not on a series with a larger number of observations.
In addition, since the model only uses reflective constructs, evaluation of time series models
with formative constructs would complement the results of this research.
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