
mathematics

Article

The Real-Life Application of Differential Evolution with a
Distance-Based Mutation-Selection

Petr Bujok

����������
�������

Citation: Bujok, P. The Real-Life

Application of DE with a

Distance-Based Mutation-Selection.

Mathematics 2021, 9, 1909. https://

doi.org/10.3390/math9161909

Academic Editors: David Greiner,

António Gaspar-Cunha, Daniel

Hernández-Sosa, Edmondo Minisci

and Aleš Zamuda

Received: 1 July 2021

Accepted: 4 August 2021

Published: 10 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Informatics and Computers, Faculty of Science, University of Ostrava, 30. Dubna 22,
70103 Ostrava, Czech Republic; petr.bujok@osu.cz; Tel.: +420-553462176

Abstract: This paper proposes the real-world application of the Differential Evolution (DE) algorithm
using, distance-based mutation-selection, population size adaptation, and an archive for solutions
(DEDMNA). This simple framework uses three widely-used mutation types with the application of
binomial crossover. For each solution, the most proper position prior to evaluation is selected using
the Euclidean distances of three newly generated positions. Moreover, an efficient linear population-
size reduction mechanism is employed. Furthermore, an archive of older efficient solutions is used.
The DEDMNA algorithm is applied to three real-life engineering problems and 13 constrained
problems. Seven well-known state-of-the-art DE algorithms are used to compare the efficiency
of DEDMNA. The performance of DEDMNA and other algorithms are comparatively assessed
using statistical methods. The results obtained show that DEDMNA is a very comparable optimiser
compared to the best performing DE variants. The simple idea of measuring the distance of the
mutant solutions increases the performance of DE significantly.

Keywords: differential evolution; distance-based; mutation-selection; real application; experimental
study; global optimisation

1. Introduction

The solving of global optimisation problems is frequently needed in many areas of
research, industry, and engineering where minimal or maximal cost values are required. In
general, a global optimisation problem is specified in the search space Ω which is limited
by its boundary constraints, Ω = ∏D

j=1[aj, bj], aj < bj. The objective function f is defined
in all x ∈ Ω and the point x∗ for f (x∗) ≤ f (x), ∀x ∈ Ω is the solution of the global
optimisation problem.

In this study, several engineering optimisation problems are used to illustrate the
performance of both existing ( well-known) and newly proposed optimisation methods.
The motivation and aim is to show the efficiency of the newly proposed optimisation
algorithms. Achieving an optimal solution for engineering problems is a very popular
research area [1]. Generally, the real-life application of optimisation methods is extremely
important in many fields of industry, energy, and scheduling, etc. [2].

In addition to the area of engineering optimisation problems, the field of industrial
economics is also very popular. In 2019, Dosi et al. introduced a comprehensive theoretical
survey of the history of agent-based macroeconomics [3]. The authors critically discussed
the issues found in macroeconomics from different points of view. The authors recom-
mended the direct cooperation of agent-based macroeconomics with financial institutions.
In 2020, Bellomo et al. introduced a theoretical cooperation between evolutionary theory
and the theory of active particles [4]. The authors deeply analysed areas of evolutionary
landscapes and the interactions found in endogenous systems which resulted in a model of
differential equations. The results of the simulations showed the potential of their proposed
approach in aiding the cooperation between states and private companies.

There are various optimisation approaches to find the minimal (maximal) function
value of objective functions. The biggest group of optimisation methods is called the
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Evolutionary Algorithms (EAs), which are inspired by natural systems. One of the most
frequently used EA is the Differential Evolution (DE) algorithm [5]. The high popularity of
the DE algorithm is based on its simplicity and efficiency. Over more than 15 years, a lot of
powerful DE variants have been developed and studied very intensively [6–8]. Despite the
efficiency of DE, there is still not one specific variant of the optimisation algorithm which is
possible to solve all global optimisation problems in the most efficient way (No Free Lunch
theorem [9]).

Differential Evolution

Differential evolution was introduced by Storn and Price as a simple and efficient
optimisation algorithm in 1996 [5]. DE is a population-based optimisation algorithm
that uses three numerical control parameters. The main idea of DE is as follows. In the
beginning, the population of N individuals (D-dimensional vectors) is generated randomly
in Ω and evaluated by the objective function f . After initialisation, the development of
the population is performed from generation to generation until the stopping condition is
met. The development of the individuals in the population is controlled by evolutionary
operators—mutation, crossover, and selection. A new trial individual (offspring) yi is
derived from the current point xi as follows. A mutated individual ui is constructed from
the current individual using mutation. There are several well-known mutation variants,
the most widely-used mutation variant in DE is denoted rand/1 (1), where r1, r2, r3 are
randomly selected mutual indices from [1, N], different from i.The parameter F ∈ (0, 2] is
called a scale factor.

u = xr1 + F · (xr2 − xr3) (1)

After mutation, a crossover operation is performed. Here, elements of the original
xi and the mutated individuals ui are used for a new offspring solution—yi. The most
widely used crossover variant is known as binomial crossover (2), where the crossover
ratio CR ∈ (0, 1) controls the number of elements from a mutated individual selected for a
trial solution.

yi,j =

 ui,j, i f randj(0, 1) ≤ CR or j = randj(1, D)

xi,j, otherwise.
(2)

A new individual yi is evaluated by a cost function and it replaces the parent individ-
ual xi in the population if it is better, f (yi) ≤ f (xi). This evolutionary operation is known
as selection. When standard canonical DE is used for solving complex optimisation prob-
lems or large scale problems with high dimensions D, its efficiency is worse. The issue is
mainly caused by the fixed values of the control parameters—N, CR, F. Then, the adaptive
approach of the DE control parameters’ values helps to solve various optimisation tasks.
A lot of successful adaptive DE variants have been introduced and applied to real-world
problems [6–8].

In this paper, a new DE variant based on a distance-based selection of mutation indi-
viduals, using an archive of old-good solutions and a population-size reduction mechanism,
was applied to real-world problems. The main motivation for using the new algorithm
was derived from an attempt to control the speed of convergence in the DE by the proper
selection of a mutation individual [10,11]. Euclidean distance is employed to select the
correct mutation individual from a triplet based on the current stage of the algorithm.
Additionally, using historical yet correct, solutions in a reproduction process can enhance
the ability to avoid the local minimal area. Finally, changing the population size during
the search (from a bigger value to a smaller value) enables the support of exploration
in early generations and exploitation in later generations. The most important aspect
of the research is the practical use of the proposed optimisation methods for real-world
problems. Therefore, three real-world engineering problems and 13 constrained problems
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were used to evaluate the proposed DE and compare the results with other state-of-the-art
DE variants.

The rest of the paper is organised as follows. The newly proposed DE variant is
presented in Section 2. The real-world problems and experimental settings are represented
in Section 3. The results obtained from the experimental study are presented and discussed
in Section 4. The paper is briefly concluded in Section 5.

2. A Novel DE with Distance-Based Mutation-Selection (DEDMNA)

In this section, a DE variant with Distance-based Mutation-selection, population size
(N) reduction, and the use of an archive of old-good solutions (DEDMNA) is introduced.
The main motivation for this approach is to manage the speed of convergence in the DE
algorithm because the selection of the proper mutation operation significantly influences
the ability to increase or decrease the population diversity.

In 2012, Liang et al. proposed a new DE variant with a distance-based selection
approach [12]. Here, newly generated solutions are based on the Euclidean distance of
an individuals’ cost functions. A weakness of this approach is found in the necessity for
the evaluation of the individuals. This is because it is typically the most time-consuming
operation during the optimisation process.

In 2017, Gosh et al. proposed a DE variant with a distance-based mutation scheme
using the central tendency of the population [13]. The Manhattan distance of the parent
and offspring solution was applied to prioritise newly generated solutions with worse
quality. The mechanism proposed a higher level of population diversity during the search.

In 2020, Liang et al. presented a novel DE algorithm based on the function value of the
Euclidean-distance ratio [14]. This ratio reflects the function value and distance between
two individuals in the population, and it is computed for the whole population. Therefore,
the parent individuals are selected by roulette using the ratio values. The results of their
experiments showed an increased efficiency in some classification problems.

2.1. Proper Mutation Variants for Convergence-Control

Standard DE uses mutation and crossover operations to generate new solutions to
produce the next generation. There are many mutation variants, and preliminary results
show that various mutation variants perform significantly differently [15]. Therefore, a
couple of well-performing mutation variants which provide a variety of convergence-
speeds were selected. Preliminary experimental results [10] and a theoretical analysis [11]
provide an evaluation of DE mutation based on the speed of convergence. Based on
preliminary experiments, the DE mutation variants rand/1 (1), best/2 were assessed as a
balanced set of fast-converging and diversity-keeping mutation variants.

u = xbest + F · (xr1 − xr2) + F · (xr3 − xr4) (3)

u = xr1 + F · (xbest − xr1) + F · (xr2 − xr3) (4)

where xr1 , xr2 , xr3 , xr4 are mutually different points r1 6= r2 6= r3 6= r4 6= i and xbest is best
point of P.

2.2. Distance-Based Mutation-Selection Mechanism

The newly proposed DE with a distance-based approach is based on a previously
designed DEMD variant [16]. The original DEMD uses only a distance-based mutation-
selection approach and a control parameter adaptation approach. To improve the original
DEMD, a linear population size reduction approach and an archive for old solutions were
employed in our research. Here, more details of the original DEMD and its new enhanced
variant are provided.

The main motivation for using the original DEMD was the control of the convergence
ability (speed) of the DE algorithm. For each individual xi in population P, three mutation
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individuals are generated using the three mutation variants as discussed above. Then,
the most proper mutation individual is selected for the crossover and selection, using
the standard Euclidean distance, with respect to the current stage of the search process
(exploration or exploitation). Note that where the CoDE variant [17] selects one of the
three trial individuals evaluated by the cost function, the proposed DEDMNA uses the
Euclidean distance between the coordinates of the points in the population. Therefore,
the computational costs of the DEDMNA approach are substantially lower because the
function evaluation of the individuals is a computationally expensive operation.

At the beginning of DEDMNA, a population of P of N individuals xi, i = 1, 2, . . . , N
is generated randomly in Ω and evaluated by objective function. Next, for each individual
xi from P, a new solution yi is generated. The reproduction process of DEDMNA is divided
into two phases—exploration and exploitation. The exploration phase is performed in
the early generations of DEDMNA, and it keeps the coarse detection of potentially good
regions of Ω. In this phase, for each xi three new mutant vectors u1, u2, and u3 are
produced using (1), (3) and (4) mutations. Subsequently, a mutation point with the least
Euclidean distance between the mutation individuals and the current position xi is selected
to choose the proper mutation individual and to achieve a better exploration of Ω. The
second, exploitation, phase is controlled by (5), and the mutation point of the triplet
of mutation individuals u1, u2, and u3 with the least Euclidean distance between the
mutation individuals and the best individual xbest is selected to choose the proper mutation
individuals and maintain a better exploitation ability.

dist =



√√√√ D

∑
j=1

(uk,j − xi,j)2, if FES/maxFES < rand

√√√√ D

∑
j=1

(uk,j − xbest,j)2 otherwise, k = 1, 2, 3.

(5)

where FES is the current number of depleted function evaluations and maxFES the max-
imum FES for one run. Next, a new trial individual yi is developed using a standard
binomial crossover (2).

It is clear that setting the control parameters F and CR are crucial for the efficiency of
the DEDMNA algorithm. In DEDMNA, an adaptive approach to changing the values of
F and CR during the search process is employed. Simply, the values of CR are generated
randomly, uniformly from the interval (0, 1), and independently for each point in P.
Furthermore, the value of CRi is randomly re-sampled if it has a small probability of 0.1.
The adaptive mechanism for the values of F depend on the current phase. In the early
exploration phase, the values of Fi are computed as a random permutation of length N
divided by N for each point from P. Such values equidistantly cover the interval (0, 1). In
the late exploitation phase, values of Fi are sampled as a random number from the uniform
interval (0, 1). In both phases, the Fi values are randomly assigned to individuals of P and
modified by Fi = Fi + 0.1 ∗ rand. Such a modification guarantees slightly varying values in
each generation. Similar adaptation mechanisms for the DE control parameters were also
used in the original algorithms [18,19].

2.3. Archive of Historically Good Solutions

To simplify the use of archived historical solutions in A, point xr3 (see (1), (3) and (4))
is randomly selected from P

⋃
A (the remaining points for mutation are selected solely

from P). It means that when the archive is fully written, the randomly selected individual
xr3 has a 50% chance from being from P and a 50% chance from A.
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2.4. Population Size Adaptation

Preliminary experiments showed that varying the population size during the search
significantly increases the performance of the DE algorithm [20–22]. The population size
N of the DEDMNA algorithm is linearly reduced during the search process from a bigger
value at the beginning to a smaller value at the end. After each generation, the current
proper population size (based on linear dependency) is computed (6). When the current
population size N differs from the needed value, the population size is reduced:

N = round[(
Nmin − Ninit

maxFES
)FES + Ninit], (6)

where FES is the current number of function evaluations, Ninit is the initial population size,
Nmin represents the size of population at the end of the search process (counted by the total
number of maxFES function evaluations).

3. Experimental Settings

The proposed DEDMNA algorithm was applied to three engineering problems and 13
constrained problems. The results from DEDMNA were compared with six state-of-the-art
DE variants.

3.1. State-of-the-Art Variants in Comparison

Six state-of-the-art DE variants were selected for an experimental comparison to assess
the performance of the proposed DEDMNA variant. A brief description of the methods in
a chronological manner follows.

In 2006, Brest et al. proposed a simple and efficient adaptive DE variant (jDE) [18]. jDE
uses a DE/rand/1/bin strategy with an adaptive approach of F and CR. Each individual
has separate values of F and CR, and in each generation, it is regenerated with a probability
of 0.1. More details of the efficient jDE method can be found in [18].

In 2009, Qin et al. proposed a DE algorithm with strategy adaptation (SaDE) [23]. In
Sade, four mutation strategies (rand/1/bin, rand/2/bin, rand-to-best/2/bin, and current-
to-rand/1) are used for generating new trial solutions. The strategy to be applied is selected
by roulette based on the success and failure of previous LP generations. Each strategy
has the same probability set to 1/4, i.e., all the strategies have an equal probability of
being selected.

In 2013, Tanabe and Fukunaga introduced the Success-History Based Parameter
Adaptation for Differential Evolution (SHADE) [24] which was the best performing DE
variant in the CEC 2013 competition. SHADE is derived from JADE [25], where the main
difference between SHADE and the original JADE is a different history-based adaptation of
the control parameters F and CR. Both algorithms use a current-to-pbest mutation strategy
where one parent individual is selected from P

⋃
A. The SHADE algorithm is abbreviated

in the results of this paper as SHA.
In 2014, Wang et al. proposed a new DE variant using covariance-matrix learning and

bimodal parameter settings (CoBiDE and CoBi in results) [26]. CoBiDE advances the canon-
ical DE in two new aspects–the covariance-matrix crossover (based on Eigenvectors of the
population) and bimodal sampling of the control parameters, which distinguishes between
exploration and exploitation. The authors of CoBiDE supposed a higher performance in
problems defined by rotated objective functions. The Eigenvector crossover is controlled
by two control parameters pb = 0.4 is the probability of using the Eigenvector crossover
(instead of the classic binomial crossover) in the whole population, and ps = 0.5 is the
portion of the population used to determine the Eigenvectors. More details are provided in
the original paper.

In 2015, Tang et al. introduced a DE with an Individual-Dependent Mechanism [19].
The search process in IDE is divided into explorative and exploitative phases. The dynamic
setting of the F and CR values using the quality of the individuals is employed. Better
individuals with lesser objective function values have smaller values of F and CR and vice
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versa. In 2017, an advanced IDE variant was proposed with a novel mutation variant and
diversity-based population size control (IDEbd) [27]. The details of the IDEbd method can
be found in the original paper, and it is labelled simply by ‘IDE‘ in the results section of
this paper.

In 2017, Brest et al. introduced an adaptive DE variant derived from the successful
JADE, SHADE, and L-SHADE called jSO [21]. The jSO algorithm achieved second position
in the CEC 2017 competition. jSO uses historical circle memories of length 5 containing
the mean values for generating F and CR. In the first half of the jSO search process, higher
values of CR are used. In the first 60% of evaluations, the values of F are kept under 0.7. jSO
uses an advanced weighted current-to-pbest mutation. Finally, jSO uses a linear adaptation
of the population size where the initial population size is N = 25×

√
D × log D. More

details are available in [21].
In 2019, Brest et al. proposed a very efficient adaptive DE variant called jDE100 [28], In

2019, jDE100 was the optimisation algorithm with the best results in the CEC competition.
The jDE100 algorithm is derived from jDE. In jDE100, two independent populations are
used—one big and one small. Also, the initial values of the mutation and crossover are
set to F = 0.5 and CR = 0.9 for each individual in both populations. After one generation
of the big population, if the best solution for the jDE100 is in the big population, it is
copied to the small population. Then, when the condition for the re-initialisation of the
big population is satisfied, it is reset. Then several generations of the small population are
performed (equally to the number of function evaluations of the big population), and also
the reset condition is verified, and the best solutions are stored. More details regarding
jDE100 can be found in the original paper.

3.2. Well-Known Engineering Problems

The experimental comparison found here is based on three well-known engineering
problems [29]. All the problems are related to minimisation, i.e., the global minimum
point is the solution. The computational complexity of the problems are varied, and the
dimensionality of the search space is (D ∈ {3, 4}). For each algorithm and problem, 25
independent runs were performed. Each algorithm stops when it achieves a predefined
number of function evaluation, i.e., MaxFES = 150,000. A better insight into the results of
the algorithms is provided by results achieved at MaxFES = 50,000 and MaxFES = 100,000.
Finally, the individual of the final population with the least function value is the solution
of the algorithm for the given problem.

(a) (b) (c)

Figure 1. (a) Pressure vessel design problem, (b) Welded beam design problem, and (c) Tension-
compression string problem.

In the pressure vessel design problem (labelled preved in results), the production costs
represented by four parameters and constraints are minimised. The decision space area is
represented by a four-dimensional real-valued space: x1 defines the thickness of the head,
x2 is the thickness of the cylinder, x3 is the inner radius, and x4 is the length of the cylinder
part (see Figure 1a)). The objective function is defined:

f (y) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (7)
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with constraints:

y1 = −x1 + 0.0193x3 ≤ 0

y2 = −x2 + 0.00954x3 ≤ 0

y3 = −πx2
3x4 −

4
3

πx3
3 + 1,296,000 ≤ 0

y4 = x4 − 240 ≤ 0

(8)

The purpose of the second Welded Beam Design problem (labelled welded in results)
is to achieve the best production cost regarding a set of project constraints. An illustration
of this problem is depicted in Figure 1b). The problem variables are—the weld thickness
(x1) length (x2), height (x3), and thickness of the bar (x4).

f (y) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2) (9)

with settings:

tmax = 13,600

smax = 30,000

dmax = 0.25

M = P(L +
x2

2
)

R =
√

0.25(x2
2 + (x1 + x3)2)

P = 6000

L = 14

E = 3× 106

G = 12× 106

J = 2
√

2x1x2(x2
2/12 + 0.25(x1 + x3)

2)

Pc = (
4.013E
(6L2)

)x3x3
4(1− 0.25x3

√
E/G/L)

t1 = P/(
√

2x1x2), t2 = MR/J

t =
√

12 + t1t2x2/R + t2
2

s = 6PL/(x4x2
3), d = 4PL3/(Ex4x3

3)

(10)

and constraints:

y1 = t− tmax

y2 = s− smax

y3 = x1 − x4

y4 = 0.10471x2
1 + 0.04811x3x4(14.0 + x))− 5.0

(11)

In the Tension-Compression String problem (labelled tecost in results), the weight of
the spring is minimised. The problem variables of the tecost problem are the wire diameter
(x1), the mean coil diameter (x2), and the number of active coils (x3). The tecost problem
is restricted by the constraints of shear stress, surge frequency, and minimum deflection
(Figure 1c)). The objective function is:

f (y) = x2
1x2(x3 + 2) (12)
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with constraints:

y1 = 1−
x3

2x3

71,785x4
1

y2 =
4x2

2 − x1x2

12,566x3
1(x2 − x1))

+
1

5108x2
1
− 1

y3 = 1− 140.45x1/(x3x2
2)

y4 =
x1 + x2

1.5
− 1

(13)

3.3. Constrained Optimisation Problems

Real-world problems are very often defined as constrained optimisation problems.
The constrained conditions (based on equality or inequality) specify more accurate areas for
the allowed values of optimised variables. Therefore, a set of 13 minimisation constrained
problems are used in experiments to distinguish more and less efficient methods. Details
and definitions of the objective functions of the constrained problems are available in [29].
The constrained problems are labelled p1–p13 following the order of the original report.
The dimensionality of the search space is D ∈ (2, 20).

All algorithms and problems are implemented and experimentally compared in a
Matlab 2020b environment. All computations were carried out on a standard PC with
Windows 10, Intel(R) Core(TM)i7-9700 CPU 3.0 GHz, 16 GB RAM. For each algorithm
and problem maxFES = 100,000 and is the stopping condition of the search, and 25
independent runs were performed to achieve statistically significant results. The population
size of all algorithms is N = 90. The control parameters are minimal population size
(Nmin = 5, 20), initial population size (Ninit = round(25 ∗ log(D) ∗

√
D [21]), and the size

of the archive is equal to the population size N. Based on the final population size values,
two different DEDMNA variants are labelled in the results as DDMA5 and DDMA20. The
control parameters for the state-of-the-art algorithms used in this comparison, follow the
recommended settings from the original papers.

4. Results

In this paper, two variants of the novel DEDMNA algorithm are compared with six
state-of-the-art DE variants when solving three engineering and 13 constrained problems.
At first, the performance of all nine algorithms is compared using the Friedman test. This
method provides the mean ranks of the algorithms in comparison using the median values
of the best-achieved function values. The best-achieved solution for each algorithm was
recorded in ten phases of the search. The mean ranks for each algorithm and problem for
the ten phases are in Table 1. The mean ranks represent the overall performance of the
algorithm, including all 16 problems. The algorithms are ordered based on the mean rank
in the final 10th phase (MRst = 10). The mean rank of the best algorithm is printed bold
and underlined, the second-best is printed bold, and the algorithm in the third position
is underlined. In the last column, the achieved significance level of the Friedman tests is
presented. If the null hypothesis is rejected, symbol of ∗ ∗ ∗ (p < 0.001), ∗∗ (p < 0.01),
and ∗ (p < 0.05) is presented. Otherwise, symbol of ≈ demonstrate cases, where the null
hypothesis is not rejected.
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Table 1. Mean ranks of all algorithms from the Friedman tests computed for each stage independently.

MRst DDMA20 DDMA5 SHA SaDE jDE jDE100 IDE CoBi Sig.

1 4.38 4.50 3.41 5.53 5.84 2.66 3.66 6.03 ***
2 4.84 4.72 3.97 4.91 5.16 2.75 3.97 5.69 *
3 4.91 4.34 4.25 4.44 4.91 3.25 4.03 5.88 ≈
4 4.59 4.22 4.16 4.19 4.78 3.78 4.53 5.75 ≈
5 4.28 4.22 4.19 4.06 4.75 4.03 4.94 5.53 ≈
6 4.19 4.25 4.03 4.06 4.56 4.41 5.03 5.47 ≈
7 4.50 4.38 4.16 4.25 4.44 4.25 4.81 5.22 ≈
8 4.13 4.13 4.09 4.44 4.44 4.69 4.84 5.25 ≈
9 3.94 4.00 4.22 4.44 4.63 4.69 4.84 5.25 ≈

10 3.81 4.19 4.22 4.38 4.63 4.75 4.78 5.25 ≈

The null hypothesis is rejected only in the first two phases; the performance of the
algorithms in the remaining phases is rather similar. Very interesting information is
provided by the development of the mean rank values for each algorithm during the
progression of stages. In the early phases, jDE100 and SHADE variants are well-performing.
The best results, including all 16 problems in the last two (final) phases, were achieved by
the newly proposed DEDMNA20 and DEDMNA5. It highlights the effective performance
of the proposed DEDMNA method. A better insight into the mean rank comparison is
provided by the plots of the mean ranks in Figure 2. The performance of jDE100 decreases
during the search, whereas the efficiency of the DEDMNA algorithm increases (especially
for DEDMNA20).

Figure 2. Illustration of the algorithms’ mean ranks from the Friedman tests.

A more detailed comparison is provided by the Wilcoxon rank-sum tests. The test
is applied to compare the results of two algorithms with one problem. The reference
method is DEDMNA20 (best mean rank from the Friedman test), and it is compared with
the seven remaining counterparts. In Tables 2 and 3, the median values of all algorithms
and problems are shown, including the significance from the Wilcoxon rank-sum tests (‘−’
denotes the better performance of a counterpart method, ‘+’ shows the better performance
of DEDMNA20, and ‘≈’ is for similar results). Mostly, the median values of all the compared
algorithms are very similar to the achieved true solution.



Mathematics 2021, 9, 1909 10 of 14

Table 2. Median values for each algorithm and problem, with significance from the Wilcoxon
rank-sum tests.

Fun DDMA20 IDE CoBi jDE SaDE

preved 5885.333 5885.3328 5885.333 5885.333 5885.33
(≈) (≈) (≈) (−−−)

welded 2.218151 2.218151 2.218151 2.218151 2.21815
(≈) (≈) (≈) (−−−)

tecost 0.012665 0.012665 0.012665 0.012665 0.012665
(−−−) (−−−) (≈) (−−−)

p1 −15 −14.99 −15 −15 −15
(+++) (≈) (≈) (≈)

p2 −0.8049 −0.792 −0.754 −0.803 −0.804
(+++) (+++) (+) (≈)

p3 −0.02377 −0.25338 −1.04 × 104 −3.00 × 106 −5.00 × 106

(−−−) (+++) (+++) (+++)
p4 −30665.5 −30665.5 −30665.5 −30665.5 −30665.5

(≈) (+++) (≈) (+++)
p5 1.19 × 1012 1.19 × 1012 1.19 × 1012 1.19 × 1012 1.19 × 1012

(≈) (−−−) (≈) (−−−)
p6 −6961.81 −6961.81 −6961.81 −6961.81 −6961.81

(≈) (+++) (≈) (+++)
p7 24.30697 24.35218 24.307 24.30798 24.3064

(+++) (≈) (++) (−−)
p8 −0.09583 −0.09583 −0.095825 −0.09583 −0.095825

(≈) (+++) (≈) (+++)
p9 680.6301 680.63007 680.63 680.6301 680.63

(+++) (−−−) (≈) (−−−)
p10 7049.42 7059.31 7054.68 7049.43 7049.41

(+++) (+++) (≈) (≈)
p11 0.7499 0.7499 0.7499 0.7499 0.9656

(≈) (≈) (≈) (+++)
p12 −1 −1 −1 −1 −1

(≈) (≈) (≈) (≈)
p13 4.1 × 108 0.95456 3.25 × 109 1.44 × 1010 8.95 × 1011

(−−) (+) (++) (+++)

Σ 5/8/3 7/6/3 4/12/0 6/4/6

For a better comparison of the algorithms, the counts of better, similar, and worse
results for the reference DEDMNA20 algorithm are depicted in the last row of the tables.

Compared to IDEbd (labelled IDE), DEDMNA20 performs better in five constrained
problems and is worse in one constrained and one engineering problem. CoBiDE is outper-
formed by the reference method in seven problems, and it performs better in three problems.
DEDMNA20 outperforms jDE in four constrained problems and never performs worse.
DEDMNA20 is better in six constrained problems and worse in three constrained problems
and three engineering problems, compared to SaDE. SHADE is able to outperform the
reference method in three constrained problems, and it performs worse in three constrained
and one engineering problem. The results of the two DEDMNA variants are very similar,
and each is better in one problem. DEDMNA20 outperforms jDE100 in eight constrained
problems, and it is worse in two engineering problems and two constrained problems.

More insight into the algorithms’ performance is provided by convergence plots for
all 16 problems (see Figures 3–6). It is clear that in constrained problems 8 and 12, all the
algorithms converge in the first phase. In the remaining problems, the convergence process
takes some time. An interesting observation is the convergence of constrained problem 2,
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where the curves of the best algorithms’ solutions differ to the last phase. The worst
convergence is with CoBiDE, whereas very good results are provided by DEDMNA20.

Table 3. Median values for each algorithm and problem, with significance from the Wilcoxon
rank-sum tests.

Fun DDMA20 SHADE DDMA5 jDE100

preved 5885.333 5885.3328(≈) 5885.3328(≈) 5885.330(−−−)
welded 2.218151 2.2181509(≈) 2.2181509(≈) 2.21815(−−−)
tecost 0.012665 0.012666(+++) 0.012665(+) 0.012665(≈)

p1 −15 −15(≈) −15(≈) −15(≈)
p2 −0.80359 −0.8036(−−−) −0.8036(≈) −0.79256(+++)
p3 −0.02377 −0.0004899(+++) −0.02249(≈) −0.00268(+++)
p4 −30665.5 −30665.5387(≈) −30665.5387(≈) −30665.5(+++)
p5 1.19 × 1012 1.19 × 1012(≈) 1.19 × 1012(≈) 1.19 × 1012(−−−)
p6 −6961.81 −6961.81388(≈) −6961.81388(≈) −6961.81(+++)
p7 24.30697 24.30625(−−−) 24.30699(≈) 24.3269(+++)
p8 −0.09583 −0.095823(≈) −0.09583(≈) −0.095825(+++)
p9 680.6301 680.630057(≈) 680.630057(≈) 680.633(+++)

p10 7049.42 7049.29(−−) 7049.55(≈) 7071.57(+++)
p11 0.7499 0.9401(+++) 0.7499(≈) 0.7499(≈)
p12 −1 −1(≈) −1(≈) −1(≈)
p13 4.1 × 108 5.07 × 1011(+++) 0.97026(−) 0.902(−−)

Σ 4/9/3 1/14/1 8/4/4

Pressure vessel design problem Welded Beam Design problem

Tension-Compression String problem Constrained problem 1

Figure 3. Convergence plots of the algorithms in comparison.
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Constrained problem 2 Constrained problem 3

Constrained problem 4 Constrained problem 5

Figure 4. Convergence plots of the algorithms in comparison.

Constrained problem 6 Constrained problem 7

Constrained problem 8 Constrained problem 9

Figure 5. Convergence plots of the algorithms in comparison.
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Constrained problem 10 Constrained problem 11

Constrained problem 12 Constrained problem 13

Figure 6. Convergence plots of the algorithms in comparison.

5. Conclusions

In this experimental comparison, two newly proposed DEDMNA variants are com-
pared with six state-of-the-art DE variants when solving three engineering problems and
13 constrained problems. The results of the Friedman tests show that the DEDMNA variant
provides the best performance in the last phase of the search, whereas the successful jDE100
variant performs better in the early phases of the search. The better results for DEDMNA,
with a bigger final population size, indicates the necessity for higher diversity during the
search process.

The counts of better and worse results from the Wilcoxon rank-sum test show that the
new DEDMNA variant is able to be comparable with optimised state-of-the-art methods
when applied to real-world problems. Despite this, all algorithms achieved mostly quite
similar results, which illustrate the ability of the methods to determine the area of the
true solution. The Proposed DEDMNA variant was successfully applied to the current
CEC 2021 competition, and it achieves a very promising performance compared to the
state-of-the-art DE algorithms from the preliminary experiments. This finding is very
promising for the future development of new optimisation methods. The performance of
DEDMNA will be studied and further tuned in future research.
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