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Abstract: In this study, new asymptotic properties of positive solutions of the even-order delay
differential equation with the noncanonical operator are established. The new properties are of an
iterative nature, which allows it to be applied several times. Moreover, we use these properties to
obtain new criteria for the oscillation of the solutions of the studied equation using the principles
of comparison.
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1. Introduction

Our interest in this work revolves around the study of the asymptotic behavior of
positive solutions of the delay differential equation (DDE):

d
dt

(
a ·
(

dn−1

dtn−1 ψ

))
+ q · (ψ ◦ g) = 0, t ≥ t0, (1)

under the following hypotheses:

Hypothesis 1 (H1). n ≥ 4 is an even natural number;

Hypothesis 2 (H2). a and q are continuous real functions on I0 := [t0, ∞), a(t) > 0, a′(t) ≥ 0,
q(t) ≥ 0, and: ∫ ∞

t0

a−1(η)dη < ∞;

Hypothesis 3 (H3). g is a continuous nondecreasing real function on I0, g(t) ≤ t, and
limt→∞ g(t) = ∞.

By a proper solution of (1), we mean a function ψ ∈ Cn−1(I0) with:

aψ(n−1) ∈ C1(I0) and sup{|ψ(t)| : t ≥ t∗} > 0, for t∗ ∈ I0,

and ψ satisfies (1) on I0.
DDEs are a type of functional differential equation that takes into account the effect

of past time. Therefore, DDEs are a better way to describe natural phenomena and time-
related problems. For example, the oscillation of contacts of electromagnetic switches could
be described by the oscillation of solutions of the second-order DDE (see [1]), and in math-
ematical ecology, by DDE, Israelsson and Johnsson [2] introduced a model for geotropic
circumnutations of Helianthus annuus.

Recently, a research movement has been active that deals with the qualitative prop-
erties of solutions such as these equations, especially their oscillatory behavior. Bac-
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ulíková [3,4], Džrina and Jadlovská [5], and Chatzarakis et al. [6] developed approaches
and techniques for studying oscillatory behavior in order to improve the oscillation criteria
of second-order delay/advanced differential equations. Bohner et al. [7], Grace et al. [8],
and Moaaz et al. [9,10] also extended this evolution to DDEs of the neutral type. On the
other hand, Džurina et al. [11,12] and Moaaz et al. [13] dealt by different methods with the
asymptotic properties of the solutions of DDEs of the odd-order.

For even-order DDEs, Moaaz et al. [14] and Park et al. [15] were interested in studying
the oscillation of the even-order DDE:

(a(t)(ψ(n−1)(t))γ)′ + q(t)ψβ(g(t)) = 0, (2)

(or some of its special cases) where γ, β are the ratio of odd natural numbers. They only
focused on studying the oscillation of (2) in the canonical case, that is,∫ ∞

t0

a−1/β(η)dη = ∞.

For the canonical DDE of the neutral type, see [16]. In the noncanonical case, that is,∫ ∞

t0

a−1/β(η)dη < ∞,

Zhang et al. [17] studied the qualitative properties of (2). They obtained conditions that
ensured that all nonoscillatory solutions of Equation (2) tend to zero. In [18], Zhang et al.
established criteria for the oscillation of all solutions of (2) by using Riccati substitution.
By establishing comparison theorems that compare the nth-order equation with one or
a couple of first-order delay differential equations, Baculíková et al. [19] studied the
oscillatory properties of the DDE:

(a(t)(ψ(n−1)(t))γ)′ + q(t) f (ψ(g(t))) = 0, (3)

where f is nondecreasing and − f (−xψ) ≥ f (xψ) ≥ f (x) f (ψ), for xψ > 0. Moreover,
by introducing a generalized Riccati substitution, Moaaz and Muhib [20] extended the
technique used in [21] to study the oscillation of (2).

In this study, we first obtain new asymptotic properties of the positive solutions of
DDE (1). Then, we improve these asymptotic properties by using an iterative technique.
Finally, we use these new properties to study the oscillatory behavior of the solutions of (1).
Our results in this paper extend and complement the results in [17–19].

Remark 1. Note that, in (1), the delay appears only in the solution ψ, but not in its derivatives,
which makes it quite a special high-order DDE.

2. Main Results

For brevity, we denote the set of all eventually positive solutions of (1) by S+. More-
over, we define the operators ϕm by:

ϕ0(u) :=
∫ ∞

u
a−1(η)dη, ϕk(u) :=

∫ ∞

u
ϕm−1(η)dη, for k = 1, 2, ..., n− 2.

Theorem 1. Assume that ψ ∈ S+ and ψ satisfies:

ψ(s)(t)ψ(s+1)(t) < 0 for s = 0, 1, ..., n− 2, (4)

for t ≥ t1 ∈ I0. If: ∫ ∞

t0

1
a(u)

(∫ u

t0

q(η)dη

)
du = ∞ (5)
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and there exists a δ0 ∈ (0, 1) such that:

q(t)ϕ2
n−2(t)ϕ−1

n−3(t) ≥ δ0 (6)

then:

(B1) (−1)κ+1ψ(n−κ−2)(t) ≤ a(t)ψ(n−1)(t)ϕκ(t) for κ = 0, 1, ..., n− 2;

(B2) lim
t→∞

ψ(t) = 0;

(B3) ψ/ϕn−2 is increasing;

(B4) ψ/ϕδ0
n−2 is decreasing;

(B5) lim
t→∞

ψ(t)/ϕδ0
n−2(t) = 0.

Proof. Assume that ψ ∈ S+ and satisfies (4) for t ≥ t1 for some t1 ∈ I0. Then, there is a
t2 ≥ t1 with ψ(g(t)) > 0 for all t2, and hence, from (1),(

a(t)ψ(n−1)(t)
)′

= −q(t)ψ(g(t)) ≤ 0.

(B1): Using (4), we have that:

a(t)ψ(n−1)(t)ϕ0(t) ≥
∫ ∞

t

a(η)ψ(n−1)(η)

a(η)
dη ≥ −ψ(n−2)(t),

or equivalently:
ψ(n−2)(t) ≥ −a(t)ψ(n−1)(t)ϕ0(t).

Integrating this relationship n− 2-times over [t, ∞) and taking into account the behav-
ior of the derivatives in (4), we arrive at (B1).
(B2): Since ψ is positive decreasing, we obtain that limt→∞ ψ(t) = k ≥ 0. Assume the
contrary, that k > 0. Then, there is a t2 ≥ t1 with ψ(t) ≥ k for t ≥ t2. Then, (1) becomes(

a(t)ψ(n−1)(t)
)′
≤ −kq(t). Integrating this inequality twice over [t2, t), we obtain:

a(t)ψ(n−1)(t)− a(t2)ψ
(n−1)(t2) ≤ −k

∫ t

t2

q(η)dη.

From (4), we have ψ(n−1)(t) < 0 for t ≥ t1. Then, a(t2)ψ
(n−1)(t2) < 0, and so:

ψ(n−1)(t) ≤ − k
a(t)

∫ t

t2

q(η)dη,

and then:

ψ(n−2)(t) ≤ ψ(n−2)(t2)− k
∫ t

t2

1
a(u)

(∫ u

t2

q(η)dη

)
du,

which with (5) gives limt→∞ ψ(n−2)(t) = −∞, a contradiction with the positivity of
ψ(n−2)(t). Therefore, ψ(t) converges to zero.
(B3): Using (B1) at κ = 0, we obtain that:

d
dt

ψ(n−2)(t)
ϕ0(t)

=
1

ϕ2
0(t)

(
ϕ0(t)ψ(n−1)(t) + a−1(t)ψ(n−2)(t)

)
≥ 0,

which leads to:

−ψ(n−3)(t) ≥
∫ ∞

t
ϕ0(η)

ψ(n−2)(η)

ϕ0(η)
dη ≥ ψ(n−2)(t)

ϕ0(t)
ϕ1(t).
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This implies:

d
dt

ψ(n−3)(t)
ϕ1(t)

=
1

ϕ2
1(t)

(
ϕ1(t)ψ(n−2)(t) + ϕ0(t)ψ(n−3)(t)

)
≤ 0.

By repeating a similar approach, we obtain (B3).
(B4): Integrating (1) over [t2, t) and using (6), we find:

a(t)ψ(n−1)(t) = a(t2)ψ
(n−1)(t2)−

∫ t

t2

q(η)ψ(g(η))dη

≤ a(t2)ψ
(n−1)(t2)− ψ(t)

∫ t

t2

q(η)dη

≤ a(t2)ψ
(n−1)(t2)− δ0ψ(t)

∫ t

t2

ϕn−3(η)

ϕ2
n−2(η)

dη

≤ a(t2)ψ
(n−1)(t2) + δ0

ψ(t)
ϕn−2(t2)

− δ0
ψ(t)

ϕn−2(t)
,

which, with (B2), gives:

a(t)ψ(n−1)(t) ≤ −δ0
ψ(t)

ϕn−2(t)
. (7)

Thus, from (B1) at κ = n− 3, we obtain:

ψ′(t)
ϕn−3(t)

≤ −δ0
ψ(t)

ϕn−2(t)
.

Consequently,

d
dt

ψ(t)

ϕδ0
n−2(t)

=
1

ϕδ0+1
n−2 (t)

(
ϕn−2(t)ψ′(t) + δ0 ϕn−3(t)ψ(t)

)
≤ 0.

(B5): Now, since ψ/ϕδ0
n−2 is a positive decreasing function, we see that limt→∞ ψ(t)/ϕδ0

n−2(t) =
k1 ≥ 0. Assume the contrary, that k1 > 0. Then, there is a t2 ≥ t1 with ψ(t)/ϕδ0

n−2(t) ≥ k1 for
t ≥ t2. Next, we define:

F(t) :=
ψ(t) + a(t)ψ(n−1)(t)ϕn−2(t)

ϕδ0
n−2(t)

.

Then, from (B1), F(t) > 0 for t ≥ t2. Differentiating F(t) and using (6) and (B1),
we obtain:

F′(t) =
1

ϕ2δ0
n−2(t)

[
ϕδ0

n−2(t)
(

ψ′(t)− a(t)ψ(n−1)(t)ϕn−3(t) +
(

a(t)ψ(n−1)(t)
)′

ϕn−2(t)
)

+δ0 ϕδ0−1
n−2 (t)ϕn−3(t)

(
ψ(t) + a(t)ψ(n−1)(t)ϕn−2(t)

)]
≤ 1

ϕδ0+1
n−2 (t)

[
−ϕ2

n−2(t)q(t)ψ(g(t)) + δ0 ϕn−3(t)
(

ψ(t) + a(t)ψ(n−1)(t)ϕn−2(t)
)]

≤ 1

ϕδ0+1
n−2 (t)

[
−δ0 ϕn−3(t)ψ(t) + δ0 ϕn−3(t)ψ(t) + δ0 ϕn−3(t)a(t)ψ(n−1)(t)ϕn−2(t)

]
≤ δ0

ϕδ0
n−2(t)

ϕn−3(t)a(t)ψ(n−1)(t). (8)

Using the fact that ψ(t)/ϕδ0
n−2(t) ≥ k1 with (7), we obtain:

a(t)ψ(n−1)(t) ≤ −δ0
ψ(t)

ϕn−2(t)
≤ −δ0k1 ϕδ0−1

n−2 (t). (9)
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Combining (8) and (9), we obtain:

F′(t) ≤ −δ2
0k1

ϕn−3(t)
ϕn−2(t)

< 0.

Integrating this inequality over [t2, t), we find:

−F(t2) ≤ −δ2
0k1 log

ϕn−2(t2)

ϕn−2(t)
→ ∞ as t→ ∞.

Then, we arrive at a contradiction, and so, k1 = 0.
Therefore, the proof is complete.

Theorem 2. Assume that ψ ∈ S+, ψ satisfies (4), and that (5) and (6) hold for some δ0 ∈ (0, 1).
If δi−1 ≤ δi < 1 for all i = 1, 2, ..., m− 1, then:

(B1,m) ψ/ϕδm
n−2 is decreasing;

(B2,m) lim
t→∞

ψ(t)/ϕδm
n−2(t) = 0,

where:

δj = δ0
λδj−1

1− δj−1
, j = 1, 2, ..., m,

and:
ϕn−2(g(t))

ϕn−2(t)
≥ λ, for all t ≥ t0, (10)

for some λ ≥ 1.

Proof. Assume that ψ ∈ S+ and satisfies (4) for t ≥ t1 for some t1 ∈ I0. Then, from
Theorem 1, we have that (B1)− (B5) hold. Using induction, we have from Theorem 1 that
(B1,0) and (B2,0) hold. Now, we assume that (B1,m−1) and (B2,m−1) hold. Integrating (1)
over [t2, t), we find:

a(t)ψ(n−1)(t) = a(t2)ψ
(n−1)(t2)−

∫ t

t2

q(η)ψ(g(η))dη. (11)

Using (B1,m−1), we have that:

ψ(g(t)) ≥ ϕ
δm−1
n−2 (g(t))

ψ(t)

ϕ
δm−1
n−2 (t)

.

Then, (11) becomes:

a(t)ψ(n−1)(t) ≤ a(t2)ψ
(n−1)(t2)−

∫ t

t2

q(η)ϕ
δm−1
n−2 (g(η))

ψ(η)

ϕ
δm−1
n−2 (η)

dη.

which, with the fact that ψ/ϕ
δm−1
n−2 is a decreasing function, gives:

a(t)ψ(n−1)(t) ≤ a(t2)ψ
(n−1)(t2)−

ψ(t)

ϕ
δm−1
n−2 (t)

∫ t

t2

q(η)ϕ
δm−1
n−2 (η)

ϕ
δm−1
n−2 (g(η))

ϕ
δm−1
n−2 (η)

dη.
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Hence, from (6) and (10), we obtain:

a(t)ψ(n−1)(t) ≤ a(t2)ψ
(n−1)(t2)− δ0λδm−1

ψ(t)

ϕ
δm−1
n−2 (t)

∫ t

t2

ϕn−3(η)

ϕ
2−δm−1
n−2 (η)

dη

= a(t2)ψ
(n−1)(t2)− δ0

λδm−1

1− δm−1

ψ(t)

ϕ
δm−1
n−2 (t)

(
1

ϕ
1−δm−1
n−2 (t)

− 1

ϕ
1−δm−1
n−2 (t2)

)

= a(t2)ψ
(n−1)(t2) + δm

ψ(t)

ϕ
δm−1
n−2 (t)

1

ϕ
1−δm−1
n−2 (t2)

− δm
ψ(t)

ϕn−2(t)
,

which, with the fact that limt→∞ ψ(t)/ϕ
δm−1
n−2 (t) = 0, gives:

a(t)ψ(n−1)(t) ≤ −δm
ψ(t)

ϕn−2(t)
(12)

Thus, from (B1) at κ = n− 3, we obtain:

ψ′(t)
ϕn−3(t)

≤ −δm
ψ(t)

ϕn−2(t)
.

Consequently,

d
dt

ψ(t)

ϕδm
n−2(t)

=
1

ϕδm+1
n−2 (t)

(
ϕn−2(t)ψ′(t) + δm ϕn−3(t)ψ(t)

)
≤ 0.

Proceeding as in the proof of (B5) in Theorem 1, we can prove that limt→∞ ψ(t)/
ϕδm

n−2(t) = 0.
Therefore, the proof is complete.

Theorem 3. Assume that ψ ∈ S+, ψ satisfies (4), and that (5) and (6) hold for some δ0 ∈ (0, 1).
If δi−1 ≤ δi < 1 for all i = 1, 2, ..., m− 1, then the DDE:

H′(t) +
1

1− δm
q(t)ϕn−2(t)H(g(t)) = 0, (13)

has a positive solution, where δj and λ are defined as in Theorem 2.

Proof. Assume that ψ ∈ S+ and satisfies (4) for t ≥ t1 for some t1 ∈ I0. Then, from
Theorem 2, we have that (B1,m) and (B2,m) hold.

Now, we define:
H(t) := a(t)ψ(n−1)(t)ϕn−2(t) + ψ(t). (14)

Then, from (B1) at κ = n− 2, H(t) > 0 for t ≥ t2, and:

H′(t) =
(

a(t)ψ(n−1)(t)
)′

ϕn−2(t)− a(t)ψ(n−1)(t)ϕn−3(t) + ψ′(t),

which, with (B1) at κ = n− 3, leads to:

H′(t) ≤
(

a(t)ψ(n−1)(t)
)′

ϕn−2(t) ≤ −q(t)ϕn−2(t)ψ(g(t)). (15)

As in the proof of Theorem 2, we arrive at (12). From (14) and (12), we obtain:

H(t) ≤ (1− δm)ψ(t).
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Thus, (15) becomes:

H′(t) +
1

1− δm
q(t)ϕn−2(t)H(g(t)) ≤ 0. (16)

Hence, H is a positive solution of the differential inequality (16). Using [22] (Theorem 1),
Equation (13) has also a positive solution, and this completes the proof.

3. Applications in Oscillation Theory

In the following, we use our results in the previous section to obtain the criteria of the
oscillation for the solutions of (1). A solution u of (1) is called nonoscillatory if it is eventually
positive or eventually negative; otherwise, it is called oscillatory.

Theorem 4. Assume that (5) and (6) hold for some δ0 ∈ (0, 1) and that δj, λ are defined as in
Theorem 2. If δi−1 ≤ δi < 1 for all i = 1, 2, ..., m− 1, and all solutions of the DDEs (13),

w′(t) + q(t)
ε1gn−1(t)

(n− 1)!(a(g(t)))
w(g(t)) = 0 (17)

and:

ω′(t) +
ε2

(n− 2)!a(t)

(∫ t

t0

q(η)gn−2(η)dη

)
ω(g(t)) = 0, (18)

are oscillatory, for some ε1, ε2, δm ∈ (0, 1), then every solution of (1) is oscillatory.

Proof. Assume the contrary, that ψ ∈ S+. Then, from [23], we have the following three
cases, eventually:

(i) ψ(j)(t) > 0 for j = 0, 1, n− 1 and ψ(n)(t) < 0;
(ii) ψ(j)(t) > 0 for j = 0, 1, n− 2 and ψ(n−1)(t) < 0;
(iii) (−1)jψ(j)(t) > 0 for j = 0, 1, ..., n− 1.

In view of [19] (Theorem 3) , the fact that the solutions of Equations (17) and (18)
oscillate rules out the cases (i) and (ii), respectively. Then, we have that (iii) hold. Using
Theorem 3, we obtain that Equation (13) has a positive solution, a contradiction. Therefore,
the proof is complete.

Corollary 1. Assume that (5) and (6) hold for some δ0 ∈ (0, 1) and that δj, λ are defined as in
Theorem 2. If δi−1 ≤ δi < 1 for all i = 1, 2, ..., m− 1,

lim inf
t→∞

∫ t

g(t)
q(η)ϕn−2(η)dη >

1− δm

e
, (19)

lim inf
t→∞

∫ t

g(t)

1
a(g(η))

q(η)gn−1(η)dη >
(n− 1)!

e
, (20)

and:

lim inf
t→∞

∫ t

g(t)

1
a(u)

(∫ u

t0

q(η)gn−2(η)dη

)
du >

(n− 2)!
e

, (21)

for some ε, δm ∈ (0, 1), then every solution of (1) is oscillatory.

Proof. In view of [24] (Corollary 2.1) , Conditions (19)–(21) imply the oscillation of the
solutions of (13), (17), and (18), respectively. Therefore, from Theorem 4, every solution of
(1) is oscillatory.

Example 1. Consider the DDE:

d
dt

(
et
(

dn−1

dtn−1 ψ

))
+ q0etψ(g0t) = 0, (22)
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where t ≥ 1, q0 ∈ (0, 1) and g0 ∈ (0, 1). It is easy to verify that ϕi(u) = e−t, i = 0, 1, 2, and then:∫ ∞

t0

1
a(u)

(∫ u

t0

q(η)dη

)
du = q0

∫ ∞

1

1
eu (e

u − e)du = ∞.

By choosing δ0 = q0, we find that (6) holds. Moreover, by a simple computation, we have that
(20) and (21) are satisfied. Now, using Corollary 1, every solution of (22) is oscillatory if (19) holds,
that is,

q0 log
1
g0

>
1− δm

e
. (23)

Remark 2. By reviewing the results in [18,20], we have that Equation (22) is oscillatory if
q0 > 1/4. It is easy to note that this condition essentially neglects the influence of delay argument
g(t). However, our criterion (23) takes into account the influence of g0. Furthermore, using (23),
every solution of the DDE:

d
dt

(
et
(

dn−1

dtn−1 ψ

))
+

et

5
ψ

(
t
5

)
= 0

is oscillatory, despite the failure of the results [18,20].

Remark 3. Consider the DDE:

d
dt

(
et
(

dn−1

dtn−1 ψ

))
+ 0.185etψ

(
t
5

)
= 0. (24)

Note that, the condition (23), with m = 0, reduces to 0.185 log 5 > 0.815
e , which is not

satisfied, and thus, the oscillatory behavior of (24) cannot be verified. However, using the iterative
nature of (23), we find that:

e(1−g0)t > e(1− g0)t ≥ e(1− g0) := λ, for all t ≥ 1,

and δ1 = 0.26208. Now, the condition (23) with m = 1 reduces to 0.185 log 5 > 0.73792
e , which is

satisfied. Hence, every solution of (24) is oscillatory.

Remark 4. By using comparison principles, Baculíková et al. [19] studied the oscillatory properties
of DDE (3). In order to rule out the existence of positive solutions in class (4), they assumed that
there is a ξ ∈ C1([t0, ∞)) with ξ(t) > t, ξ ′(t) ≥ 0 and ξn−2(σ(t)) < t such that the DDE:

z′(t) +
1

a(t)

(∫ t

t0

q(η)dη

)
Jn−2(g(t))(z(ξn−2(g(t)))) = 0

is oscillatory, where:

ξ1 = ξ, ξi+1 = ξi ◦ ξ, J1 = ξ − t and Ji+1(t) =
∫ ξ

t
Ji(η)dη,

for i = 1, 2, ..., n− 3. Since there is no general rule as to how to choose ξ and ξi satisfying the
imposed conditions, our results in this paper improve the results in [19], as our results do not
require unknown functions.

4. Conclusions

In this work, new results of studying the oscillatory behavior of a class of even-order
DDEs were presented. In the noncanonical case, using the principles of comparison, we
obtained new criteria that guarantee the oscillation of all solutions of the studied equation.
By comparing with previous results in the literature that used the same approach, we
found that our results are easy to apply and do not require unknown functions. Moreover,
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the new criteria have an iterative nature. An interesting problem is to extend our results to
even-order DDEs of the neutral type.
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