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Abstract: The multitemporal nonlinear Schrödinger PDE (with oblique derivative) was stated for
the first time in our research group as a universal amplitude equation which can be derived via a
multiple scaling analysis in order to describe slow modulations of the envelope of a spatially and
temporarily oscillating wave packet in space and multitime (an equation which governs the dynamics
of solitons through meta-materials). Now we exploit some hypotheses in order to find important
explicit families of exact solutions in all dimensions for the multitime nonlinear Schrödinger PDE
with a multitemporal directional derivative term. Using quite effective methods, we discovered
families of ODEs and PDEs whose solutions generate solutions of multitime nonlinear Schrödinger
PDE. Each new construction involves a relatively small amount of intermediate calculations.

Keywords: multitime nonlinear Schrödinger PDE; oblique derivative; exact solutions; first integrals

MSC: 35Q41; 35Q55

1. Introduction

In order to define the multitime nonlinear Schrödinger PDE (multitime NLSE),
we need: (i) Two intervals, I1 ⊆ R, I2 ⊆ [0, ∞), (ii) an open subset D ⊆ Rm, (iii) the function
f : I1 × I2 → R, and (iv) the vector field h = (hα) : I1 × D → Rm (for α ∈ {1, 2, . . . , m}).
All these together define the multitime NLSE [1]

ihα(x, t)
∂u
∂tα

+
∂2u
∂x2 + f

(
x, |u|2

)
u = 0. (1)

Remark 1. (a) If u is a solution of multitime NLSE (1), then also−u is a solution of the multitime
NLSE (1).

(b) If u is a solution of the multitime NLSE (1), then for any constant k ∈ R, the function
ϕ := eiku is a solution of the multitime NLSE (1).

(c) If u is a solution of the multitime NLSE (1), then for any pair of constants ρ, k ∈ R, ρ 6= 0,
the function ϕ := ρeiku is a solution of the multitime NLSE

ihα(x, t)
∂ϕ

∂tα
+

∂2 ϕ

∂x2 + f
(

x,
1
ρ2 |ϕ|

2
)

ϕ = 0.

(d) If we introduce the Hamiltonian action Ht(u) = 1
2

∫
(|ux|2− g

(
x, |u|2

)
) dx, then we can

write ihα(x, t) ∂u
∂tα = δHt

δu , where δ
δu = ∂

∂u − Dx
∂

∂ux
is the Euler–Lagrange operator, and f = ∂g

∂|u|2 .
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(e) The solutions of multitime Hartree PDE

ihα(x, t)
∂u
∂tα

+ ∆u = (±|x|n|u|2)u

and the solutions of multitime logarithmic Schrödinger PDE (superfluids, quantum gravity)

ihα(x, t)
∂u
∂tα

+ ∆u + u ln |u|2 = 0

can be studied by procedures similar to those used for the multitime NLSE.

The multitime NLSE has been indicated to manage the evolution of a multitime
wave packet in a weakly nonlinear and dispersive medium and has possible applica-
tions in diverse fields such as nonlinear optics, water waves and plasma physics. In this
paper, it is shown that the multitime NLSE solutions can be expressed analytically by
specific methods.

Section 2 analyzes solutions of a special multitime NLSE obtained by fixing a multi-
temporal direction h. Section 3 introduces and studies solutions of the multitime NLSE with
a specified f . Section 4 gives solutions of multitime NLSE whose argument is independent
of x. Section 4.1 refers to first integral theory in the context of multitime NLSE. Section 4.2
gives a theorem about the solutions of multitime NLSE with the argument independent
of x. Section 5 introduces the multitime NLSE in a Riemannian setting. Section 6 formulates
some conclusions that underline the authors’ thoughts.

The recent mathematical literature dedicated to the context insists on the following
topics: The papers [2–5] give properties of nonlinear Schrödinger equation; [6,7] underline
an exact solution of the single-time Schrödinger equation; [8] introduces and studies the
multitime Schrödinger equation; [1,9–12] introduce and describe the multitime solitons
as solutions of multitime PDEs. The paper [13] refers to solving the time-dependent
Schrödinger equation via Laplace transform on t. A single-time Schrödinger equation
in Riemannian setting is studied in the paper [14]. The paper [15] comes closest to our
style by offering “methods for constructing complex solutions of nonlinear PDEs using
simpler solutions”.

For possible numerical solutions we can use the techniques from our papers [16–19],
using either discretization with respect to space variable x, or in relation to multitime
variable t, or both.

2. Solutions of a Special Multitime NLSE

We will consider a particular form of the Equation (1), assuming that the vector field
h = (hα) does not depend on x, and the function f and the vector field h are of class C1.
Consequently, in this case the multitime NLSE has the form

ihα(t)
∂u
∂tα

+
∂2u
∂x2 + f

(
x, |u|2

)
u = 0. (2)

Definition 1. Let I0 ⊆ I1 be an interval and let D0 ⊆ D be an open subset. A function
u : I0 × D0 → C is called exact solution of the multitime NLSE if: (i) it is of class C1;
(ii) there exists its partial derivative of the second order with respect to x; (iii) we have |u(x, t)|2 ∈ I2
for any (x, t) = (x, t1, t2, . . . , tm) ∈ I0 × D0; (iv) and u verifies the relation (2) on I0 × D0
(generally, the solutions are not globally defined).

Note that from the relationship (2) it follows that the function
∂2u
∂x2 is continuous.

Suppose m ≥ 2. Let us give some methods to find solutions of multitime NLSE (2),
using the orbits of the vector field h.

The symmetric ODEs system

dt1

h1(t)
=

dt2

h2(t)
= . . . =

dtm

hm(t)
(3)
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describes the orbits of the vector field h = (hα). The first integrals of this ODEs system are
C1 solutions of the PDE

hα(t)
∂w
∂tα

(t) = 0. (4)

Remark 2. (i) Along each trajectory of the ODEs system d
dτ t(τ) = h(t(τ)), we have

hα ∂u
∂tα = dtα

dτ
∂u
∂tα = du

dτ .
(ii) Let us consider r ∈ N∗, and Ω ⊆ D, U ⊆ Rr as open subsets. Suppose that Ψ1, Ψ2,

. . . Ψr : Ω→ R are first integrals of ODEs system (3) such that
(
Ψ1(t), Ψ2(t), . . . , Ψr(t)

)
∈ U,

for all t ∈ Ω. Let E : U → R be an arbitrary C1 function. Then, the function Ψ : Ω → R,
Ψ(t) = E

(
Ψ1(t), Ψ2(t), . . . , Ψr(t)

)
is a first integral for the ODEs system (3).

Remark 3. Let us choose t0 ∈ D, for which there exists α0 ∈ {1, 2, . . . , m}, such that hα0(t0) 6= 0.
Suppose that F1, F2, . . ., Fm−1 : V → R are C1 functional independent (see the condi-

tion (40)) first integrals of the ODEs system (3), where V ⊆ D, t0 ∈ V, V is open and connected
such that for all t ∈ V, we have hα0(t) 6= 0. These first integrals determine the vector field
F(t) := (F1(t), F2(t), . . . , Fm−1(t)), t ∈ V.

Any other first integral of ODEs system (3), defined in a neighborhood of t0, has the form
Ψ(t) = E

(
F(t)

)
, for all t ∈ W0, where E : U → R is a C1 function, U ⊆ Rm−1, U open;

t0 ∈ W0 ⊆ V, W0 open; F(t) ∈ U, for all t ∈ W0 (see the Proposition 11 and the other results of
the Section 4.1).

Proposition 1. Let k ∈ R be a fixed constant and the subset D0 ⊆ D be open.
(a) Suppose that the C1 function v : D0 → C is a solution of the PDE

ihα(t)
∂v
∂tα

(t) = kv(t), (5)

such that |v(t)| = 1, for any t ∈ D0. If the function ϕ : I0 × D0 → C (I0 subinterval of I1) is a
solution of a multitime NLSE

ihα(t)
∂ϕ

∂tα
+

∂2 ϕ

∂x2 +
(
k + f (x, |ϕ|2

)
ϕ = 0, (6)

then the function u : I0 × D0 → C,

u(x, t) = ϕ(x, t)v(t), for all (x, t) ∈ I0 × D0,

is a solution of a multitime NLSE (2).

(b) Suppose that the C1 function ω0 : D0 → R verifies the PDE hα(t)
∂ω0

∂tα
(t) = 1, for any t ∈ D0

(the local description of functions of type ω0 is found in Proposition 10, selecting q = 1). Then
the function v : D0 → C, v(t) = e−ikω0(t), for all t ∈ D0, is a C1 solution of the PDE (5), with
|v(t)| = 1, for all t ∈ D0.

If there is an index β ∈ {1, 2, . . . , m} for which the component hβ depends only on the variable

tβ and hβ(tβ) 6= 0, for any tβ, and if H is a primitive of the function
1
hβ

, then we can select

ω0(t) := H(tβ).

Proof. (a) Replacing the function u in (2), we find

ihα(t)
∂ϕ

∂tα
(x, t) · v(t) + ϕ(x, t) · ihα(t)

∂v
∂tα

(t)

+
∂2 ϕ

∂x2 (x, t) · v(t) + f
(

x,
∣∣ϕ(x, t)

∣∣2) · ϕ(x, t) · v(t) = 0.

Since the function v(·) is a solution of PDE (5), it turns out that the above equality is
equivalent to
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ihα(t)
∂ϕ

∂tα
(x, t) · v(t) + kϕ(x, t) · v(t)

+
∂2 ϕ

∂x2 (x, t) · v(t) + f
(

x,
∣∣ϕ(x, t)

∣∣2) · ϕ(x, t) · v(t) = 0,
and this last equality is true since the function ϕ is a solution of the PDE (6).

(b) The statements are verified immediately by direct calculation.

Proposition 2. Let ϕ : I0 × D0 → C be a solution of multitime NLSE (2) (I0 subinterval of I1;
D0 ⊆ D, D0 open). Let Ψ : D0 → R be a C1 first integral of the ODEs system (3).

Then, the function u : I0 × D0 → C,

u(x, t) = ϕ(x, t)eiΨ(t), for all (x, t) ∈ I0 × D0,

is a solution of multitime NLSE (2).

Proof. We apply Proposition 1, for k = 0. If k = 0, then the PDE (6) becomes the PDE (2).
One verifies automatically that the function v(·) = eiΨ( · ) is a solution of the PDE (5),
for k = 0. More |v(t)| = 1, for all t ∈ D0.

Corollary 1. Suppose that the function f does not depend on x, i.e., there exists the C1 function
f̃ : I2 → R, such that f (x, p) = f̃ (p), for all x ∈ R, for all p ∈ I2 (we have I1 = R). Let p0 ∈ I2,
with f̃ (p0) = 0. Let Ψ : D0 → R be a C1 first integral of ODEs system (3) (D0 ⊆ D, D0 open).

Then, the function u : R× D0 → C, u(x, t) =
√

p0 · eiΨ(t), for all (x, t) ∈ R× D0, is a
solution of multitime NLSE (2).

Proof. The constant function ϕ(x, t) :=
√

q0 is a solution of PDE (2). The conclusion results
immediately by applying Proposition 2.

Proposition 3. Let k ∈ R be a constant and let v : D0 → C be a C1 solution of PDE (5), such that
|v(t)| = 1, for any t ∈ D0 (D0 ⊆ D, D0 open).

Let us consider ϕ(x, t, c), with c = (c1, . . . , cr) ∈ G, a solution of the PDE (6), which depends
on r parameters, where G is an open subset of Rr.

Hypotheses: the function ϕ : I0 × D0 × G → C is of class C1 with respect to all arguments;

there exists
∂2 ϕ

∂x2 and it is continuous with respect to all arguments; furthermore, for each c ∈ G, the

function ϕ( · , · , c) : I0 × D0 → C is a solution of the multitime NLSE (6) (I0 subinterval of I1).
Suppose that the C1 functions Ψ1, Ψ2, . . ., Ψr, Ψr+1 : D0 → R are first integrals of the ODEs

system (3), such that, for any t ∈ D0, to have
(
Ψ1(t), . . . , Ψr(t)

)
∈ G.

Then, the function u : I0 × D0 → C,

u(x, t) = ϕ
(

x, t, Ψ1(t), . . . , Ψr(t)
)
· v(t) · eiΨr+1(t), for all (x, t) ∈ I0 × D0, (7)

is a solution of the multitime NLSE (2).

Proof. Let ϕ̃(x, t) := ϕ
(
x, t, Ψ1(t), . . . , Ψr(t)

)
. We check that ϕ̃ is a solution of the PDE (6).

Denote Φ(t) =
(
Ψ1(t), . . . , Ψr(t)

)
. One substitutes ϕ̃ in (6) and one obtains

ihα(t)
r

∑
j=1

∂ϕ

∂cj

(
x, t, Φ(t)

)
·

∂Ψj

∂tα
(t) + ihα(t)

∂ϕ

∂tα

(
x, t, Φ(t)

)
+

∂2 ϕ

∂x2

(
x, t, Φ(t)

)
+
(

k + f
(

x,
∣∣ϕ(x, t, Φ(t)

)∣∣2)) · ϕ(x, t, Φ(t)
)
= 0,

equivalent to

i
r

∑
j=1

∂ϕ

∂cj

(
x, t, Φ(t)

)
· hα(t)

∂Ψj

∂tα
(t) + ihα(t)

∂ϕ

∂tα

(
x, t, Φ(t)

)
+

∂2 ϕ

∂x2

(
x, t, Φ(t)

)
+
(

k + f
(

x,
∣∣ϕ(x, t, Φ(t)

)∣∣2)) · ϕ(x, t, Φ(t)
)
= 0,
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which is true because functions Ψj are first integrals, and ϕ( · , · , c) verifies the relation (6)
for any c ∈ G, so also for c = Φ(t).

In this way we showed that ϕ̃ is a solution of PDE (6). According to Proposition 1,
we find that ϕ̃(x, t) · v(t) is a solution of PDE (2). Due to Proposition 2, it follows that
ϕ̃(x, t) · v(t) · eiΨr+1(t) is a solution of the PDE (2).

Proposition 4. Suppose that G is an open subset of Rr. Let us consider ϕ(x, t, c), with
c = (c1, . . . , cr) ∈ G, as a solution of the PDE (2) which depends on r parameters.

Hypotheses: the function ϕ : I0×D0×G → C is of class C1 with respect to whole arguments;

there exists
∂2 ϕ

∂x2 , continuous in all arguments; more, for each c ∈ G, the function ϕ( · , · , c) :
I0 × D0 → C is a solution of multitime NLSE (2) (D0 ⊆ D, D0 open; I0 subinterval of I1).

Suppose Ψ1, Ψ2, . . ., Ψr+1 : D0 → R are C1 first integrals of the ODEs system (3), such that,
for any (x, t) ∈ I0 × D0, to have

(
Ψ1(t), . . . , Ψr(t)

)
∈ G.

Then, the function u : I0 × D0 → C,

u(x, t) = ϕ
(
x, t, Ψ1(t), . . . , Ψr(t)

)
· eiΨr+1(t), for all (x, t) ∈ I0 × D0,

is a solution of multitime NLSE (2).

Proof. One applies Proposition 3 for k = 0 and v(t) = 1.

Now let us use an original ODE that incorporates the De Boer-Ludford ODE in plasma
physics and the Stuart-Landau ODE in hydrodynamic stability.

Proposition 5. Let us consider the second order differential equation

y′′ +
(
k + f

(
x, y2))y = 0, (8)

where k is a real fixed number (y real solution).
Let ξ( · , c1, . . . , cr) : I0 → R be a solution of the ODE (8), which depends on r parameters,

with (c1, . . . , cr) ∈ G, where G is an open subset of Rr and I0 is a subinterval of I1. Suppose that
the function ξ : I0 × G → R is of class C1 with respect to all arguments.

Assume that the C1 function v : D0 → C is solution of PDE (5), such that, |v(t)| = 1, for
any t ∈ D0 (D0 ⊆ D, D0 open).

If the C1 functions Ψ1, Ψ2, . . ., Ψr, Ψr+1 : D0 → R are first integrals for ODEs system (3),
such that, for any t ∈ D0, to have

(
Ψ1(t), . . . , Ψr(t)

)
∈ G, then, the function u : I0 × D0 → C,

u(x, t) = ξ
(
x, Ψ1(t), . . . , Ψr(t)

)
· v(t) · eiΨr+1(t), for all (x, t) ∈ I0 × D0,

is a solution of multitime NLSE (2).

Proof. Let ϕ : I0 × D0 × G → C, ϕ(x, t, c) := ξ(x, c), for all (x, t, c) ∈ I0 × D0 × G. One
observes immediately that, for all c = (c1, . . . , cr) ∈ G, the function ϕ( · , · , c) is a solution
of the PDE (6). One applies Proposition 3 and we obtain the conclusion.

Applying Proposition 5, for k = 0, v = 1, we find the next result.

Proposition 6. Let us consider the second order ODE

y′′ + f
(
x, y2)y = 0. (9)

Impose ξ( · , c1, . . . , cr) as a solution of the Equation (9), which depends on r parameters,
ξ( · , c1, . . . , cr) : I0 → R; with (c1, . . . , cr) ∈ G; where G is an open subset of Rr and I0 is
a subinterval of I1. Suppose that the function ξ : I0 × G → R is of class C1 with respect to
all arguments.



Mathematics 2021, 9, 1995 6 of 23

If the C1 functions Ψ1, Ψ2, . . ., Ψr, Ψr+1 : D0 → R are first integrals for the ODEs system (3),
such that, for any t ∈ D0, to have

(
Ψ1(t), . . . , Ψr(t)

)
∈ G, then the function u : I0 × D0 → C,

u(x, t) = ξ
(
x, Ψ1(t), . . . , Ψr(t)

)
· eiΨr+1(t), for all (x, t) ∈ I0 × D0,

is a solution of multitime NLSE (2).

According to Remark 3, each of the first integrals Ψj, which appears in Propositions 2–6,
has locally the form Ψj(t) = Ej

(
F(t)

)
, with F(t) = (F1(t), F2(t), . . . , Fm−1(t)), where F1, F2,

. . ., Fm−1 are functional independent first integrals for the ODEs system (3).

Remark 4. Suppose that I1 is an open interval; let I2 = (µ, ∞), with µ ≥ 0; let I3 = (
√

µ, ∞).
For k ∈ R, λ ∈ I1, c1 ∈ I3, c2 ∈ R, let σ( · , λ; c1, c2; k) be the maximal solution y( · ) of

Equation (8) which verifies y(λ) = c1 and y′(λ) = c2. The domain of definition of this solution is
an open interval I(λ; c1, c2; k) ⊆ I1, with λ ∈ I(λ; c1, c2; k); the codomain is I3.

The set M :=
{
(x, λ; c1, c2; k)

∣∣ λ ∈ I1, c1 ∈ I3, c2 ∈ R, k ∈ R, x ∈ I(λ; c1, c2; k)
}

is

open. The function σ : M → I3 is of class C1; the function
∂σ

∂x
: M → I3 is of class C1. We have:

σ(λ, λ; c1, c2; k) = c1 and
∂σ

∂x
(λ, λ; c1, c2; k) = c2.

Let (x0, t0) ∈ I1 × D. Suppose there exists α0 ∈ {1, 2, . . . , m}, such that hα0(t0) 6= 0. Let
F1, F2, . . ., Fm−1 : V → R be C1 first integrals for the ODEs system (3), with V ⊆ D, t0 ∈ V, V
open, such that for all t ∈ V, the condition (40) is met.

We introduce the vector field F(t) = (F1(t), F2(t), . . . , Fm−1(t)), t ∈ V.
Let c1,0 ∈ I3, c2,0 ∈ R, k0 ∈ R. Since M is an open set, it turns out that there exists open

intervals I0, L0, L1, L2, L3, such that x0 ∈ I0, x0 ∈ L0, c1,0 ∈ L1, c2,0 ∈ L2, k0 ∈ L3, and
I0 × L0 × L1 × L2 × L3 ⊆ M.

We need a C1 function v : D0 ×R→ C, (t0 ∈ D0 ⊆ D, D0 open), with the properties:
– for all k ∈ R, the function v( · ; k) : D0 → C is a solution of the PDE (5);
– for all k ∈ R, for all t ∈ D0, we have |v(t; k)| = 1 (for example, v can have the form
in Proposition 1, b), i.e., v(t; k) = e−ikω0(t), with ω0 : D0 → R, of class C1, which verifies

hα(t)
∂ω0

∂tα
(t) = 1).

We add the C1 functions E1 : U0 → L1, E2 : U0 → L2, E3 : U0 → R, E4 : U0 → L3
(U0 ⊆ Rm−1, U0 open); let W0 ⊆ D0 ∩ V, W0 an open neighborhood of t0, such that, for any
t ∈W0 to have F(t) ∈ U0.

We use the auxiliary function ξ : I0× L1× L2× L3 → I3, ξ(x, c1, c2; k) = σ(x, x0; c1, c2; k),
for all (x, c1, c2; k) ∈ I0 × L1 × L2 × L3.

For k ∈ L3 fixed, the function ξ( · , c1, c2; k) is a solution of PDE (8) which depends on
two parameters (c1, c2) ∈ L1 × L2 and has the properties of hypothesis of Proposition 5. From
Proposition 5 it follows that the function

ξ
(

x, E1(F(t)), E2(F(t)); k
)
· v(t; k) · eiE3(F(t)) (with (x, t) ∈ I0 ×W0)

is a solution of PDE (2); but this solution also depends on one parameter, namely by k. From
Proposition 4 (with r = 1, choosing Ψr+1 = 0) it follows that the function u : I0 ×W0 → C,
defined for all (x, t) ∈ I0 ×W0 by

u(x, t) = ξ
(
x, E1(F(t)), E2(F(t)); E4(F(t))

)
· v
(
t; E4(F(t)

)
· eiE3(F(t))

is a solution of multitime NLSE (2).

Lemma 1. Suppose that the function f does not depend on x, i.e., there exists a C1 function
f̃ : I2 → R, such that f (x, p) = f̃ (p), for all x ∈ R, for all p ∈ I2 (we have I1 = R).
Let c1, c2 ∈ R, such that c2

1 ∈ I2; let k := c2
2 − f̃ (c2

1).
(a) The function y : R→ C, y(x) = c1eic2x, for all x ∈ R, is a solution of the ODE

y′′ +
(
k + f̃ (|y|2)

)
y = 0. (10)
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(b) If c2
2 = f̃ (c2

1), then the function u : R× D → C, u(x, t) = c1eic2x, for all x ∈ R, for all
t ∈ D, is a solution of multitime NLSE (1).

Proof. (a) Replacing y in the equality (10) one obtains−c2
2 · c1eic2x +

(
k+ f̃ (c2

1)
)
· c1eic2x = 0,

which is true because k = c2
2 − f̃ (c2

1).
(b) A similar calculation is made with the one from the point a), with k = 0.

Proposition 7. Let us consider the multitime NLSE (2); suppose there exists the C1 function
f̃ : I2 → R, such that f (x, p) = f̃ (p), for all x ∈ R, for all p ∈ I2 (in this case we have I1 = R).
Let I3 ⊆ I2, I3 interval, such that, for all c1 ∈ I3 to have c2

1 ∈ I2.
Let D0 ⊆ D, D0 open; let the C1 function v : D0 ×R→ C, with the properties:

– for each k ∈ R, the function v( · ; k) : D0 → C is a solution of the Equation (5);

– for all t ∈ D0, for all k ∈ R, we have |v(t; k)| = 1
(

for example v might have the form indicated

in Proposition 1, (b), i.e., v(t; k) = e−ikω0(t), with ω0 : D0 → R, of class C1, which verifies

hα(t)
∂ω0

∂tα
(t) = 1

)
.

Suppose the C1 functions Ψ1 : D0 → I3 and Ψ2, Ψ3 : D0 → R are first integrals for the
ODEs system (3).

Then, the function u : R× D0 → C defined for all (x, t) ∈ R× D0 by the formula

u(x, t) = Ψ1(t)eixΨ2(t)+iΨ3(t)v
(

t;
(
Ψ2(t)

)2 − f̃
(
(Ψ1(t))2)),

is a solution of the multitime NLSE (2).

Proof. Let w(x, t; c1, c2) := c1eic2x, for all x ∈ R, t ∈ D0, c1 ∈ I3, c2 ∈ R.
From Lemma 1, (a), it follows that the function w( · , · ; c1, c2) is a solution of the

Equation (6), with k = c2
2 − f̃ (c2

1).
Let ϕ(x, t; c1, c2) := w(x, t; c1, c2)v(t; c2

2 − f̃ (c2
1)), for all x ∈ R, t ∈ D0, c1 ∈ I3, c2 ∈ R.

From Proposition 1 it follows that ϕ( · , · ; c1, c2) is a solution of multitime NLSE (2); the
function ϕ( · , · ; c1, c2) depends obviously on two parameters. The function ϕ( · , · ; c1, c2)
satisfies the conditions in Proposition 4, with r = 2. One applies Proposition 4 and the
conclusion immediately follows.

Lemma 2. Let k ∈ R be a constant and let g1 : I0 → R \ {0} (with I0 subinterval of I1) be a
solution of the ODE

g′′1 −
k2

g3
1
+
(
k + f (x, g2

1)
)

g1 = 0. (11)

Let g2 : I0 → R be a primitive of the function
1
g2

1
. Then, the function

y : I0 → C, y(x) = g1(x)eikg2(x), for all x ∈ I0,
is a solution of the equation

y′′ +
(
k + f (x, |y|2)

)
y = 0. (12)

Proof. y′(x) = g′1(x)eikg2(x) + ikg1(x)g′2(x)eikg2(x) = g′1(x)eikg2(x) +
ik

g1(x)
eikg2(x);

y′′(x) = g′′1 (x)eikg2(x) + ikg′1(x)g′2(x)eikg2(x) −
ikg′1(x)(
g1(x)

)2 eikg2(x) − k2g′2(x)
g1(x)

eikg2(x)

= g′′1 (x)eikg2(x) − k2(
g1(x)

)3 eikg2(x);

y′′(x) +
(
k + f (x, |y(x)|2)

)
y(x)

= g′′1 (x)eikg2(x) − k2(
g1(x)

)3 eikg2(x) +
(
k + f

(
x, (g1(x))2))g1(x)eikg2(x) = 0.
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Proposition 8. Let k ∈ R be a constant; let g1 : I0 → R \ {0} be a solution of the Equation (11);

let g2 : I0 → R be a primitive of the function
1
g2

1
(I0 subinterval of I1). Suppose the C1 function

v : D0 → C is a solution of the Equation (5), such that |v(t)| = 1, for all t ∈ D0 (D0 ⊆ D,
D0 open).

Then, the function u : I0 × D0 → C,

u(x, t) = g1(x)eikg2(x)v(t), for all (x, t) ∈ I0 × D0,

is a solution of multitime NLSE (2).

Proof. According to Lemma 2, the function y(x) = g1(x)eikg2(x) is a solution of equa-
tion (12) which is equivalent to the fact that the function ϕ(x, t) := g1(x)eikg2(x) is a
solution of the Equation (6). From Proposition 1 it follows that u is a solution of multitime
NLSE (2).

The function g1 depends on two constants and the parameter k; the same for the
function g2. The function v depends also on the parameter k. Using Propositions 4 and 8, a
solution can be obtained for the multitime NLSE (2) analogous to Remark 4.

3. Multitime NLSE with a Specified f

Let c ∈ R be a fixed constant. Let us consider the multitime NLSE (2), with
f : R×R→ R, f (x, p) = c− 2p; i.e.,

ihα(t)
∂u
∂tα

+
∂2u
∂x2 + (c− 2|u|2)u = 0. (13)

We select t0 ∈ D, for which it exists α0 ∈ {1, 2, . . . , m}, such that hα0(t0) 6= 0, and the
C1 functions F1, F2, . . ., Fm−1 : V → R, as first integrals for ODEs system (3), with V ⊆ D,
t0 ∈ V, V open, such that for all t ∈ V, the condition (40) is satisfied. We introduce the
vector field F(t) = (F1(t), F2(t), . . . , Fm−1(t)), t ∈ V.

We need the C1 function ω0 : D0 → R, which for any t ∈ D0 verifies hα(t)
∂ω0

∂tα
(t) = 1

(D0 open neighborhood of t0); ω0 can be selected as in Proposition 10, (b) (with q = 1).
If the function hα0 depends only on the variable tα0 and hα0(tα0) 6= 0, for all tα0 , then

we can select ω0(t) := H(tα0), where H is a primitive of the function
1

hα0
.

Let us consider the C1 functions E1, E2, E3 : U → R (with U ⊆ Rm−1, U open).
Suppose that for any t ∈ D0 ∩V we have F(t) ∈ U, possibly replacing the domain D0 ∩V
with another smaller open neighborhood of t0. It eventually shrinks D0 ∩V, such that the
different solutions obtained in this Section, in which appear E1(F(t)), E2(F(t)) or E3(F(t))
to be well defined (to make sense).

Concrete case: hα(t) = bα constant functions, with bm 6= 0. The PDE (13) becomes

ibα ∂u
∂tα

+
∂2u
∂x2 + (c− 2|u|2)u = 0. (14)

In this case we choose ω0(t) =
tm

bm . It is easy to see that the m − 1 functionally
independent first integrals for the ODEs system (3) can be chosen in this way

Fγ(t) = bmtγ − bγtm, for all t ∈ Rm, for all γ ∈ {1, 2, . . . , m− 1}.

The orbits of the parallel vector field b = (b1, ..., bm) are straight lines.

Lemma 3. (a) Let a ∈ R be a fixed constant. We consider the ODE

y′′ = 2(y2 − a2)y. (15)
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The functions ξ1(x, c1) = ± a
1− c1e2ax

1 + c1e2ax , ξ2(x, c1) =
±a
√

2
sin
(
a
√

2 x + c1
) (16)

are two solutions of the Equation (15) which depend on the parameter c1.
(b) Let a ∈ R be a fixed constant. We consider the ODE

y′′ = 2(y2 + a2)y. (17)

The functions ω1(x, c1) = ±a tan(ax + c1), ω2(x, c1) =
±a
√

2
sinh

(
a
√

2 x + c1
) (18)

are two solutions of the Equation (17) which depend on one parameter.

Let a ∈ R be an arbitrary constant. We choose k = 2a2 − c. The Equation (8) becomes
the Equation (15). For this equation we found two solutions of it that depend on one
parameter, namely the functions defined by the formulas (16).

Applying Proposition 5, for v(t) := e−ikω0(t), we deduce that the functions

ua(x, t) = ± a
1− E1(F(t))e2ax

1 + E1(F(t))e2ax · e
iE2(F(t))+i(c−2a2)ω0(t),

ũa(x, t) = ± a
√

2
sin
(
a
√

2 x + E1(F(t))
) · eiE2(F(t))+i(c−2a2)ω0(t)

are solutions of the Equation (13).
Now we select k = −2a2 − c. The Equation (8) becomes (17). Two solutions of it that

depend on one parameter are given by relationships (18).
So, two more families of solutions of Equation (13) are obtained:
wa(x, t) = ±a tan(ax + E1(F(t))) · eiE2(F(t))+i(c+2a2)ω0(t),

w̃a(x, t) = ± a
√

2
sinh

(
a
√

2 x + E1(F(t))
) · eiE2(F(t))+i(c+2a2)ω0(t).

We choose k = −c. The Equation (8) becomes y′′ = 2y3. It is easy to see that a solution

that depends on one parameter is: ξ(x, c1) = ±
1

x + c1
.

Analogously, the functions

θ(x, t) = ± 1
x + E1(F(t))

· eiE2(F(t))+ic ω0(t) (19)

are solutions of the Equation (13).
The functions ua, ũa, wa, w̃a, are solutions of the Equation (13) which depend on the

parameter a. According to Proposition 4, it follows that if we replace a by E3(F(·)), we
obtain again solutions of the Equation (13).

For the functions ũa, w̃a, is more convenient to take a
√

2 as parameter; hence we will
replace a

√
2 with E3(F(·)).

Consequently, we obtain the following solutions of the Equation (13)

u(x, t) = ±E3(F(t))
1− E1(F(t))e2xE3(F(t))

1 + E1(F(t))e2xE3(F(t))
· eiE2(F(t))+i(c−2(E3(F(t)))2)ω0(t),

ũ(x, t) = ± E3(F(t))
sin
(

xE3(F(t)) + E1(F(t))
) · eiE2(F(t))+i(c−(E3(F(t)))2)ω0(t),

w(x, t) = ±E3(F(t)) tan(xE3(F(t)) + E1(F(t))) · eiE2(F(t))+i(c+2(E3(F(t)))2)ω0(t),

w̃(x, t) = ± E3(F(t))
sinh

(
xE3(F(t)) + E1(F(t))

) · eiE2(F(t))+i(c+(E3(F(t)))2)ω0(t),

to which the solution θ(x, t) defined by the Formula (19) is added.
It is observed that we can give up writing the sign “±" in the above formulas, because

replacing function E2(F(t)) with function π + E2(F(t)) we get the sign change (eiπ = −1).
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Using Proposition 7, with v(t; k) := e−ikω0(t) (and f̃ (p) = c − 2p), the following
solutions of the Equation (13)

η(x, t) = E1(F(t))exp[ixE2(F(t)) + iE3(F(t)) + i
(
c− 2(E1(F(t)))2 − (E2(F(t)))2)ω0(t)]

are also obtained.

Lemma 4. Let a, B be real constants, such that a + B > 0 and a 6= 0. We consider the ODE

g′′1 −
(a + B)a2

g3
1

+
(
3a + B− 2g2

1
)

g1 = 0. (20)

(i) If B < 0, then the functions

g1,1(x) = ±
√

a + B− B tanh2 (x√−B + c1
)

(21)

and
g1,2(x) = ±

√
a + B− B coth2 (x√−B + c1

)
(22)

are solutions of the ODE (20). The functions g2,1, respectively g2,2 are primitives of functions
1

g2
1,1

,

respectively
1

g2
1,2

:

g2,1(x) =
x
a
+

1
a
√

a + B
· arctan

√
−B tanh

(
x
√
−B + c1

)
√

a + B
(23)

g2,2(x) =
x
a
+

1
a
√

a + B
· arctan

√
−B coth

(
x
√
−B + c1

)
√

a + B
. (24)

(ii) If B > 0, then the function

g1,3(x) = ±
√

a + B + B tan2
(
x
√

B + c1
)

(25)

is a solution of the Equation (20). We obtain the primitive

g2,3(x) :=
∫ dx

g1,3(x)2 =
x
a
− 1

a
√

a + B
· arctan

√
B tan

(
x
√

B + c1
)

√
a + B

. (26)

(iii) If B = 0, then the function

g1,4(x) = ±
√

a +
1

(x + c1)2 (27)

is a solution of the Equation (20). We have

g2,4(x) :=
∫ dx

g1,4(x)2 =
x
a
−

arctan
(√

a(x + c1)
)

a
√

a
. (28)

The functions g1,1, g2,1 are well defined for any x ∈ R. The functions g1,2, g2,2 are well defined

for any x 6= −c1√
−B

, x ∈ R. The functions g1,3, g2,3 are well defined for any x 6=
−c1 +

π
2 + pπ√
B

,

with p ∈ Z (x ∈ R). The functions g1,4, g2,4 are well defined for any x 6= −c1, x ∈ R.
The functions g1,1, g1,2, g1,3, g1,4 do not vanish anywhere.

Proof. The functions g1,1 and g1,2 are well defined since a + B > 0 and B < 0, hence the
expressions that appear under radical in the Formulas (21) and (22) are strictly positive;
one remarks immediately that also g2,1, g2,2 are well defined (a 6= 0, a + B > 0, B < 0).
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The function g1,3 is well defined since in this case a + B > 0 and B > 0, hence the
expression that appears below the radical in the Formula (25) is strictly positive; it is
immediately noticeable that the function g2,3 is well defined. In case (iii), we have B = 0
and a + B > 0, i.e., a > 0; we deduce that the functions g1,4 and g2,4 are well defined.

From the above it is immediately noticeable that the functions g1,1, g1,2, g1,3, g1,4 do
not vanish anywhere.

We shall show that g1,1, g1,2, g1,3, g1,4 are solutions of the equation

(g′1)
2 = g4

1 − (3a + B)g2
1 + 3a2 + 2aB− a3 + a2B

g2
1

, (29)

which is equivalent to (since g1 6= 0)
(g1g′1)

2 = g6
1 − (3a + B)g4

1 + (3a2 + 2aB)g2
1 − (a3 + a2B) or

(g1g′1)
2 = (g2

1 − a)2(g2
1 − a− B), (30)

so it is enough to show that g1,1, g1,2, g1,3, g1,4 are solutions of the Equation (30).
Case (i). Denote by T(x) one of the functions:

T(x) := tanh
(

x
√
−B + c1

)
or T(x) := coth

(
x
√
−B + c1

)
.

In both situations we have T′ =
√
−B(1− T2). The relation g2

1 = a + B− B · T2 is also true;
taking the derivative we obtain

2g1g′1 = −2B
√
−B · T(1− T2); (g1g′1)

2 = −B3T2(1− T2)2.

From g2
1 = a + B− B · T2, we deduce

g2
1 − a = B(1− T2) and g2

1 − a− B = −B · T2,

hence (g2
1 − a)2(g2

1 − a − B) = B2(1 − T2)2(−B) · T2 = (g1g′1)
2. The relationship (30)

was obtained.
Case (ii). Denote T(x) := tan

(
x
√

B + c1
)
. We have T′ =

√
B(1 + T2).

The relation g2
1 = a + B + B · T2 is also true; taking the derivative we obtain

2g1g′1 = 2B
√

B · T(1 + T2); (g1g′1)
2 = B3T2(1 + T2)2.

From g2
1 = a + B + B · T2, we find

g2
1 − a = B(1 + T2) and g2

1 − a− B = B · T2,

hence it follows: (g2
1 − a)2(g2

1 − a− B) = B2(1 + T2)2B · T2 = (g1g′1)
2.

The relationship (30) was obtained.

Case (iii). g2
1(x) = a +

1
(x + c1)2 ; 2g1(x)g′1(x) = − 2

(x + c1)3 ;(
g1(x)g′1(x)

)2
=

1
(x + c1)6 =

(
g2

1(x)− a
)3, so even in this case the relationship (30)

is true.
We showed that g1,1, g1,2, g1,3, g1,4 are solutions of the Equation (30); as we have seen,

the relationship (30) is equivalently to the relation (29).
Using the derivative, from the relation (29) we obtain

2g′1g′′1 = 4g3
1g′1 − 2(3a + B)g1g′1 + 2

a3 + a2B
g3

1
· g′1. (31)

In case (i), from the equality g1g′1 = −B
√
−B · T(1− T2),

with T(x) = tanh
(

x
√
−B + c1

)
or T(x) = coth

(
x
√
−B + c1

)
, it follows that g′1 vanishes

at a finite number of points.
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In case (ii), from equality g1g′1 = B
√

B · T(1 + T2),
with T(x) = tan

(
x
√

B + c1
)
, it follows that zeros of g′1 are isolated points.

In case (iii), from the equality g1(x)g′1(x) = − 1
(x + c1)3 , it follows that g′1(x) 6= 0.

Divide the relation (31) by 2g′1(x), there where g′1(x) 6= 0; one obtains

g′′1 = 2g3
1 − (3a + B)g1 +

a3 + a2B
g3

1
. (32)

It follows from the above that the relationship (32) is fulfilled everywhere, except for
some isolated points (possibly). From continuity, it follows that the relation (32) is true
throughout (on the definition domain of g1).

The equality (32) is obviously equivalent to equality (20).

The relations g′2,1(x) =
1

g1,1(x)2 , g′2,2(x) =
1

g1,2(x)2 , g′2,3(x) =
1

g1,3(x)2 and

g′2,4(x) =
1

g1,4(x)2 are verified without difficulty by direct calculation.

Furthermore, we shall determine some solutions of the Equation (13) using Proposition 8.
We’ll take v(t; k) := e−ikω0(t).

For each a ∈ R, we consider the second order algebraic equation (with the unknown B)

(3a + B− c)2 = (a + B)a2, (33)

equivalent to
B2 − (a2 − 6a + 2c)B + (3a− c)2 − a3 = 0. (34)

There exists an interval I such that 0 /∈ I,
c
2

/∈ I and, for all a ∈ I, to have

(3a− c)2 − a3 < 0.
Since lim

a→∞

(
(3a− c)2 − a3) = −∞, it follows that there exists a0 ≥ max

{
0,

c
2

}
, such

that, for all a ∈ I, to have (3a− c)2 − a3 < 0. The interval can be taken I = (a0, ∞).
Further we consider a ∈ I.
The product of the roots of the Equation (34) is (3a− c)2 − a3 < 0. It follows that the

roots B1(a), B2(a) of the Equation (34), are real, distinct and have different signs. These are

B1(a) =
a2 − 6a + 2c−

√
D(a)

2
< 0, for all a ∈ I; (35)

B2(a) =
a2 − 6a + 2c +

√
D(a)

2
> 0, for all a ∈ I, (36)

where D(a) = (a2 − 6a + 2c)2 − 4(3a− c)2 + 4a3 > 0, a ∈ I.
Let us observe that if B is one of the roots of the Equation (34), then a + B 6= 0.

If a + B = 0, then from the equality (33) it follows 3a + B− c = 0, i.e., a =
c
2

, what you
cannot for a ∈ I.

Hence a + B 6= 0. From the relation (33), we obtain a + B > 0.
We proved that for any a ∈ I, the relations a + B1(a) > 0 and a + B2(a) > 0 are true.
Let a ∈ I. We select k = 3a + B1(a)− c. From equality (33) it follows

k2 = (a + B1(a))a2. We notice that the Equation (11) becomes in this case the Equation (20),
with B = B1(a) < 0. Assumptions of Lemma 4, (i), are satisfied.

Let g1,1(x, c1; a) respectively g2,1(x, c1; a), the functions defined by the Formula (21),
respectively (23), with B = B1(a).

Let g1,2(x, c1; a) respectively g2,2(x, c1; a), the functions defined by Formula (22), re-
spectively (24), with B = B1(a).
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According to Lemma 4, the functions g1,1(·, c1; a) and g1,2(·, c1; a) are solutions of the

Equation (11) and g′2,1 =
1

g2
1,1

, g′2,2(x) =
1

g2
1,2

. Let us consider the functions

ϕ1,1(x, t, c1; a) := g1,1(x, c1; a)ei(3a+B1(a)−c)g2,1(x,c1;a)v(t; 3a + B1(a)− c),

ϕ1,2(x, t, c1; a) := g1,2(x, c1; a)ei(3a+B1(a)−c)g2,2(x,c1;a)v(t; 3a + B1(a)− c).

From Proposition 8 it follows that the functions ϕ1,1, and ϕ1,2 are solutions of the
Equation (13), which depend on c1 and a.

From Proposition 4, it follows that the functions

u1,1(x, t) := g1,1(x, E1(F(t)); E2(F(t)))
· exp[i(3E2(F(t)) + B1(E2(F(t)))− c) · (g2,1(x, E1(F(t)); E2(F(t)))−ω0(t)) + iE3(F(t))],

u1,2(x, t) := g1,2(x, E1(F(t)); E2(F(t)))
· exp[i(3E2(F(t)) + B1(E2(F(t)))− c) · (g2,2(x, E1(F(t)); E2(F(t)))−ω0(t)) + iE3(F(t))]

are solutions of the Equation (13); the expression E2(F(t)) must verify the condition
E2(F(t)) ∈ I.

Now, for a ∈ I, we choose k = 3a + B2(a) − c. From the equality (33) it follows
k2 = (a+ B2(a))a2. We remark that the equation (11) becomes in this case the Equation (20),
with B = B2(a) > 0. Assumptions of Lemma 4, ii), are satisfied.

Let g1,3(x, c1; a) respectively g2,3(x, c1; a), the functions defined by the Formula (25),
respectively (26), with B = B2(a).

According to Lemma 4, the function g1,3(·, c1; a) is a solution of the Equation (11) and

g′2,3 =
1

g2
1,3

. Let us consider the function

ϕ2,1(x, t, c1; a) := g1,3(x, c1; a)ei(3a+B2(a)−c)g2,3(x,c1;a)v(t; 3a + B2(a)− c).

From Proposition 8 it follows that the function ϕ2,1(· , · , c1; a) is a solution of the
Equation (13), which depends on c1 and a. Proposition 4 implies that the function

u2,1(x, t) := g1,3(x, E1(F(t)); E2(F(t)))

· exp[i(3E2(F(t)) + B2(E2(F(t)))− c) · (g2,3(x, E1(F(t)); E2(F(t)))−ω0(t)) + iE3(F(t))]

is a solution of the Equation (13); the composition E2(F(t)) must verify the condition
E2(F(t)) ∈ I.

For the last example we do not ask anymore (necessarily) a ∈ I.
Let a be a real root of the equation a3 = (3a− c)2. There is at least one such solution

for that the equation considered has degree three. From a3 = (3a− c)2 it follows a ≥ 0 and
if a = 0, then c = 0. Hence for c 6= 0, it follows a > 0. For c = 0, we shall take the root
a = 9 > 0.

We select k = 3a− c. From the equality a3 = (3a− c)2 we find k2 = a3. One remark
that the Equation (11) becomes in this case the Equation (20), with B = 0. Assumptions of
Lemma 4, (iii), are satisfied.

Let g1,4(x, c1) respectively g2,4(x, c1) be the functions defined by the Formula (27),
respectively (28).

According to Lemma 4, the function g1,4(·, c1) is a solution of the Equation (11) and

g′2,4 =
1

g2
1,4

. From Proposition 8 it follows that the function ϕ3,1(· , · , c1) given by

ϕ3,1(x, t, c1) := g1,4(x, c1)ei(3a−c)g2,4(x,c1)v(t; 3a− c).
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is a solution of the Equation (13), which depends on c1. Proposition 4 implies that
the function

u3,1(x, t) := g1,4(x, E1(F(t)))ei(3a−c)·(g2,4(x,E1(F(t)))−ω0(t))+iE2(F(t))

is a solution of the Equation (13); where a is a real root of the equation a3 = (3a − c)2

if c 6= 0; and if c = 0, then a = 9.

Remark 5. From the above solutions of the Equation (13) one obtains solutions correspond-
ing to the PDE

ihα(t)
∂u
∂tα

+
∂2u
∂x2 + (c− b|u|2)u = 0, (b > 0)

using Remark 1, (c), with ρ =

√
2√
b

.

4. Solutions of Multitime NLSE Whose Argument Is Independent of x

Let I1, I2 be two intervals, I1 ⊆ R, I2 ⊆ [0, ∞). Let D be an open subset of Rm. Let us
consider the C1 functions f : I1 × I2 → R, hα : D → R, α ∈ {1, 2, . . . , m}, which define the
multitime nonlinear Schrödinger PDE (2).

In this Section, we shall determine exact solutions of multitime NLSE (2) of exponential
form u(x, t) = ϕ(x, t)eiω(t), with ϕ(x, t) ∈ R, ω(t) ∈ R, i.e., the argument ω of u does not
depend on x. The solutions of this form are suggested by the solutions in the previous
sections and by the question: Are there other solutions of this type? These solutions are in
fact extensions of spatial solitons in the paper [16].

Proposition 9. Let ϕ : I0 × D0 → R, ω : D0 → R; suppose that ω is a C1 function. Then
the function

u : I0 × D0 → C, u(x, t) = ϕ(x, t)eiω(t), for all (x, t) ∈ I0 × D0

is a solution of multitime NLSE (2) if and only if ϕ is of class C1, there exists
∂2 ϕ

∂x2 , and for any

(x, t) ∈ I0 × D0, the following three conditions are satisfied:

(ϕ(x, t))2 ∈ I2, (37)

hα(t)
∂ϕ

∂tα
(x, t) = 0, (38)

hα(t)
∂ω

∂tα
(t) · ϕ(x, t)− ∂2 ϕ

∂x2 (x, t)− f
(
x, (ϕ(x, t))2)ϕ(x, t) = 0. (39)

Proof. We remark that |u|2 ∈ I2 if and only if ϕ2 ∈ I2.
The function ω is of class C1.
From the equalities u(x, t) = ϕ(x, t)eiω(t), ϕ(x, t) = u(x, t)e−iω(t), it follows that the

function u is of class C1 and there exists
∂2u
∂x2 if and only if ϕ is of class C1 and there

exists
∂2 ϕ

∂x2 .

The function u verifies the relation (2) if and only if, for any (x, t) ∈ I0 × D0, we have

ihα ∂ϕ

∂tα
· eiω(t) − hα ∂ω

∂tα
(t) · ϕ · eiω(t) +

∂2 ϕ

∂x2 · e
iω(t) + f (x, ϕ2)ϕ · eiω(t) = 0,

which is equivalent to

ihα ∂ϕ

∂tα
− hα ∂ω

∂tα
(t) · ϕ +

∂2 ϕ

∂x2 + f (x, ϕ2)ϕ = 0;
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and the above equality is valid if and only if the equalities (38) and (39) are satisfied.

4.1. Preresiquites: First Integrals

Let t0 ∈ D, for which there is at least one index α0 ∈ {1, . . . , m}, such that hα0(t0) 6= 0.
Let β1, β2, . . . , βm−1, be distinct elements of the set {1, 2, . . . , m} \ {α0}, written in

ascending order.
Consider the C1 first integrals F1, F2, . . ., Fm−1 : V → R of ODEs system (3), with

V ⊆ D, t0 ∈ V, V open and connected, such that hα0(t) 6= 0, for any t ∈ V, and

det
( ∂Fα

∂tβ j
(t)
)

1≤α,j≤m−1
6= 0, for all t ∈ V (40)

(There exist the functions F1, F2, . . ., Fm−1 with above properties).
We denote by F(·) the vector field F = (F1, F2, . . . , Fm−1) : V → Rm−1.
Renumbering the indices, we can assume that α0 = m. Hence we have hm(t) 6= 0,

for any t ∈ V, and

det
(∂Fα

∂tβ
(t)
)

1≤α,β≤m−1
6= 0, for all t ∈ V. (41)

Let Fm(t) = tm. Denote by H(·) the vector field H = (F1, . . . , Fm−1, Fm) : V → Rm,
i.e., H = (F, Fm). We can easily see that the Jacobian of H is equal to the determinant in
relation (41), hence it is nonzero on V. From the inverse function theorem, it follows that
there are two open sets, V0 ⊆ V, V1 ⊆ Rm, with t0 ∈ V0, such that the function (a restriction

of H) H
∣∣∣
V0

: V0 → V1 is a C1 is diffeomorphism. Let G = (G1, . . . , Gm) : V1 → V0 be the

inverse of this diffeomorphism.
Notation: For s = (s1, . . . , sm−1, sm), we denote s̃ := (s1, . . . , sm−1); hence we have

s = (s̃, sm). The following equalities:

G(H(t)) = t, for all t ∈ V0; H(G(s)) = s, for all s ∈ V1.

are satisfied. The second above equality is
(

F(G(s), Gm(s)
)
= (s̃, sm), hence it results

F(G(s)) = F(G(s̃, sm)) = s̃, for all s = (s̃, sm) ∈ V1;

Gm(s) = Gm(s̃, sm) = sm, for all s = (s̃, sm) ∈ V1.

We need the vector field h(t) := (h1(t), h2(t), . . . , hm(t)), t ∈ D.
For t ∈ V, we denote St := Sp

{
∇F1(t),∇F2(t), . . . ,∇Fm−1(t)

}
⊆ Rm. From the

relation (41) it follows that dim St = m− 1. Hence dim S⊥t = 1.
For any β ∈ {1, 2, . . . , m− 1}, we have 〈h(t),∇Fβ(t)〉 = 0, since the functions Fβ are

first integrals of the ODEs system (3); hence h(t) ∈ S⊥t . Since h(t) 6= 0, it follows that{
h(t)

}
is a basis of the vector space S⊥t (for all t ∈ V).

Lemma 5. Suppose that the above conditions are satisfied. Then

(a) For any s ∈ V1, the relation hm(G(s))
∂G
∂sm (s) = h(G(s)) is satisfied.

(b) Let D0 ⊆ D, be an open neighborhood of t0. Whatever the C1 function w : D0 → R,
we have

hα(G(s))
∂w
∂tα

(G(s)) = hm(G(s))
∂

∂sm

(
w(G(s))

)
, for all s ∈ H(D0 ∩V0).

Proof. (a) Since H ◦G(s) = s, it follows that for any s ∈ V1 and for any β ∈ {1, 2, . . . , m− 1},
we have Fβ(G(s)) = sβ. Taking the derivative with respect to sm, we obtain〈

∇Fβ(G(s)),
∂G
∂sm (s)

〉
= 0, for all s ∈ V1, for all β ∈ {1, 2, . . . , m− 1}.
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Hence ∀s ∈ V1,
∂G
∂sm (s) ∈ S⊥G(s)= Sp

{
h(G(s))

}
. There exists λ(s) ∈ R such that

∂G
∂sm (s) = λ(s)h(G(s)). Identifying the components on the position m, we find
∂Gm

∂sm (s) = λ(s)hm(G(s)). Since Gm(s) = sm, it follows λ(s)hm(G(s)) = 1.

We remark that if we multiply by hm(G(s)), the equality
∂G
∂sm (s) = λ(s)h(G(s)),

becomes the equality from the point a).
(b) If s ∈ H(D0 ∩V0), then G(s) ∈ G ◦ H(D0 ∩V0) = D0 ∩V0 ⊆ D0.
For any s ∈ H(D0 ∩V0), we have

hm(G(s))
∂

∂sm

(
w(G(s))

)
= hm(G(s))

〈
∇w(G(s)),

∂G
∂sm (s)

〉
=

=

〈
∇w(G(s)), hm(G(s))

∂G
∂sm (s)

〉
=
〈
∇w(G(s)), h(G(s))

〉
=

= hα(G(s))
∂w
∂tα

(G(s)),

and the statement is proved.

Remark 6. Let D0 ⊆ D, be an open neighborhood of t0 and let s0 := H(t0). Let J1, J2, . . . , Jm
be open intervals, such that sα

0 ∈ Jα, for all α ∈ {1, 2, . . . , m}, and
W1 := J1× J2× . . .× Jm ⊆ H(D0 ∩V0) ⊆ V1 (there exist such intervals since the set H(D0 ∩V0)
is open and s0 = H(t0) ∈ H(D0 ∩V0)).

Because sm
0 = tm

0 , we have tm
0 ∈ Jm.

The set W0 := G(W1) is open since W1 is open and G is a diffeomorphism.
Since s0 ∈W1, we deduce t0 = G(s0) ∈ G(W1) = W0.
From W1 ⊆ H(D0 ∩V0), it follows that W0 = G(W1) ⊆ G ◦ H(D0 ∩V0) = D0 ∩V0.
Hence, the set W0 = G(W1) is an open neighborhood of t0 and W0 ⊆ D0 ∩V0.
We have H(W0) = H ◦ G(W1) = W1, i.e., H(W0) = W1. It follows that for any t ∈ W0,

we can write H(t) = (F(t), tm) ∈W1, whence we deduce

F(t) ∈ J1 × J2 × . . .× Jm−1, for all t ∈W0.

(F(t), sm) ∈ J1 × J2 × . . .× Jm, for all t ∈W0, for all sm ∈ Jm.

Proposition 10. Let D0 ⊆ D be an open neighborhood of t0. Denote by q : D0 → R an arbitrary
function. We select the sets W1, W0 as in the Remark 6.

(a) If the C1 function w : D0 → R verifies, for all t ∈ D0, the equation

hα(t)
∂w
∂tα

(t) = q(t), (42)

then

w(G(s)) = w
(
G(s̃, tm

0 )
)
+

sm∫
tm
0

q
(
G(s̃, τ)

)
hm
(
G(s̃, τ)

)dτ, for all s = (s̃, sm) ∈W1, (43)

w(t) = w
(
G(F(t), tm

0 )
)
+

tm∫
tm
0

q
(
G(F(t), τ)

)
hm
(
G(F(t), τ)

)dτ, for all t ∈W0. (44)
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(b) Suppose that the function q is of class C1. Let W be an open neighborhood of t0, W ⊆ V
(as example W = W0). Let us consider a C1 function E : U → R, U ⊆ Rm−1, U open. Suppose
that for any t ∈W we have F(t) ∈ U. Then, the function w : W ∩W0 → R, defined by

w(t) = E
(

F(t)
)
+

tm∫
tm
0

q
(
G(F(t), τ)

)
hm
(
G(F(t), τ)

)dτ, for all t ∈W ∩W0,

is of class C1, and verifies the relation (42), for all t ∈W ∩W0.

Proof. (a) Since w is of class C1, from the relation (42) we deduce that the function q
is continuous.

Wefix s̃ ∈ J1× J2× . . .× Jm−1. Henceforany sm ∈ Jm,wehave (s̃, sm) ∈W1 ⊆ H(D0∩V0).
We can define the function

λ : Jm → R, λ(τ) = w
(
G(s̃, τ)

)
, for all τ ∈ Jm.

From Lemma 5, (b), and the equality (42), it follows

q(G(s̃, τ)) = hα(G(s̃, τ))
∂w
∂tα

(G(s̃, τ)) = hm(G(s̃, τ))
dλ

dτ
(τ), for all τ ∈ Jm,

i.e,
dλ

dτ
(τ) =

q(G(s̃, τ))

hm(G(s̃, τ))
, hence we obtain

λ(sm)− λ(tm
0 ) =

sm∫
tm
0

q
(
G(s̃, τ)

)
hm
(
G(s̃, τ)

)dτ, for all sm ∈ Jm.

We find that the above relationship coincides with the relationship (43).
Let t ∈W0. According to Remark 6, we have H(t) = (F(t), tm) ∈W1.
In the Formula (43), we take s = H(t) = (F(t), tm), i.e., s̃ = F(t), sm = tm, and we

obtain the Formula (44) (since G(H(t)) = t).
(b) Since q is of class C1, it follows that w is of class C1.
The variables of the function E are denoted by (s1, s2, . . . , sm−1).

Let E1 : W1 → R, E1(s) =
q
(
G(s)

)
hm
(
G(s)

) , for all s ∈W1. Then

hα(t)
∂w
∂tα

(t) = hα(t)
m−1

∑
j=1

∂E
∂sj

(
F(t)

)
·

∂Fj

∂tα
(t)+

+hα(t)
tm∫

tm
0

m−1

∑
j=1

∂E1

∂sj

(
(F(t), τ)

)
·

∂Fj

∂tα
(t)dτ + hm(t) ·

q
(
G(F(t), tm)

)
hm
(
G(F(t), tm)

) =

=
m−1

∑
j=1

∂E
∂sj

(
F(t)

)
· hα(t)

∂Fj

∂tα
(t) +

tm∫
tm
0

m−1

∑
j=1

∂E1

∂sj

(
(F(t), τ)

)
· hα(t)

∂Fj

∂tα
(t)dτ

+hm(t) ·
q
(
G(H(t))

)
hm
(
G(H(t))

) = 0 + 0 + hm(t) · q(t)
hm(t)

= q(t).

Proposition 11. Let t0 ∈ D. Let us consider the C1 functions F1, F2, . . ., Fm−1 : V → R
as first integrals for the ODEs system (3), with V ⊆ D, t0 ∈ V, V open and connected.
Let F(t) := (F1(t), F2(t), . . . , Fm−1(t)), t ∈ V.

(a) Suppose there exists α0 ∈ {1, 2, . . . , m}, such that for all t ∈ V, we have hα0(t) 6= 0, and
the condition (40) is satisfied.

Let Ψ : D0 → R be a C1 first integral of the ODEs system (3), with t0 ∈ D0 ⊆ D, D0 open.
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Then, there exists an open neighborhood W0 of t0, with W0 ⊆ D0∩V; there exists U0 ⊆ Rm−1,
U0 open, and there exists a C1 function E0 : U0 → R such that

F(t) ∈ U0 and Ψ(t) = E0
(

F(t)
)
, for all t ∈W0.

(b) Let U ⊆ Rm−1, U open, and let E : U → R be a function of class C1. Let W ⊆ V,
W open, such that, for any t ∈W we have F(t) ∈ U.

Then, the function Ψ : W → R, Ψ(t) = E
(

F(t)
)
, for all t ∈W,

is a first integral for the ODEs system (3).

Proof. (a) Renumbering the indices, we can assume that α0 = m.
We choose W1 and W0 as in the Remark 6. Let U0 := J1 × J2 × . . .× Jm−1; obviously,

U0 is open.
According to Remark 6, the set W0 is open, t0 ∈ W0, W0 ⊆ D0 ∩ V0 ⊆ D0 ∩ V, and

F(t) ∈ U0, for all t ∈W0.
Applying Proposition 10, (a), for w = Ψ, q = 0, it follows that, for all t ∈W0, we have

Ψ(t) = Ψ
(
G(F(t), tm

0 )
)
.

It is sufficient to choose E0 : U0 → R, E0(s̃) = Ψ
(
G(s̃, tm

0 )
)
, for all s̃ ∈ U0(

(s̃, tm
0 ) ∈ U0 × Jm = W1 ⊆ V1; G(W1) = W0 ⊆ D0

)
; obviously, the function E is of

class C1.
(b) A calculation similar to the proof of Proposition 10, (b) is made.

4.2. The Theorem about the Solutions with the Argument Independent of x

Let us insist again on solutions of exponential form of the multitime NLSE (2).

Proposition 12. Let (x0, t0) ∈ I1 × D. Suppose there exists α0 ∈ {1, 2, . . . , m}, such that
hα0(t0) 6= 0.

We need the functions ϕ : L×D1 → R, ω : D1 → R, ω of class C1 (L subinterval of I1, with
x0 ∈ L; D1 ⊆ D, D1 open, with t0 ∈ D1). Suppose that the function

u : I0 × D0 → C, u(x, t) = ϕ(x, t)eiω(t), for all (x, t) ∈ L× D1, (45)

is a solution for the multitime NLSE (2). We add the condition ϕ(x0, t0) > 0.
Let us consider the C1 functions F1, F2, . . ., Fm−1 : V → R as first integrals of the ODEs

system (3), with V ⊆ D, t0 ∈ V, V open and connected, such that for all t ∈ V, we have
hα0(t) 6= 0, and the condition (40) is satisfied.

We need the vector field F(t) := (F1(t), F2(t), . . . , Fm−1(t)), t ∈ V.
Then
– there exists I0 subinterval of L, with x0 ∈ I0 (if L is an open interval, then I0 is open also);
– there exists W0 an open neighborhood of t0, W0 ⊆ V ∩ D1;
– there exists U0 ⊆ Rm−1, U0 open;
– there exist the C1 functions E1, E2, E3, E4 : U0 → R, ω0 : W0 → R,

such that
(i) ϕ(x, t) > 0, for all (x, t) ∈ I0 ×W0;
(ii) F(t) ∈ U0, for all t ∈W0;
(iii) E1(s̃) > 0, for all s̃ ∈ U0; and

(
E1(s̃)

)2 ∈ I2, for all s̃ ∈ U0;
(iv) ϕ(x0, t) = E1(F(t)), for all t ∈W0;

(v)
∂ϕ

∂x
(x0, t) = E2(F(t)), for all t ∈W0;

(vi) ω(t) = −ω0(t)E3(F(t)) + E4(F(t)), for all t ∈W0;

(vii) hα(t)
∂ω0

∂tα
(t) = 1, for all t ∈W0.

Proof. Renumbering the indices, we can suppose that α0 = m.
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Since ϕ(x0, t0) > 0, there exists D0 ⊆ D1, D0 an open neighborhood of t0, and there
exists I0 subinterval of L, with x0 ∈ I0, such that ϕ(x, t) > 0, for all (x, t) ∈ I0 × D0 (if L is
an open interval, then I0 can be selected as open interval).

We select W1 and W0 as in Remark 6, i.e., J1, J2, . . . , Jm are open intervals, such that
sα

0 ∈ Jα (whatever the index α), s0 = H(t0), and
W1 := J1 × J2 × . . .× Jm ⊆ H(D0 ∩V0), W0 := G(W1).
We choose U0 := J1 × J2 × . . .× Jm−1; obvious that U0 is open.
According to Remark 6, the set W0 is open, t0 ∈ W0, W0 ⊆ D0 ∩ V0 ⊆ D1 ∩ V, and

F(t) ∈ U0, for all t ∈W0.
Since W0 ⊆ D0, we deduce that, for all (x, t) ∈ I0 ×W0, we have ϕ(x, t) > 0.
Let E : U0 →W0, E(s̃) = G(s̃, tm

0 ), for all s̃ ∈ U0
(
(s̃, tm

0 ) ∈ U0 × Jm = W1
)
; obviously

that E is a C1 function.
According to Proposition 9, the function ϕ(x, ·) verifies the relation (38) on the set D0.

Proposition 10, (a), (with w(·) = ϕ(x, ·) and q = 0), implies
ϕ(x, t) = ϕ

(
x, E(F(t))

)
, for all t ∈W0, for all x ∈ I0; taking the derivative with respect

to x, we obtain
∂ϕ

∂x
(x, t) =

∂ϕ

∂x
(
x, E(F(t))

)
, for all t ∈W0, for all x ∈ I0.

Let E1, E2 : U0 → R be defined by

E1(s̃) = ϕ
(

x0, E(s̃)
)
, E2(s̃) =

∂ϕ

∂x
(
x0, E(s̃)

)
, for all s̃ ∈ U0.

For all t ∈ W0, we have E1(F(t)) = ϕ
(
x0, E(F(t)

)
= ϕ(x0, t) and

E2(F(t)) =
∂ϕ

∂x
(

x0, E(F(t))
)
=

∂ϕ

∂x
(x0, t); we proved the statements iv) and v).

For any s̃ ∈ U0, we have E(s̃) ∈ W0 ⊆ D0; it follows that ϕ
(
x0, E(s̃)

)
> 0,

i.e., E1(s̃) > 0.
From Proposition 9, we deduce that, for any t ∈W0, we have (ϕ(x0, t))2 ∈ I2.
For any s̃ ∈ U0, we have E(s̃) ∈W0; it follows that ϕ

(
x0, E(s̃)

)2 ∈ I2, i.e.,
(
E1(s̃)

)2 ∈ I2.
So we also proved the statements from iii).

From
∂ϕ

∂x
(x, t) =

∂ϕ

∂x
(
x, E(F(t))

)
, it follows

∂2 ϕ

∂x2 (x, t) =
∂2 ϕ

∂x2

(
x, E(F(t))

)
, for all

t ∈W0, for all x ∈ I0.
If in the relation (39) it counts x = x0, then for any t ∈W0 one obtains

hα(t)
∂ω

∂tα
(t) =

1
E1(F(t))

· ∂2 ϕ

∂x2

(
x0, E(F(t))

)
+ f

(
x0,
(
E1(F(t))

)2). (46)

We define the function E3 : U0 → R,

E3(s̃) = −
(

1
E1(s̃)

· ∂2 ϕ

∂x2

(
x0, E(s̃)

)
+ f

(
x0,
(
E1(s̃)

)2)), for all s̃ ∈ U0.

From the previous formula it follows that E3 is a continuous function. However, it
does not turn out that E3 is of class C1. This remains to be proved.

The equality (46) becomes hα(t)
∂ω

∂tα
(t) = −E3(F(t)), for all t ∈W0.

We apply Proposition 10, (a), for w = ω and q(t) = −E3(F(t)); using the equality
F(G(s̃, τ)) = s̃, we obtain

ω(G(s)) = ω
(
G(s̃, tm

0 )
)
−

sm∫
tm
0

E3(s̃)
hm
(
G(s̃, τ)

)dτ, ∀s̃ ∈ U0, ∀sm ∈ Jm. (47)

We fix p ∈ Jm, p 6= tm
0 . Let E5(s̃) :=

p∫
tm
0

1
hm
(
G(s̃, τ)

)dτ, for all s̃ ∈ U0.

Since for any t ∈ V we have hm(t) 6= 0, we deduce that hm has constant sign on V;
it follows that, for all s̃ ∈ U0, we have E5(s̃) 6= 0.
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From the Formula (47), we obtain E3(s̃) =
ω
(
G(s̃, tm

0 )
)
−ω(G(s̃, p))

E5(s̃)
, for all s̃ ∈ U0;

from this we deduce that E3 is a C1 function.
In Formula (47), we take s = H(t) = (F(t), tm), i.e., s̃ = F(t), sm = tm, and we obtain

ω(t) = ω
(
G(F(t), tm

0 )
)
− E3(F(t))

tm∫
tm
0

1
hm
(
G(F(t), τ)

)dτ, for all t ∈W0. (48)

We define the functions E4 : U0 → R, ω0 : W0 → R by the formulas

E4(s̃) = ω
(
G(s̃, tm

0 )
)
, for all s̃ ∈ U0; ω0(t) =

tm∫
tm
0

1
hm
(
G(F(t), τ)

)dτ, for all t ∈W0.

The equality (48) becomes the formula from point vi).
We apply Proposition 10, (b), for W = W0, E = 0, q = 1; it follows that ω0 verifies the

relation of point (vii).

Remark 7. We assume that the hypotheses of Proposition 12 are satisfied, but with ϕ(x0, t0) < 0.
Setting ϕ1(x, t) := −ϕ(x, t), ω1(t) := π + ω(t), we have u(x, t) = ϕ1(x, t)eiω1(t), and
ϕ1(x0, t0) = −ϕ(x0, t0) > 0. The conclusions of Proposition 12 are obtained for the functions
ϕ1 and ω1, respectively, instead of ϕ and ω, respectively.

Further we shall determine (locally) the exact solutions of multitime NLSE (2) of
the form u(x, t) = ϕ(x, t)eiω(t), with ϕ(x, t) ∈ R, ω(t) ∈ R; these solutions being
considered in a neighborhood of a point (x0, t0) for which u(x0, t0) 6= 0 and
(h1(t0), h2(t0), . . . , hm(t0)) 6= (0, 0, . . . , 0). Proposition 12 presents necessary conditions

which must perform (locally) the functions u(x0, · ), ∂u
∂x

(x0, · ) and ω (taking into account
also Remark 7). So we will further assume that these conditions are met.

Suppose that I1 is an open interval and that I2 has the form I2 := (µ, ∞), with µ ≥ 0.
Let I3 := (

√
µ, ∞); it is obvious that I3 ⊆ (0, ∞).

We consider the ODE (with parameter k ∈ R)

y′′ +
(
k + f

(
x, y2))y = 0. (49)

For k ∈ R, λ ∈ I1, c1 ∈ I3, c2 ∈ R, let σ( · , λ; c1, c2; k) be the maximal solution y( · ) of
the Equation (49) which verifies y(λ) = c1 and y′(λ) = c2. The domain of definition of this
solution being the open interval I(λ; c1, c2; k) ⊆ I1, with λ ∈ I(λ; c1, c2; k); the codomain
is I3.

Let us introduce the set
M :=

{
(x, λ; c1, c2; k)

∣∣ λ ∈ I1, c1 ∈ I3, c2 ∈ R, k ∈ R, x ∈ I(λ; c1, c2; k)
}

.

The set M is open. The function σ : M → I3 is of class C1; the function
∂σ

∂x
: M → I3 is of

class C1.
For any λ ∈ I1, c1 ∈ I3, c2 ∈ R, k ∈ R, we have

σ(λ, λ; c1, c2; k) = c1 and
∂σ

∂x
(λ, λ; c1, c2; k) = c2.

Theorem 1. Suppose that I1 is an open interval and that there exists µ ≥ 0 such that I2 = (µ, ∞);
let I3 = (

√
µ, ∞).

Let (x0, t0) ∈ I1 × D. Suppose that there exists α0 ∈ {1, 2, . . . , m}, such that hα0(t0) 6= 0.
Let us consider the C1 functions F1, F2, . . ., Fm−1 : V → R as first integrals of the ODEs system (3),
with V ⊆ D, t0 ∈ V, V open and connected, such that, for all t ∈ V, we have hα0(t) 6= 0, and the
condition (40) is satisfied.

Denote F(t) := (F1(t), F2(t), . . . , Fm−1(t)), t ∈ V.
Let I0 ⊆ I1, I0 interval, with x0 ∈ I0; let W0 ⊆ V, W0 open, with t0 ∈W0.
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We need a C1 function ω0 : W0 → R, such that hα(t)
∂ω0

∂tα
(t) = 1, for all t ∈W0.

Let us consider the C1 functions
E1 : U0 → I3, E2, E3, E4 : U0 → R (with U0 ⊆ Rm−1, U0 open); suppose that for any

t ∈W0, we have F(t) ∈ U0.
Let ω : W0 → R, ω(t) = −ω0(t)E3(F(t)) + E4(F(t)), for all t ∈W0.

(a) Suppose that the function u : I0 ×W0 → C is a solution of the multitime NLSE (2), of the form
u(x, t) = ϕ(x, t)eiω(t), for all (x, t) ∈ I0 ×W0, with ϕ(x, t) > 0, for all (x, t) ∈ I0 ×W0. If

u(x0, t) = E1(F(t))eiω(t),
∂u
∂x

(x0, t) = E2(F(t))eiω(t), for all t ∈W0, (50)

then
I0 ⊆ I

(
x0; E1(F(t)), E2(F(t)); E3(F(t))

)
, for all t ∈W0, (51)

and, for any (x, t) ∈ I0 ×W0, we have

u(x, t) = σ
(
x, x0; E1(F(t)), E2(F(t)); E3(F(t))

)
e−iω0(t)E3(F(t))+iE4(F(t)). (52)

(b) Converse. Suppose that the relations (51) are true. Then: the function u : I0×W0 → C defined,
for any (x, t) ∈ I0 ×W0, by the Formula (52) is a solution of the multitime NLSE (2), and satisfies
the conditions (50).

Proof. For any t ∈W0, we have

hα(t)
∂ω

∂tα
(t) = −E3(F(t)) hα(t)

∂ω0

∂tα
(t)−

−ω0(t)hα(t)
∂

∂tα

(
E3(F(t))

)
+ hα(t)

∂

∂tα

(
E4(F(t))

)
.

Hence hα(t)
∂ω

∂tα
(t) = −E3(F(t)).

(a) We use Proposition 9.
For any (x, t) ∈ I0 ×W0, the relation (37) is satisfied, and we deduce that ϕ(x, t) ∈ I3.
The relation (39) is now equivalent to

E3(F(t)) · ϕ(x, t) +
∂2 ϕ

∂x2 (x, t) + f
(

x, (ϕ(x, t))2)ϕ(x, t) = 0. (53)

We remark that for all t ∈W0, the function ϕ( · , t) : I0 → I3 is a solution of the Equation (49),

with parameter k = E3(F(t)). Since ϕ(x0, t) = E1(F(t)) and
∂ϕ

∂x
(x0, t) = E2(F(t)),

it follows that I0 ⊆ I
(
x0; E1(F(t)), E2(F(t)); E3(F(t))

)
,

and ϕ(x, t) = σ
(

x, x0; E1(F(t)), E2(F(t)); E3(F(t))
)
, i.e., u has the form in conclusion.

(b) Let ϕ(x, t) := σ
(
x, x0; E1(F(t)), E2(F(t)); E3(F(t))

)
, x ∈ I0, t ∈W0.

Since σ
(

x, x0; E1(F(t)), E2(F(t)); E3(F(t))
)
∈ I3, it immediately follows that (ϕ(x, t))2 ∈ I2,

i.e., the relation (37).
The relation (38) is obviously fulfilled because for every x fixed, ϕ(x, · ) is a function

that depends on F( · ).
The relation (39) is equivalent to the relation (53), which is satisfied, because the func-

tion σ
(
· , x0; E1(F(t)), E2(F(t)); E3(F(t))

)
is a solution of the Equation (49), with parameter

k = E3(F(t)).

The relations ϕ(x0, t) = E1(F(t)) and
∂ϕ

∂x
(x0, t) = E2(F(t)) are obvious, hence the

initial conditions (50) are also true.

In the conditions of Theorem 1, we denote v(t; k) := e−ikω0(t). The function v( · ; k) is a
solution of the Equation (5); we have also |v(t; k)| = 1.

Hence the solution of Theorem 1 is written

u(x, t) = σ
(

x, x0; E1(F(t)), E2(F(t)); E3(F(t))
)
· v
(
t; E3(F(t))

)
· eiE4(F(t)).
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This is a solution similar to those in Remark 4.
Proposition 12 and Theorem 1 say that, locally, the solutions of the multitime NLSE (2)

whose argument does not depend on x, are only those described in Remark 4 (if we assume
in addition that u(x0, t0) 6= 0).

Remark 8. For m = 1, we easily find that the results obtained in this article remain true under the
following conditions:

– the functions Ψ, respectively Ψj, which appear in Propositions 2–7, are taken constants;
– the functions Ej, which appear in Remark 4, in Section 3, in Proposition 12, and in Theorem 1

are taken constant; the functions F1, F2, . . ., Fm−1 are no longer considered in the case m = 1
(instead of Ej(F(t)) is put the constant Ej).

5. Multitime NLSE in Riemannian Setting

From the physical point of view, it would be more important to further study a
multitime NLSE in Riemannian setting, which is still an open problem. For that, let (M, g)
be a smooth compact Riemannian manifold of dimension n (particularly, n = 2, 3) without
boundary. In Riemannian setting, the multitime NLSE is

ihα(x, t)
∂u
∂tα

+ ∆gu + f
(
x, |u|2

)
u = 0, (x, t) ∈ M×Rm. (54)

Let dxg denotes the volume element of the compact Riemannian manifold (M, g) and

|u|2 = uū, |∇gu|2g = 〈∇gu,∇gū〉g.

Open problem Find the minimum of the multitemporal energy functional

E(t) =
1
2

∫
M

(
|u|2 + |∇gu|2g

)
dxg,

constrained by the multitime NLSE (54).
Hint To solve this problem we need techniques from variational calculus.
This multitime NLSE is mainly concerned with the interface between Riemannian

geometry and quantum mechanics, but it leads, in a natural way, to questions of functional
analysis related to the theory of operators on Hilbert spaces. In some respects these
problems are similar to those studied in the standard Euclidean case, but depending on the
Riemannian metric g these might go beyond and provide new aspects to the problem.

6. Conclusions

The exact solutions of multitime NLSE (with oblique derivative) are closely related
to the orbits of the direction vector field h. Our techniques for finding these solutions
started from this important idea applied to PDEs that contain directional derivative. We
follow a different route than those in the papers [1–19] and carry out the calculations to
obtain significative exact solutions of multitime NLSE. This computational paper and the
obtained results show that our methods are simple, efficient, straightforward and powerful.
Moreover, the presented methods can be employed in many other types of nonlinear PDEs
arising in mathematics, mathematical physics, engineering and economics.

The linearization of the multitime NLSE around a solution returns to the linearization
of the function f . Linearization offers patterns of solutions that approximate the solutions
of the original equation (this corresponds to studying the tangent space at a point of all
solutions moduli space).

We hope that this paper will open a door for many readers to a multitime intriguing
topic that is an active field of current research, especially in the Riemannian formulation of
multitime nonlinear Schrödinger’s PDE.
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