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Abstract: Nonlinear phenomena occur in various fields of science, business, and engineering. Re-
search in the area of computational science is constantly growing, with the development of new
numerical schemes or with the modification of existing ones. However, such numerical schemes,
objectively need to be computationally inexpensive with a higher order of convergence. Taking into
account these demanding features, this article attempted to develop a new three-step numerical
scheme to solve nonlinear scalar and vector equations. The scheme was shown to have ninth order
convergence and requires six function evaluations per iteration. The efficiency index is approximately
1.4422, which is higher than the Newton’s scheme and several other known optimal schemes. Its
dependence on the initial estimates was studied by using real multidimensional dynamical schemes,
showing its stable behavior when tested upon some nonlinear models. Based on absolute errors,
the number of iterations, the number of function evaluations, preassigned tolerance, convergence
speed, and CPU time (sec), comparisons with well-known optimal schemes available in the literature
showed a better performance of the proposed scheme. Practical models under consideration include
open-channel flow in civil engineering, Planck’s radiation law in physics, the van der Waals equation
in chemistry, and the steady-state of the Lorenz system in meteorology.

Keywords: root-finding scheme; nonlinear models; efficiency index; computational cost; Halley’s
algorithm; basins of attraction

1. Introduction

Applied mathematics, biological sciences, and engineering disciplines are full of
systems and processes whose response is not proportional to the input, thereby demanding
numerical schemes with a high order of convergence and a reasonable computational cost.
The literature has provided us with various numerical schemes to fulfill this demand, while
still leaving significant room for continuous improvements in this vibrant area of numerical
analysis. Fortunately, the need to solve nonlinear equations does not end with mathematical
studies since many ordinary, partial, integral, and integro-differential equations often give
rise to systems of nonlinear equations after discretization, so they must be handled with
numerical schemes. Generally, nonlinear phenomena designed in terms of models with
nonlinear equations are seen not only in academia and the physical industry, but also in the
fields of medical sciences and other real-world situations. For instance, the triangulation of
GPS signals, combustion, heat transfer, and fluid flow amongst others are some of those
fields [1–4].
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When it comes to solving nonlinear equations arising from physical and natural
sciences, researchers often resort to numerical schemes as such equations are, in many
cases, extremely complicated to be solved to obtain the exact solutions. Because of this,
mathematicians, mostly those working in applied fields, are trying to obtain numerical
schemes with higher orders of convergence, but at the same time, with a reduced number
of function evaluations required for each iteration, while keeping in mind the importance
of the stability features of the schemes. Among various existing classical schemes, Newton–
Raphson (NR) is always considered the first choice due to its simplicity. Like the Euler
scheme in ordinary differential equations, the NR scheme serves as a basic building block
for the emergence of many higher-order numerical schemes to solve nonlinear equations.
Since achieving an optimal order of convergence is not always possible, because of Kung
and Traub’s conjecture [5], several researchers have primarily focused on achieving a high
order of convergence with a low number of function evaluations per iteration. In this
context, we cannot ignore the concept of efficiency index (E) defined as E = p1/c, where p
and c are the convergence order and the number of function evaluations required at each
step, respectively. Some notable recently developed nonlinear schemes include the homo-
topy perturbation method [6,7], the Adomian decomposition method [8], the variational
iteration method [9,10], and those based on quadrature rules [11,12].

In [13], the authors combined two schemes of orders p1 and p2 to design a new two-
step scheme with order p1 p2. The process brings additional function evaluations at each
step of the iteration, however, with a higher order of convergence. On the other hand,
Noor and Noor [14] developed a three-step scheme with third-order convergence at the
cost of five function evaluations per iteration and Noor et al. [15] presented two schemes
having third- and fourth-order convergence needing five and eight function evaluations
per iteration, respectively. Consequently, Shah et al. [16] proposed a three-step sixth-order
convergent scheme that uses seven function evaluations per iteration. Such approaches,
despite being convergent with high orders, require additional computational cost in terms
of CPU time. A recently published study [17] used a similar approach to obtain an efficient
three-step numerical scheme. The main objective of this research was to develop a new
hybrid three-step numerical scheme to solve both scalar and vector nonlinear equations.
Motivated by such approaches, we attempted to develop a new three-step numerical
scheme by combining a modified third-order Newton scheme in [18] with the classical
third-order Halley scheme [19]. This resulted in a ninth-order scheme which only needs six
function evaluations—three functions, two first-order derivatives, and one second-order
derivative–per iteration. The new scheme is advantageous in terms of absolute errors,
number of function evaluations, number of iterations required to achieve a pre-assigned
accuracy, computational time, and efficiency index, compared to some available schemes.

This paper is structured as follows. Section 2 presents information about some existing
schemes. Then, the formulation of the proposed scheme and the derivation of its order
of convergence and asymptotic error terms in both cases of scalar and vector equations
follow. Some theoretical comparisons are addressed with a stability analysis and basins
of attraction of the proposed scheme. Some numerical experiments containing applied
problems are presented in Section 3. Finally, Section 4 brings the paper to an end with a
discussion of major findings and future research directions.

2. Previous Materials and Methods

In this section, we will briefly review some well-known numerical schemes that are
frequently used to determine approximate solutions to nonlinear models. Indeed, when
it comes to solving such nonlinear models, there is objectively no analytical technique to
yield exact results. Thus, we are obliged to use numerical schemes.

2.1. Brief Overview of Some Existing Schemes

When someone thinks of solving a nonlinear equation with a numerical scheme,
the first scheme that comes to mind is the classical Newton–Raphson [5] which has optimal
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second-order convergence. In short, we used the symbol NR2 for this scheme which
uses two function evaluations—one function and one first-order derivative—per iteration.
The scheme is given by

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0, 1, 2, . . . . (1)

In [20], one can find the classical third-order Halley’s numerical scheme (denoted
by Halley3). This scheme needs three function evaluations (one function, one first-order
derivative and one second-order derivative) per iteration and is given by

xn+1 = xn −
2 f (xn) f ′(xn)

2( f ′(xn))
2 − f (xn) f ′′(xn)

, n = 0, 1, 2, . . . . (2)

By using NR2 (1) as a predictor, Halley’s as corrector, and the finite difference ap-
proximation of the second derivative, a new numerical scheme was suggested in [21]
named the modified Halley method (MHM5). It possesses fifth-order convergence and
needs four function evaluations (two function and two first-order derivatives) per iteration.
The scheme is given by

yn= xn −
f (xn)

f ′(xn)
,

xn+1= yn −
2 f (xn) f (yn) f ′(yn)

2 f (xn) f ′2(yn)− f ′2(xn) f (yn) + f ′(xn) f (yn) f ′(yn)
,

 n = 0, 1, 2, . . . . (3)

With the use of five function evaluations (three function, and two first-order deriva-
tives), a three-step numerical scheme was discussed in [22] whose theoretical order of
convergence, as proved by the authors, is 9. The scheme is given by

yn= xn −
f (xn)

f ′(xn)
,

zn= yn −
(xn − yn) f (yn)

f (xn)− 2 f (yn)
,

xn+1= zn −
f (zn) f ′(zn)

f ′2(zn)− 2λ f (zn)
f (zn)− f (xn)− f ′(xn)(zn − xn)

(zn − xn)2

, λ = 1
2 .


n = 0, 1, 2, . . . . (4)

A two-step numerical scheme of order nine proposed in [23] uses seven function
evaluations per iteration (two function, two first-order derivatives, two second-order
derivatives and one third-order derivative). The scheme is given by

yn= xn −
f (xn)

f ′(xn)
− f 2(xn) f ′′(xn)

2 f ′3(xn)
,

xn+1= yn −
f (yn)

f ′(yn)
− f 2(yn) f ′′(yn)

2 f ′3(yn)
− f 3(yn) f ′′′(yn)

6 f ′4(yn)
.

 n = 0, 1, 2, . . . . (5)

Most recently, the authors in [24] devised, using a variational iteration approach, a new
three-step numerical scheme to solve nonlinear scalar equations. Their proposed scheme
is ninth-order convergent with six function evaluations (three function, two first-order
derivatives and one second-order derivative) per iteration. The scheme is as follows:

yn= xn −
f (xn)

f ′(xn)
− f 2(xn) f ′′(xn)

2 f ′3(xn)
,

zn= yn −
f (yn)

f ′(yn)
,

xn+1= zn −
f (zn)

f ′(yn)− β f (yn)
, β = 1.


n = 0, 1, 2, . . . . (6)
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The numerical schemes discussed above will be used for comparison purposes in the
present study.

2.2. Proposed Numerical Scheme

After the thorough investigation of the existing literature, we observed that several
authors have proposed new hybrid type schemes using the second-order NR scheme as
their starting step, aiming to increase the order of convergence and reduce the number
of function evaluations. However, we took a step forward to use the third-order Halley’s
scheme in the first step:

xn+1 = xn −
2 f (xn) f ′(xn)

2 f ′(xn)2 − f (xn) f ′′(xn)
, (7)

to be blended with the third-order modified Newton scheme given below:

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = xn −
f (xn) + f (yn)

f ′(xn)
.

(8)

The aim was to obtain a new nonlinear scheme with a higher order of convergence
while the number of function evaluations per iteration was reduced as much as possible.
Such an idea was carried out in [13] and later used by many authors. Hence, after blending
both schemes above (7) and (8), we obtain the following new nonlinear scheme:

yn = xn −
2 f (xn) f ′(xn)

2 f ′(xn)2 − f (xn) f ′′(xn)
,

zn = yn −
f (yn)

f ′(yn)
,

xn+1 = yn −
f (yn) + f (zn)

f ′(yn)
.

(9)

The proposed scheme will be referred to as PS9 for the rest of the paper, wherein its
theoretical analysis, including convergence theory, stability, and bifurcation phenomenon
are discussed in detail.

2.2.1. Convergence Analysis for f (x) = 0

In the following theorem, we prove the ninth-order of convergence for the proposed
nonlinear three-step scheme given in (9).

Theorem 1. Let γ be the root of a sufficiently differentiable function f : Π ⊂ R→ R on an open
interval Π. Then, the three-step scheme PS9 presented in (9) has ninth-order convergence, and the
error equation is:

ε j+1 = Aε9
j +O(ε

10
j ), (10)

where A =
1

128

(
f ′′(γ)
f ′(γ)

)8

and ε j = xj − γ.

Proof. Let γ be the root of f (x) = 0, xj be the jth approximation to the root provided by
PS9 and ε j = xj − γ be the error term after the jth iteration. Using Taylor’s expansion for
f (xj) about γ, we have:

f (xj) = f ′(γ)ε j +
1
2

f ′′(γ)ε2
j +O(ε3

j ). (11)
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Expanding f ′(xj) via Taylor’s series about γ, we have:

f ′(xj) = f ′(γ) + f ′′(γ)ε j +
1
2

f ′′′(γ)ε2
j +O(ε3

j ). (12)

Multiplying (11) and (12), we obtain:

f (xj) f ′(xj) = f ′2(γ)ε j +
3
2

f ′(γ) f ′′(γ)ε2
j +

1
2

(
f ′(γ) f ′′′(γ) + f ′′2(γ)

)
ε3

j +O(ε
4
j ). (13)

Now, the Taylor expansion of the denominator in the fractional term in the first step
of (9) multiplied by its numerator results in:

2 f (xj) f ′(xj)

2 f ′(xj)2 − f (xj) f ′′(xj)
= ε j −

1
4 f ′2(γ)

f ′′2(γ)ε3
j −

1
4 f ′3(γ)

f ′′(γ)
(

5 f ′(γ) f ′′′(γ)− 6 f ′′2(γ)
)

ε4
j +O(ε5

j ). (14)

Using (14) in the first step of (9), we obtain:

ζ j = yj − γ =
1

4 f ′2(γ)
f ′′2(γ)ε3

j +
1

4 f ′3(γ)
f ′′(γ)

(
5 f ′(γ) f ′′′(γ)− 6 f ′′2(γ)

)
ε4

j +O(ε5
j ). (15)

Using Taylor’s expansion for f (yj) about γ, we have:

f (yj) = f ′(γ)ζ j +
1
2

f ′′(γ)ζ2
j +O(ζ3

j ). (16)

Using the Taylor’s expansion for 1/ f ′(yj) about γ, we have

1
f ′(yj)

=
1

f ′(γ)
−

f ′′(γ)
f ′2(γ)

ζ j +
1

f ′(γ)

(
− f ′′′(γ)

2 f ′(γ)
+

f ′′2(γ)
f ′2(γ)

)
ζ2

j +O(ζ3
j ). (17)

Multiplying (16) by (17), we obtain:

f (yj)

f ′(yj)
= ζ j −

f ′′(γ)
2 f ′(γ)

ζ2
j −

f ′(γ) f ′′′(γ)− f ′′2(γ)
2 f ′2(γ)

ζ3
j +O(ζ

4
j ). (18)

Using (18) in the second step of (9), we have:

νj = zj − γ =
f ′′(γ)

2 f ′(γ)
ζ2

j +
f ′(γ) f ′′′(γ)− f ′′2(γ)

2 f ′2(γ)
ζ3

j +O(ζ
4
j ). (19)

Now, using the Taylor expansion for f (zj) about γ, we have:

f (zj) = f ′(γ)νj +O(ν2
j ). (20)

Using (16), (17), and (20) in the third step of (9), we have (note that, for brevity, we
suppressed the γ in the derivatives):

ε j+1 = −νj +
f ′′

2 f ′
ζ2

j +
1

2 f ′

(
f ′′′ − f ′′2

f ′

)
ζ3

j +
f ′′

2 f ′2

(
f ′′′

2
− f ′′2

f ′

)
ζ4

j +
f ′′

f ′
ζ jνj +

1
f ′

(
f ′′′ − f ′′2

f ′

)
ζ2

j νj +O(ε10
j ). (21)

Using (19) in (21), we have:

ε j+1 =
1
2

(
f ′′

f ′

)2

ζ3
j +

1
4 f ′3

f ′′(3 f ′ f ′′′ − 4 f ′′2)ζ4
j +O(ε10

j ). (22)
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Finally, using (15) in (22), we obtain:

ε j+1 =
1

128

(
f ′′(γ)
f ′(γ)

)8

ε9
j +O(ε

10
j ), (23)

which proves the ninth-order convergence of the proposed scheme PS9 in (9).

2.2.2. Convergence Analysis for F(x) = 0

Now, let us consider a nonlinear system of N equations and N variables, F(x) = 0,
where F : Π ⊂ RN → RN is a sufficiently Frechet differentiable function. In this case,
the PS9 method adopts the form:

yn = xn −
[
2F ′(xn)

2 − F(xn)F ′′(xn)
]−1[

2F(xn)F ′(xn)
]
,

zn = yn − F ′(yn)
−1F(yn),

xn+1 = yn − F ′(yn)
−1
[

F(yn) + F(zn)
]
,

(24)

where F ′ is the Jacobian matrix of F.
We present the following results to show the error equation, and therefore, the order

of convergence of the proposed scheme in the case of a system of nonlinear equations.

Lemma 1 ([17]). Let F : Π ⊂ RN → RN be an r− times Frechet differentiable in a convex set
Π ⊂ RN . Then, for any x and h ∈ RN the following expression holds

F(x + h) = F(x) + F ′(x)h +
1
2!

F ′′(x)h2 +
1
3!

F ′′′(x)h3 + . . . +
1

(r− 1)!
F(r−1)(x)hr−1 + Rr, (25)

where ||Rr|| ≤ 1
r! sup

0<t<1
||F(r)(x + ht)||||h||r and the notation F(p)(x)hp stands for F(p)(x)hp =

(. . . (F(p)(x)h) p. . .)h ∈ RN .

Theorem 2. Let the function F : Π ⊂ RN → RN be sufficiently differentiable in a convex set Π
containing a simple zero ~γ of F(x). Let us consider that F ′(x) is continuous and nonsingular in
~γ. If the initial guess x0 is close to ~γ then the sequence

{
xj
}

obtained with the proposed three-step
scheme PS9 converges to ~γ with ninth-order convergence.

Proof. Let ~γ be the root of F(x), xj be the jth approximation to the root by PS9 and
εj = xj − ~γ be the error vector after the jth iteration. Using Taylor’s expansion of F(xj)
about ~γ, we have:

F(xj) = F ′(~γ)εj +
1
2

F ′′(~γ)ε2
j +O(ε3

j ). (26)

Using Taylor’s expansion of F′(xj) about ~γ, we have:

F′(xj) = F ′(~γ) + F ′′(~γ)εj +
1
2

F ′′′(~γ)ε2
j +O(ε3

j ). (27)

Multiplying (26) and (27), we obtain:

F(xj)F ′(xj) = F ′2(~γ)εj +
3
2

F ′(~γ)F ′′(~γ)ε2
j +

1
2

(
F ′(~γ)F ′′′(~γ) + F ′′2(~γ)

)
ε3

j +O(ε
4
j ). (28)

Using Taylor’s expansion for the inverse matrix
[
2F ′(xj)

2 − F(xj)F ′′(xj)
]−1

about ~γ,
we obtain:
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[
2F ′(xj)

2 − F(xj)F ′′(xj)
]−1

=
1
2

[
F ′2(~γ)

]−1

− 3
4

[
F ′3(~γ)

]−1

F ′′(~γ)εj +O(ε2
j ). (29)

Applying (29) to 2F(xj)F ′(xj) after using (28), we have:

[
2F ′(xj)

2 − F(xj)F ′′(xj)
]−1[

2F(xj)F ′(xj)
]
=

εj −
1
4

[
F ′2(~γ)

]−1

F ′′2(~γ)ε3
j −

1
4

[
F ′3(~γ)

]−1

F ′′(~γ)

(
5F ′(~γ)F ′′′(~γ)− 6F ′′2(~γ)

)
ε4

j +O(ε5
j ).

(30)

Using (30) in the first step of (24), we obtain:

ζ j = yj − ~γ =
1
4

[
F ′2(~γ)

]−1

F ′′2(~γ)ε3
j +

1
4

[
F ′3(~γ)

]−1

F ′′(~γ)

(
5F ′(~γ)F ′′′(~γ)− 6F ′′2(~γ)

)
ε4

j +O(ε5
j ). (31)

Likewise, using Taylor’s expansion for F(yn) and F ′(xn) about ~γ; and F ′(yn) in the
second step of (24), we obtain:

νj = zj − ~γ =
1
2

[
F ′(~γ)

]−1

F ′′(~γ)ζ2
j +

1
2

[
F ′2(~γ)

]−1
(

F ′(~γ)F ′′′(~γ)− F ′′2(~γ)

)
ζ3

j +O(ζ
4
j ). (32)

Finally, we use the Taylor series for F(zn) about ~γ and earlier found series to obtain
the following:

εj+1 =
1
2

[
F ′2(~γ)

]−1

F ′′2(~γ)ζ3
j +

1
4

[
F ′3(~γ)

]−1

F ′′(~γ)

(
3F ′(~γ)F ′′′(~γ)− 4F ′′2(~γ)

)
ζ4

j +O(ε10
j ). (33)

Putting (31) in the above equation, we obtain the required result as follows:

εj+1 =
1

128
F ′8(~γ)−1F ′′8(~γ)ε9

j +O(ε
10
j ). (34)

Hence, the ninth-order convergence of the proposed scheme PS9 has also been proven
in the case of nonlinear systems.

2.2.3. Numerical Comparison

A few numerical schemes were briefly introduced in Section 2.1, whose practical
comparison can be made with the proposed scheme. The following abbreviations will be
used hereinafter:

NR2 Newton–Raphson scheme with second-order convergence given in (1);
Halley3 Halley’s scheme with third-order convergence given in (2);
MHM5 Modified Halley’s scheme with fifth-order convergence given in (3);
HD9 A numerical scheme with ninth-order convergence given in (4);
NZ9 A numerical scheme with ninth-order convergence given in (5);
NA9 A numerical scheme with ninth-order convergence given in (6);
PS9 Proposed numerical scheme with ninth-order convergence given in (9);
FE Number of function evaluations;
EI Efficiency index;
γ Exact root of f (x) = 0;
IG Initial guess x0;
COC Computational order of convergence.
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Based upon orders of convergence, the number of function evaluations per iteration
in both the scalar and vector versions of the given nonlinear problem, as well as efficiency
indices, we present in Table 1 a practical comparison of the schemes under consideration. It
can be observed that the number of function evaluations per iteration is either equivalent
or smaller than those having ninth-order convergence, whereas the efficiency index of PS9
possesses a similar type of character as HD9, being the only scheme with the highest efficiency
index. The last column of Table 1 shows the number of new function evaluations with the
nonlinear problem being a system with a dimension n > 1. In such a case, the coefficient
of n shows the number of function evaluations, the coefficient of n2 shows the number of
first-order derivatives, the coefficient of n3 shows the number of second-order derivatives,
and finally the coefficient of n4 is for the number of third-order derivatives; one per each
iteration step. In this situation, PS9 stands with Halley3 and NA9 in terms of efficiency index,
whereas NZ9 takes an extra function evaluation with the fourth-order derivative.

Table 1. Theoretical comparison of schemes under consideration.

Eq. # Scheme Order FE EI Function Evaluations Per Iteration, n > 1

(1) NR2 2 2 1.4142 n + n2

(2) Halley3 3 3 1.4422 n + n2 + n3

(3) MHM5 5 4 1.4953 2(n + n2)
(4) HD9 9 5 1.5518 3n + 2n2

(5) NZ9 9 7 1.3687 2(n + n2 + n3) + n4

(6) NA9 9 6 1.4422 3n + 2n2 + n3

(9) PS9 9 6 1.4422 3n + 2n2 + n3

2.2.4. Basins of Attraction

One of the dynamical concepts concerning the stability and convergence of roots
for f (z) = 0 by some iterative methods is the concept of a basin of attraction which is a
region of 2D space within which iterations will be iterated into the attractor irrespective
of the choice of an initial guess z0. This concept is found to have several applications
in scientific fields including applied mathematics, arts, design, architecture, and many
more. Interesting applications of basins of attraction can be seen in the references [25–29]
and most of the references cited therein. Nonlinear models under both scalar and vector
cases have aesthetically interesting behavior that is not usually observed in the linear
models. The basins of attraction will demonstrate various dynamical characteristics under
the proposed iterative method PS9. Such regions, in the present study, were obtained
through graphical utilities provided by some routines of MATLAB R2020a. To serve the
purpose, we selected a rectangular region R on [−2, 2]× [−2, 2] under discretization of
R into 1000 by 1000 grid points containing the solution of the complex-valued functions
under consideration with considerably higher resolution. Some complex valued functions,
as given below, are taken to illustrate the dynamical aspects of the behavior of PS9 via
aesthetically amazing basins of attraction and their corresponding iteration coloring:

Example 1.

P1(z) = z8 + z5 − 4, P2(z) = z7 − 1, P3(z) = z3 − 1,

P4(z) = cos(z) + cos(2z) + z, P5(z) = exp(z)− z, P6(z) = cosh(z)− 1.
(35)

The above functions were selected, randomly containing both complex polynomi-
als and transcendental functions. Graphs were obtained with MATLAB R2020a within
R = [−2, 2]× [−2, 2] taking ε = 10−2 and k = 60, where k refers to the maximum number
of iterations chosen. It should be noted that the region R is the phase-space wherein the
basins of attractions are plotted under PS9 for the complex-valued functions described in
Example (1). As seen in Figures 1–6, the highest number of iterations is required by those
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initial guesses that are at or near the boundaries (black lines in the figures). When the initial
guess z0 is taken within a small neighborhood of the exact solution, then the minimum
number of iterations is needed. While running the simulations to obtain the fractal struc-
tures shown in Figures 1–6, we computed the total average time (seconds) required by PS9
for the complex functions under consideration, as given in Table 2. As observed, complex
functions with higher degrees (in the case of polynomials) and hyperbolic functions are
computationally more expensive.

Table 2. Execution time (seconds) required by PS9 for each Pi(z), i = 1, 2, . . . , 6.

P1(z) P2(z) P3(z) P4(z) P5(z) P6(z)

175.347 163.000 73.605 90.891 77.399 355.274

Figure 1. The polynomiographs obtained by the proposed method PS9 for P1(z).

Figure 2. The polynomiographs obtained by the proposed method PS9 for P2(z).

Figure 3. The polynomiographs obtained by the proposed method PS9 for P3(z).
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Figure 4. The polynomiographs obtained by the proposed method PS9 for P4(z).

Figure 5. The polynomiographs obtained by the proposed method PS9 for P5(z).

Figure 6. The polynomiographs obtained by the proposed method PS9 for P6(z).

3. Numerical Experiments

In this section, we performed some numerical simulations to illustrate the performance
of the proposed scheme with ninth-order convergence, i.e., PS9, as given in Equation (9).
Different types of nonlinear functions of single and multi-variable character are taken into
consideration. To further strengthen the results, some practical nonlinear models were also
touched upon, including those used in meteorology, civil, environmental, and chemical
engineering. We use the stopping criterion | f (xn)| ≤ ε, where the tolerance is chosen
as ε = 10−200 and the required precision is set to be as large as 16,000. The numerical
results obtained have been tabulated, where each table contains initial guesses, the number
of iterations (N), the number of function evaluations (FEs), the computational order of
convergence (COC), the absolute error (|δ|)), the absolute value of the underlying function
at the final approximated solution (| f (xN)|), and the CPU time consumed by each scheme
in seconds. The COC has been estimated using the usual formula [30,31]:
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COC =
log |(xn+1 − xn)/(xn − xn−1)|

log |(xn − xn−1)/(xn−1 − (xn−2)|
.

The numerical results were performed with the Mathematica 12.1 system running
under Windows 10 OS with an installed memory of 24.0 GB having a processor Intel(R)
Core(TM) i7-1065G7 CPU @ 1.30 GHz speed.

The PS9 performance shows the smallest absolute error and therefore the smallest
functional value along with comparable CPU times, as can be seen in Tables 3–7 for
the five test functions listed in problem 2. Under different initial guesses taken near
and far from the approximate roots, it can be seen from these tables that the proposed
strategy takes reasonable and sometimes smaller iterations to meet the stopping criteria.
The COC turns out to be 9, confirming the theoretical ninth-order of convergence derived
in Section 2.2.1. The functional absolute values at the last approximation considered and
the corresponding absolute errors are smaller with PS9 compared to other schemes, while
consuming a reasonable amount of CPU time. Moreover, schemes given as NR2, NZ9 and
NA9 in [5,23,24], respectively, could not produce results for the test functions f4(x) under
the initial guess x0 = −5, and f5(x) under the initial guess x0 = 0.8 including the scheme
MHM5.

Example 2.

f1(x) = log(x2 + 1) + exp(x) sin(x),

x? ≈ −0.6032319715572151673731685726070837720365.

f2(x) = sin2(x)− x2 + 1,

x? ≈ 1.4044916482153412260350868177868680771766.

f3(x) = x5 + x− 10000,

x? ≈ 6.3087771299726890947675717717830591133776.

f4(x) = sin(x) + cos(x) + x,

x? ≈ −0.4566247045676308244376974571284573758982.

f5(x) = 10x exp(−x2)− 1,

x? ≈ 1.6796306104284499406749203388379703978290.

(36)

Table 3. Numerical results for problem 2 ( f1(x)) with two different initial guesses.

Scheme IG N FE COC |δ| | f (xN)| CPU

NR2 −1 10 20 2 6.7844 × 10−668 5.0505× 10−668 3.48326× 10−1

−2.5 – – – – – cor

Halley3 −1 7 21 3 1.7886 × 10−1027 1.3314 × 10−1027 3.15791 × 10−1

−2.5 – – – – – cor

MHM5 −1 5 21 5 2.4273 × 10−1828 1.8069 × 10−1828 3.44944 × 10−1

−2.5 – – – – – cor

HD9 −1 4 20 9 8.1193 × 10−3389 6.0442 × 10−3389 4.80154 × 10−1

−2.5 – – – – – cor

NZ9 −1 4 28 9 2.3033 × 10−2756 1.7146 × 10−2756 4.36889 × 10−1

−2.5 5 35 9 5.9162 × 10−5250 4.4042 × 10−5250 5.43948 × 10−1

NA9 −1 4 24 9 2.1659 × 10−2834 1.6124 × 10−2834 3.66338 × 10−1

−2.5 5 30 9 3.6387 × 10−7825 2.7088 × 10−7825 4.52668 × 10−1

PS9 −1 4 24 9 8.0736 × 10−3066 6.0102 × 10−3066 3.70648 × 10−1

−2.5 5 30 9 1.9158 × 10−12,177 1.4262 × 10−12,177 4.51775 × 10−1

Here, “cor” stands for “converges to other root”.
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Table 4. Numerical results for problem 2 ( f2(x)) with two different initial guesses.

Scheme IG N FE COC |δ| | f (xN)| CPU

NR2 2.5 11 22 2 5.8883 × 10−766 1.4618 × 10−765 1.87692 × 10−1

3.5 11 22 2 6.3828 × 10−689 1.5845 × 10−688 1.84759 × 10−1

Halley3 2.5 7 21 3 8.0586 × 10−662 2.0005 × 10−661 1.98556 × 10−1

3.5 7 21 3 2.4776 × 10−620 6.1505 × 10−620 1.96121 × 10−1

MHM5 2.5 5 20 5 2.1016 × 10−1274 5.2173 × 10−1274 1.72745 × 10−1

3.5 5 20 5 6.4517 × 10−1038 1.6016 × 10−1037 1.73838 × 10−1

HD9 2.5 4 20 9 5.1497 × 10−2311 1.2784 × 10−2310 2.43045 × 10−1

3.5 5 25 9 2.7863 × 10−14,643 6.9168 × 10−14,643 3.09526 × 10−1

NZ9 2.5 5 35 9 8.1082 × 10−14,876 2.0128 × 10−14,875 3.31883 × 10−1

3.5 5 35 9 1.6011 × 10−13,867 3.9748 × 10−13,867 3.28469 × 10−1

NA9 2.5 4 24 9 1.5993 × 10−2089 3.9702 × 10−2089 2.03494 × 10−1

3.5 4 24 9 9.2900 × 10−2003 2.3062 × 10−2002 2.04602 × 10−1

PS9 2.5 5 30 9 1.5772 × 10−15,986 3.9154 × 10−15,986 2.46626 × 10−1

3.5 5 30 9 8.5836 × 10−14,976 2.1309 × 10−14,975 2.56761 × 10−1

Table 5. Numerical results for problem 2 ( f3(x)) with two different initial guesses.

Scheme IG N FE COC |δ| | f (xN)| CPU

NR2 3 17 34 2 1.3237 × 10−507 1.0485 × 10−503 2.93632 × 10−2

10 12 24 2 1.0211 × 10−723 8.0883 × 10−720 1.49337 × 10−2

Halley3 3 8 24 3 4.5761 × 10−734 3.6249 × 10−730 3.1627 × 10−2

10 8 24 3 1.0770 × 10−1618 8.5316 × 10−1615 1.58703 × 10−2

MHM5 3 7 28 5 1.4757 × 10−1057 1.1690 × 10−1053 3.45364 × 10−2

10 6 24 5 4.5028 × 10−4545 3.5669 × 10−4541 1.88998 × 10−2

HD9 3 6 30 9 3.3382 × 10−2585 2.6444 × 10−2581 5.35406 × 10−2

10 5 25 9 1.4417 × 10−9726 1.1420 × 10−9722 2.13777 × 10−2

NZ9 3 12 84 9 2.0186 × 10−4985 1.5991 × 10−4981 6.30927 × 10−2

10 5 35 9 4.7604 × 10−9218 3.7710 × 10−9214 2.2781 × 10−2

NA9 3 18 108 9 1.4323 × 10−5353 1.1346 × 10−5349 7.6371 × 10−2

10 6 36 9 1.2447 × 10−3038 9.8598 × 10−3035 2.16169 × 10−2

PS9 3 9 54 9 1.1880 × 10−12,908 9.4106 × 10−12,905 4.76255 × 10−2

10 5 30 9 2.6095 × 10−11,353 2.0671 × 10−11,349 1.89325 × 10−2

Example 3. Open-channel flow.

In civil and environmental engineering, it remains a challenge to relate the water flow
with factors affecting the flow within open channels including canals, drainage ditches,
gutters, and sewers. Such a flow rate is defined to be the volume of flow passing a particular
point through an area during a selected period. However, another problematic situation
occurs when the channel under consideration becomes sloppy. The following Manning’s
equation comes into play for the water flow in an open channel that is flowing under
uniform flow conditions:

Q =

√
m

n
AR2/3, (37)

where m is the slope of the channel, A is the cross-sectional area of the channel, R is
the hydraulic radius of the channel and n is the Manning’s roughness coefficient. For a
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rectangular channel having the width W and the depth of water in the channel h, it is
known that A = Wh, and:

R =
Wh

W + 2h
. (38)

With these values, (37) becomes:

Q =

√
m

n
Wh
[ Wh

W + 2h

]2/3
. (39)

Table 6. Numerical results for problem 2 ( f4(x)) with two different initial guesses.

Scheme IG N FE COC |δ| | f (xN)| CPU

NR2 −5 – – – – – div
−1/3 9 18 2 2.1180 × 10−466 4.9528 × 10−466 2.11767 × 10−1

Halley3 −5 27 81 3 2.3382 × 10−1038 5.4678 × 10−1038 8.57785 × 10−1

−1/3 7 21 3 7.8648 × 10−1170 1.8392 × 10−1169 2.40809 × 10−1

MHM5 −5 9 36 5 1.1386 × 10−3306 2.6626 × 10−3306 3.8909 × 10−1

−1/3 5 20 5 1.6473 × 10−1913 3.8522 × 10−1913 2.24586 × 10−1

HD9 −5 11 55 9 1.8961 × 10−6163 4.4340 × 10−6163 8.1018 × 10−1

−1/3 4 20 9 7.7641 × 10−3675 1.8156 × 10−3674 3.12411 × 10−1

NZ9 −5 – – – – – div
−1/3 4 28 9 7.3808 × 10−2379 1.7260 × 10−2378 3.19858 × 10−1

NA9 −5 – – – – – div
−1/3 4 24 9 2.1249 × 10−2426 4.9690 × 10−2426 2.64398 × 10−1

PS9 −5 6 36 9 7.8317 × 10−15,259 1.8314 × 10−15,258 3.7976 × 10−1

−1/3 4 24 9 2.7500 × 10−4036 6.4307 × 10−4036 2.72867 × 10−1

Here, “div” stands for “divergence”.

Table 7. Numerical results for problem 2 ( f5(x)) with two different initial guesses.

Scheme IG N FE COC δ | f (xN)| CPU

NR2 1 10 20 2 3.5191 × 10−674 9.7264 × 10−674 1.47033 × 10−1

8 × 10−1 – – – – – div

Halley3 1 8 24 3 3.5230 × 10−1414 9.7372 × 10−1414 1.92348 × 10−1

8 × 10−1 9 27 3 7.2446 × 10−1345 2.0023 × 10−1344 2.23313 × 10−1

MHM5 1 5 20 5 9.4742 × 10−1903 2.6186 × 10−1902 1.50974 × 10−1

8 × 10−1 – – – – – div

HD9 1 4 20 8.9999 5.9828 × 10−2649 1.6536 × 10−2648 2.10601 × 10−1

8 × 10−1 6 30 8.9999 2.3478 × 10−2593 6.4892 × 10−2593 3.11126 × 10−1

NZ9 1 5 35 9 1.0297 × 10−4910 2.8460 × 10−4910 3.10084 × 10−1

8 × 10−1 – – – – – div

NA9 1 5 30 9 2.0815 × 10−8678 5.7532 × 10−8678 2.14216 × 10−1

8 × 10−1 – – – – – div

PS9 1 5 30 9 4.8523 × 10−12,769 1.3411 × 10−12,768 2.14661 × 10−1

8 × 10−1 5 30 9 5.1698 × 10−11,170 1.4289 × 10−11,169 2.20604 × 10−1
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As per the requirement wherein one needs to determine the depth of water h in the
channel for a given quantity of water, the above equation can be rewritten as follows:

f (h) =
√

m
n

Wh
[ Wh

W + 2h

]2/3
−Q. (40)

The depth of water h in the channel has been estimated while assuming the rest of the
parameters as Q = 14.15 m3/s, W = 4.572 m, n = 0.017 and m = 0.0015. The initial guess
is taken to be h0 = 8.5 m. The numerical results under different schemes are shown in
Table 8. It can be observed from this table that the functional value and the absolute error
are smallest with HD9, whereas PS9 competes well enough and consumes less time while
maintaining ninth-order convergence, as given by COC in the fourth column of Table 8.

Table 8. Numerical results for the problem 3 with the initial guess h0 = 8.5 m.

Scheme N FE COC |δ| | f (xN)| CPU

NR2 10 20 2 2.9995 × 10−753 4.0739 × 10−752 5.56574 × 10−2

Halley3 7 21 3 4.7746 × 10−947 6.4848 × 10−946 8.73257 × 10−2

MHM5 5 20 5 4.1591 × 10−1797 5.6489 × 10−1796 5.60582 × 10−2

HD9 4 20 9 7.4120 × 10−3264 1.0067 × 10−3262 8.84709 × 10−2

NZ9 4 28 9 3.8534 × 10−2588 5.2337 × 10−2587 1.33463 × 10−1

NA9 4 24 9 1.4631 × 10−2431 1.9872 × 10−2430 7.27594 × 10−2

PS9 4 24 9 1.1984 × 10−3119 1.6277 × 10−3118 8.00343 × 10−2

Example 4. Planck’s radiation law.

Consider the following Planck’s radiation law problem:

φ(λ) =
8πchλ−5

exp(ch/λkT)− 1
, (41)

which calculates the energy density within an isothermal blackbody. Here, λ stands for
the wavelength of the radiation, T is the absolute temperature of the blackbody, k is
Boltzmann’s constant, h is the Planck’s constant, and c shows the speed of light. Here,
we compute the wavelength λ which corresponds to the maximum energy density φ(λ).
Using (41), we obtain:

φ′(λ) =
8πch

λ7kT(exp(ch/λkT)− 1)2

[
5λkT + (−5λkT + ch) exp(ch/λkT)

]
, (42)

or:

φ′(λ) =
[ 8πchλ−6

exp(ch/λkT)− 1

][ (ch/λkT) exp(ch/λkT)
exp(ch/λkT)− 1

− 5
]
= LM . (43)

It is easy to see that a maximum for φ occurs when M = 0, that is, when:

(ch/λkT) exp(ch/λkT)
exp(ch/λkT)− 1

= 5. (44)

Substituting x = ch/λkT, the above equation can be rewritten as

exp(−x)− 1 +
x
5
= 0. (45)

The numerical results from the application problem 4 regarding Planck’s radiations
are listed in Table 9 in which it is observed that the functional value and the corresponding
absolute error are smaller under PS9 with a reasonable amount of CPU time while taking
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only five iterations to meet the stopping criterion. It is worth noting that the schemes NR2,
Halley3, MHM5, and HD9 converge to a solution other than the required one.

Table 9. Numerical results for the problem 4 with initial guess x0 = 1.5 m.

Scheme N FE COC |δ| | f (xN)| CPU

NR2 – – – – – cor
Halley3 – – – – – cor
MHM5 – – – – – cor

HD9 – – – – – cor
NZ9 4 28 8.9980 8.6591 × 10−1833 1.6714 × 10−1833 1.83824 × 10−1

NA9 4 24 8.9980 3.7106 × 10−1820 7.1623 × 10−1821 1.58117 × 10−1

PS9 5 30 9 3.9539 × 10−6413 7.6320 × 10−6414 1.48649 × 10−1

Example 5. Volume from van der Waals equation.

A well-known model from chemistry used for determining the difference between
ideal and real gases is known as the van der Waals nonlinear equation which is given as
follows: [

P +
n2k
V2

]
(V − nh) = nRT, (46)

where k and h are the positive real parameters also known as the van der Waals constants
which depend on the type of gas under consideration. Moreover, constants P, V, T are the
pressure, volume, and temperature of the gas. R ≈ 0.0820578 is the gas constant and n
represents the number of moles. The equation given above is simplified as follows:

f (V) = PV3 −V2(RT + hP)n + n2kV − hkn3. (47)

The following third degree polynomial can be obtained under k = 18, h = 0.1154,
n = 1.4, P = 40 atm, and T = 500 ◦C:

40V3 − 95.26535116V2 + 35.28V − 5.6998368 = 0. (48)

The approximate solution of (48) correct to 40 dp is as follows:

2.1544346900318837217592935665193504952593.

We solved the Equation (48) with the schemes under consideration taking V0 = 0.0,
resulting in the data shown in Table 10. It can be observed that PS9 produces the smallest
absolute error with the least CPU time, followed by the ninth-order scheme NA9. Each
scheme, for this particular problem, needs many more iterations than PS9. This applied
problem shows the highest performance of PS9 in terms of number of iterations, number of
function evaluations, absolute error, absolute functional value and CPU time.

Table 10. Numerical results for the problem 5 with the initial guess V0 = 0.0 m.

Scheme N FE COC |δ| | f (xN)| CPU

NR2 43 86 2 3.6193 × 10−437 4.5554 × 10−435 6.41579 × 10−2

Halley3 67 201 3 9.3314 × 10−649 1.1745 × 10−646 8.29023 × 10−2

MHM5 66 264 5 1.1626 × 10−2639 1.4634 × 10−2637 1.32827 × 10−1

HD9 33 165 9 1.3850 × 10−5655 1.7433 × 10−5653 1.15104 × 10−1

NZ9 12 84 9 1.2468 × 10−4992 1.5693 × 10−4990 4.8313 × 10−2

NA9 14 84 9 2.1302 × 10−12,469 2.6812 × 10−12,467 5.24887 × 10−2

PS9 9 54 9 9.5118 × 10−11,767 1.1972 × 10−11,764 2.63721 × 10−2

The schemes NR2 and PS9 have been used for solving two nonlinear three-dimensional
systems given by problems 6 and 7. Here, we chose only NR2 and PS9 because the simula-
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tions obtained under other schemes behave dynamically in the same way as that shown in
the univariate cases discussed above. For the steady-state of the Lorenz Equations (49) and
the system (51), Tables 11 and 12 show that, at little high computational cost, PS9 yields
the smallest error norm δn+1 = ||xn+1 − xn||∞ and the smallest absolute functional values
under different initial conditions. Additionally, PS9 takes very few iterations to meet the
stopping criterion. The numerical results of these two systems are in favor of PS9, showing
that PS9 is applicable for both univariate (single nonlinear equation) and multivariate
(system of nonlinear equations) cases, while maintaining its ninth-order convergence.

Example 6. Lorenz system in steady-state [32] (p. 816)

x1 − x2 = 0,

2x1 − x1x3 − x2 = 0,

x1x2 − 3x3 = 0.

(49)

The approximate solution for the system (49) correct to 50 dp is given by

x ≈

1.7320508075688772935274463415058723669428052538104
1.7320508075688772935274463415058723669428052538104

1

. (50)

Table 11. Numerical results for problem 6 with different initial guesses.

Scheme IG N | f (xN)| δ CPU

NR2 [2, 2, 2]T 10 [0, 7× 10−633, 1× 10−632]T 7× 10−632 1.5047× 10−1

PS9 – 4 [0, 6× 10−3692, 1× 10−3691]T 8× 10−3692 2.1441× 10−1

NR2 [1, 1, 1]T 10 [0, 0, 3× 10−585]T 1× 10−585 1.2649× 10−1

PS9 – 4 [0, 0, 5× 10−3496]T 2× 10−3496 2.1011× 10−1

NR2 [0.7, 3.2, 2.7]T 20 [0, 1× 10−452, 2× 10−452]T 2× 10−452 2.6031× 10−1

PS9 – 5 [0, 1× 10−7030, 2× 10−7030]T 2× 10−7030 2.9860× 10−1

Example 7. Another nonlinear system of three equations, taken from [33], is:

3x1 − cos(x2x3)− 1/2 = 0,

x2
1 − 81(x2 + 0.1)2 + sin(x3) + 1.06 = 0,

exp(−x1x2) + 20x3 + (10π/3− 1) = 0,

(51)

where its approximate solution up to 50 dp is:

x ≈

 0.49814468458949119126228211413809456132099782481239
0

−0.52882597757338745562224205210357569604547206124467

. (52)

The numerical results for the system (51) are shown in Table 12 showing the good performance of
the proposed method.
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Table 12. Numerical results for problem 7 with different initial guesses.

Scheme IG N | f (xN)| δ CPU

NR2 [1, 1, 1] 10 [2× 10−648, 6× 10−645, 5× 10−648] 2× 10−646 1.00× 100

PS9 – 5 [3× 10−3994, 1× 10−3992, 3× 10−3994] 1× 10−3992 1.18× 100

NR2 [3, 2,−2]T 10 [1× 10−749, 6× 10−747, 8× 10−750] 4× 10−748 1.23× 100

PS9 – 5 [1× 10−2076, 6× 10−2074, 9× 10−2077] 4× 10−2075 1.15× 100

NR2 [7, 1,−4]T 10 [9× 10−495, 5× 10−492, 8× 10−495] 2× 10−1 8.50× 10−1

PS9 – 6 [2× 10−6869, 1× 10−6866, 2× 10−6869] 7× 10−6868 1.16× 100

4. Concluding Remarks

A new ninth-order convergent scheme, with six function evaluations per iteration,
to solve nonlinear models in both univariate and multivariate cases is proposed by blending
a third-order modified Newton’s and the third-order Halley’s schemes. The theoretical
order of convergence with the asymptotic error term was obtained via Taylor’s expansion
and the efficiency index was calculated to be approximately 1.4422. The proposed scheme
was found to be accurate and reliable enough in terms of iteration counts, number of
function evaluations, absolute errors, and CPU time. This was further confirmed when
the schemes under consideration were used to solve several applied models in different
fields. Two-dimensional phase diagrams, using the proposed scheme, were obtained to
show basins of attraction for the stability of PS9.

The presented scheme (9), which comes in the category of the schemes without
memory, requires the evaluation of three inverse operators per iteration. In addition,
such schemes also require many multiplication and division operations while computing
derivatives and inverse operators. All such evaluations will increase, to some extent,
the amount of computational work of the scheme. Thus, future work would include
the modification of PS9 as a numerical scheme with memory, keeping in mind the time
efficiency and the computational complexity. Moreover, first- and second-order derivatives
involved in PS9 can be replaced using appropriate finite-difference approximations to
avoid complexity with the analytical expressions. Such analyses will be carried out in our
future research studies.

Author Contributions: Conceptualization, S.Q. and H.R.; methodology, S.Q., H.R. and A.K.S.;
validation, S.Q. and H.R.; formal analysis, S.Q., H.R. and A.K.S.; investigation, S.Q., H.R. and
A.K.S.; data curation, S.Q. and H.R.; writing—original draft preparation, S.Q., H.R. and A.K.S.;
writing—review and editing, S.Q., H.R. and A.K.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research did not receive any funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The first author of this manuscript is thankful to the Mehran University of
Engineering and Technology, Jamshoro, for provide a serene environment and facilities to carry out
this research work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kaplan, E. Understanding GPS: Principles and Applications; Artech House: Boston, MA, USA, 1996.
2. Rouzbar, R.; Eyi, S. Reacting flow analysis of a cavity-based scramjet combustor using a Jacobian-free Newton–Krylov method.

Aeronaut. J. 2018, 122, 1884–1915. [CrossRef]

http://doi.org/10.1017/aer.2018.110


Mathematics 2021, 9, 1996 18 of 18

3. Nourgaliev, R.; Greene, P.; Weston, B.; Barney, R.; Anderson, A.; Khairallah, S.; Delplanque, J.P. High-order fully implicit solver
for all-speed fluid dynamics. Shock Waves 2019, 29, 651–689. [CrossRef]

4. Zhang, H.; Guo, J.; Lu, J.; Niu, J.; Li, F.; Xu, Y. The comparison between nonlinear and linear preconditioning JFNK method for
transient neutronics/thermal-hydraulics coupling problem. Ann. Nucl. Energy 2019, 132, 357–368. [CrossRef]

5. Traub, J.F. Iterative Methods for the Solution of Equations; American Mathematical Society: Providence, RI, USA, 1982; Volume 312.
6. Rafiullah, M. A fifth-order iterative method for solving nonlinear equations. Numer. Anal. Appl. 2011, 4, 239–243. [CrossRef]
7. Ganji, D.D. The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer. Phys. Lett. A

2006, 355, 337–341. [CrossRef]
8. Abbasbandy, S. Improving Newton–Raphson method for nonlinear equations by modified Adomian decomposition method.

Appl. Math. Comput. 2003, 145, 887–893. [CrossRef]
9. He, J.H.; Wu, X.H. Variational iteration method: New development and applications. Comput. Math. Appl. 2007, 54, 881–894.

[CrossRef]
10. Tari, H.; Ganji, D.D.; Babazadeh, H. The application of He’s variational iteration method to nonlinear equations arising in heat

transfer. Phys. Lett. A 2007, 363, 213–217. [CrossRef]
11. Noor, M.A.; Waseem, M. Some iterative methods for solving a system of nonlinear equations. Comput. Math. Appl. 2009, 57,

101–106. [CrossRef]
12. Zafar, F.; Mir, N.A. A generalized family of quadrature based iterative methods. Gen. Math. 2010, 18, 43–51.
13. Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. A modified Newton–Jarratt’s composition. Numer. Algorithms 2010, 55,

87–99. [CrossRef]
14. Noor, M.A.; Noor, K.I. Three-step iterative methods for nonlinear equations. Appl. Math. Comput. 2006, 183, 322–327.
15. Noor, M.A.; Noor, K.I.; Al-Said, E.; Waseem, M. Some new iterative methods for nonlinear equations. Math. Probl. Eng. 2010,

2010, 198943. [CrossRef]
16. Shah, F.A.; Noor, M.A.; Waseem, M. Some second-derivative-free sixth-order convergent iterative methods for non-linear

equations. Maejo Int. J. Sci. Technol. 2016, 10, 79.
17. Abro, H.A.; Shaikh, M.M. A new time-efficient and convergent nonlinear solver. Appl. Math. Comput. 2019, 355, 516–536.

[CrossRef]
18. Darvishi, M.T.; Barati, A. A third-order Newton-type method to solve systems of nonlinear equations. Appl. Math. Comput. 2007,

187, 630–635. [CrossRef]
19. Torregrosa, J.R.; Argyros, I.K.; Chun, C.; Cordero, A.; Soleymani, F. Iterative methods for nonlinear equations or systems and

their applications 2014. J. Appl. Math. 2014, 2014, 293263. [CrossRef]
20. Chen, D.; Argyros, I.K.; Qian, Q.S. A note on the Halley method in Banach spaces. Appl. Math. Comput. 1983, 58, 215–224.

[CrossRef]
21. Noor, M.A.; Khan, W.A.; Hussain, A. A new modified Halley method without second derivatives for nonlinear equation. Appl.

Math. Comput. 2007, 189, 1268–1273. [CrossRef]
22. Ding, H.F.; Zhang, Y.X.; Wang, S.F.; Yang, X.Y. A note on some quadrature based three-step iterative methods for non-linear

equations. Appl. Math. Comput. 2009, 215, 53–57. [CrossRef]
23. Nazeer, W.; Nizami, A.R.; Tanveer, M.; Sarfraz, I. A ninth-order iterative method for nonlinear equations along with polynomiog-

raphy. J. Prime Res. Math. 2017, 13, 41–55.
24. Naseem, A.; Rehman, M.A.; Abdeljawad, T. Higher-Order Root-Finding Algorithms and Their Basins of Attraction. J. Math. 2020,

2020, 5070363. [CrossRef]
25. Scott, M.; Neta, B.; Chun, C. Basin attractors for various methods. Appl. Math. Comput. 2011, 218, 2584–2599. [CrossRef]
26. Stewart, B.D. Attractor Basins of Various Root-Finding Methods; Naval Postgraduate School: Monterey, CA, USA, 2001.
27. Halley, E. A new, exact, and easy method of finding the roots of any equations generally, and that without any previous reduction.

Philos. Trans. Roy. Soc. Lond. 1694, 18, 136–145. [CrossRef]
28. Chen, H.; Zheng, X. Improved Newton Iterative Algorithm for Fractal Art Graphic Design. Complexity 2020, 2020, 6623049.

[CrossRef]
29. Susanto, H.; Karjanto, N. Newton’s method’s basins of attraction revisited. Appl. Math. Comput. 2009, 215, 1084–1090. [CrossRef]
30. Weerakoon, S.; Fernando, T.G.I. A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 2000,

13, 87–93. [CrossRef]
31. Grau-Sánchez, M.; Noguera, M.; Gutiérrez, J.M. On some computational orders of convergence. Appl. Math. Lett. 2010, 23,

472–478. [CrossRef]
32. Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers; McGraw-Hill Higher Education: Boston, MA, USA, 2010.
33. Burden, R.L.; Faires, J.D. Numerical Analysis; Brooks/Cole, Cengage Learning: Boston, MA, USA, 2011.

http://dx.doi.org/10.1007/s00193-018-0871-8
http://dx.doi.org/10.1016/j.anucene.2019.04.053
http://dx.doi.org/10.1134/S1995423911030062
http://dx.doi.org/10.1016/j.physleta.2006.02.056
http://dx.doi.org/10.1016/S0096-3003(03)00282-0
http://dx.doi.org/10.1016/j.camwa.2006.12.083
http://dx.doi.org/10.1016/j.physleta.2006.11.005
http://dx.doi.org/10.1016/j.camwa.2008.10.067
http://dx.doi.org/10.1007/s11075-009-9359-z
http://dx.doi.org/10.1155/2010/198943
http://dx.doi.org/10.1016/j.amc.2019.03.012
http://dx.doi.org/10.1016/j.amc.2006.08.080
http://dx.doi.org/10.1155/2014/293263
http://dx.doi.org/10.1016/0096-3003(93)90137-4
http://dx.doi.org/10.1016/j.amc.2006.12.011
http://dx.doi.org/10.1016/j.amc.2009.04.036
http://dx.doi.org/10.1155/2020/5070363
http://dx.doi.org/10.1016/j.amc.2011.07.076
http://dx.doi.org/10.1098/rstl.1694.0029
http://dx.doi.org/10.1155/2020/6623049
http://dx.doi.org/10.1016/j.amc.2009.06.041
http://dx.doi.org/10.1016/S0893-9659(00)00100-2
http://dx.doi.org/10.1016/j.aml.2009.12.006

	Introduction
	Previous Materials and Methods
	Brief Overview of Some Existing Schemes
	Proposed Numerical Scheme
	Convergence Analysis for f(x)=0
	Convergence Analysis for bold0mu mumu F(x)=0F(x)=02005/06/28 ver: 1.3 subfig packageF(x)=0F(x)=0F(x)=0F(x)=0
	Numerical Comparison
	Basins of Attraction


	Numerical Experiments
	Concluding Remarks
	References

