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Abstract: An adaptive proportional integral robust (PIR) control method based on deep deterministic
policy gradient (DDPGPIR) is proposed for n-link robotic manipulator systems with model uncer-
tainty and time-varying external disturbances. In this paper, the uncertainty of the nonlinear dynamic
model, time-varying external disturbance, and friction resistance of the n-link robotic manipulator are
integrated into the uncertainty of the system, and the adaptive robust term is used to compensate for
the uncertainty of the system. In addition, dynamic information of the n-link robotic manipulator is
used as the input of the DDPG agent to search for the optimal parameters of the proportional integral
robust controller in continuous action space. To ensure the DDPG agent’s stable and efficient learning,
a reward function combining a Gaussian function and the Euclidean distance is designed. Finally,
taking a two-link robot as an example, the simulation experiments of DDPGPIR and other control
methods are compared. The results show that DDPGPIR has better adaptive ability, robustness, and
higher trajectory tracking accuracy.

Keywords: n-link robot; deep deterministic policy gradient; adaptive control; proportional integral
robust control; reward function

1. Introduction

A robotic manipulator is similar to the human arm and can replace or assist humans
to complete the tasks of picking, placing, painting, welding, and assembling. The manipu-
lator plays an important role in industrial production, underwater exploration, medical
application, aerospace, and other fields [1–4]. To achieve a better control effect and meet
the control requirements of different fields, the manipulator must have the ability to track
a trajectory with high precision. Due to the highly nonlinear, dynamic characteristics
of a robotic manipulator, and the influence of joint friction and time-varying external
interference in practical applications, it is difficult to obtain accurate information about
model parameters. Therefore, when designing a control strategy, good adaptability and
high-precision trajectory tracking abilities are necessary for the uncertainty of the n-link
robotic manipulator system.

In order to better control the robot manipulator, the robustness of the control strategy
has attracted extensive attention. Robustness here refers to the ability to produce good
dynamic behavior in the face of modelling errors and unmodelled dynamics of the robot
manipulator [5,6]. Loucif and Kechida [7] and Elkhateeb et al. [8] used a whale optimization
algorithm and an artificial bee colony algorithm, respectively, to optimize the parameters
of the proportion integral differential (PID) controller, improve the trajectory tracking
accuracy of the robot manipulator under unmodeled dynamics, and make the controller
have a certain robustness. In order to model the control process of the robot manipulator
more accurately, Ardeshiri et al. [9,10] proposed a fractional order fuzzy PID controller.
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A fractional order controller summarizes the design of an integer order PID controller and
extends it from point to plane. This extension increases the flexibility of control system
design and can realize the control process more accurately. With the help of a fractional
order PID controller, the controller can be designed to ensure that the closed-loop system
has a stronger robustness to gain variation and aging effect [11]. Therefore, PID and other
model-based control strategies have proved to be effective, but these methods need to
obtain dynamic model information of the controlled object. In the actual control process,
it is difficult to obtain accurate information due to the complexity of the manipulator
mechanism and the uncertainty of external interference [12,13]. To solve this problem, it is
necessary to compensate or approximate the uncertainty and time-varying external distur-
bance of the nonlinear dynamic model to meet the demand of actual control. Wang [14]
used the robust controller to compensate for the uncertainty, unmodeled dynamics, and
external interference of the dynamic model parameters of the robot manipulator, and so
realized accurate tracking for it. Yang and Jiang [15] and Rouhani [16] used a fuzzy logic
system to approximate the nonlinear dynamic model of the robot manipulator. However,
the design of the fuzzy logic system depends on expert knowledge. A neural network is
good at approximating the uncertain mathematical model, and it is one of the effective
solutions to nonlinear system control problems. Yang et al. [17] proposed an adaptive
neural network control method based on a nonlinear observer. The joint speed of the
manipulator is estimated by a nonlinear observer, and, based on the estimated value of
the speed, an adaptive radial basis function neural network is used to compensate for
the uncertainty of the robotic manipulator system, to improve the tracking accuracy of
its end force and its joint position. Guo et al. [18] proposed an adaptive neural network
control method, which uses the weighted performance function to control the joint angle
and the trajectory tracking error within an expected range, approximates the dynamic
model of the manipulator through the radial basis function neural network, and uses the
adaptive law to adjust the weights of the neural network, to improve the robustness of the
controller. Although the neural network has a good compensation or approximation effect
for the uncertainty and time-varying disturbance of the nonlinear dynamic model, training
the network is likely to converge to the local optimal problem. Therefore, a robust term
based on deep reinforcement learning is proposed to compensate for the modeling error of
the nonlinear dynamic model of an n-link robot manipulator. Under conditions of struc-
tural parameter perturbation, time-varying external interference, and friction resistance,
the influence of the uncertainty of the dynamic model on the controller can be reduced
so as to maintain the stability of the control system and improve the trajectory tracking
performance of an n-link robotic manipulator.

As an important branch of artificial intelligence technology, reinforcement learning
mainly selects actions through interactive learning between agents and the environment.
The environment responds to the actions of agents and transforms them into a new state.
At the same time, it generates a reward. The agent’s goal is to maximize the accumulated
discount reward value [19,20]. Compared with the classical control method, reinforcement
learning does not need to obtain an accurate dynamic model, which is very advanta-
geous in solving the decision sequence problem under highly nonlinear and uncertain
conditions [21]. Kukker and Sharma [22] and Runa et al. [23] used the fuzzy Q-learning
algorithm to realize trajectory tracking control of the manipulator. Kim et al. [24] used the
State-Action-Reward-State-Action (SARSA) algorithm to locate fixed and random target
points of the end effector of a three-link Planar Arm. Although Q-learning and SARSA can
effectively solve some typical reinforcement learning tasks, the algorithms need to be built
in discrete space. Therefore, in the control problem, it is often necessary to discretize the
continuous process. However, sparse discretization can easily reduce the control accuracy,
and dense discretization can easily fall into the curse of the dimension problem [25,26].
One method for solving this problem is to effectively combine deep learning with reinforce-
ment learning. A deep neural network is used, in traditional reinforcement learning, to
model solutions to continuous reinforcement learning tasks [27,28]. Based on this method,
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Lillicrap et al. [29] proposed a depth deterministic strategy gradient algorithm based on
the actor critic framework. Shi et al. [30] used the DDPG algorithm to deal with con-
trolling the zinc electro winning (Zep) process, which effectively solved the problems
of inaccurate modeling and time delay, while also being more energy-saving than the
traditional control method. Sun et al. [31] used this algorithm to solve the heavy vehicle
adaptive cruise decision-making problem, which has good adaptability in a strange and
complex environment. Zhao et al. [32] solved the cooperative control problem of wind
farms through the DDPG algorithm and reduced the learning cost in the learning process.
Therefore, the DDPG algorithm seems to be effective in solving multiple continuous-state
space reinforcement learning tasks.

The purpose of this paper is to establish an n-link robotic manipulator control system
with a model for uncertainty and time-varying external disturbances. An adaptive PIR
control method based on deep reinforcement learning is proposed. The modeling error of
the nonlinear dynamic model of an n-link manipulator is compensated by robust control,
and the parameters of the controller are adjusted by a DDPG algorithm to improve the
adaptability of the controller to the uncertain, nonlinear, dynamic model. The main
contributions of this paper are as follows:

• Considering the uncertainty and time-varying disturbance of the dynamic model of the
n-link robot manipulator system and the influence of friction resistance, the adaptive
robust term is used to compensate for the uncertainty of the system. An adaptive
PIR control method based on the DDPG is proposed, which has good adaptability
and high-precision trajectory tracking ability for the uncertainty of the n-link robot
manipulator system.

• A reward function combining a Gaussian function and the Euclidean distance is
proposed, which can ensure the reinforcement learning agent learns efficiently and
stably and can effectively avoid a convergence of the deep neural network to the local
optimal problem.

• Taking a two-link robotic manipulator as an example, the simulation results show that
the proposed method is effective compared with an adaptive control based on radial
basis function neural network (RBFNN) approximation and PIR control with fixed
parameters.

2. Dynamic Model of the n-Link Robot Manipulator

The dynamic model of the n-link robotic manipulator system expresses the relationship
between the joint torque and the position, velocity, and acceleration of the connecting rod:

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) + Ff

( .
q
)
+ τd = τ (1)

where q ∈ Rn is the joint position vector of the manipulator,
.
q ∈ Rn is the velocity vector

of the manipulator,
..
q ∈ Rn is the acceleration vector of the manipulator, M(q) ∈ Rn×n

is the mass inertia matrix, C
(
q,

.
q
)
∈ Rn×n is the Coriolis force and the centrifugal force

vector, G(q) ∈ Rn×n is the gravity vector, Ff
( .
q
)
∈ Rn is the friction vector, τd ∈ Rn is the

time-varying external disturbance, and τ ∈ Rn is the torque vector acting on the joint.
The precise values of the M(q), C

(
q,

.
q
)
, and G(q) parameters in the dynamic model

are difficult to obtain due to a series of influential factors, such as the complexity of the
manipulator mechanism, environmental variations, and measurement errors in the actual
operation of the manipulator. Therefore, the actual values for M(q), C

(
q,

.
q
)
, and G(q) are

divided into the model part and the error part as follows:

M(q) = M0(q) + ∆EM(q) (2)

C
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.
q
)
= C0

(
q,

.
q
)
+ ∆EC

(
q,

.
q
)

(3)

G(q) = G0(q) + ∆EG(q) (4)
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The dynamic model Formula (1) of the n-link robot manipulator can also be expressed
as follows:

M0(q)
..
q + C0

(
q,

.
q
) .
q + G0(q) + E

(
q,

.
q
)
+ Ff

( .
q
)
+ τd = τ (5)

E
(
q,

.
q
)
= ∆EM(q)

..
q + ∆EC

(
q,

.
q
) .
q + ∆EG(q) (6)

Property 1 ([33]). The mass inertia matrix M0(q) is symmetric, positive definite and bounded and
can be expressed as follows:

µm < ‖M0(q)‖ < µn (7)

where ‖M0(q)‖ is the norm of the mass inertia matrix M0(q); µn and µm are the upper and lower
boundaries, respectively, and both are positive numbers.

Property 2 ([34]). Coriolis force and centrifugal force matrix is C0
(
q,

.
q
)
. The following equation

is satisfied:
ξT
( .

M0(q)− 2C0
(
q,

.
q
))

ξ = 0 (8)

Among them,
( .

M0(q)− 2C0
(
q,

.
q
))

. It is a skew symmetric matrix, ξ ∈ Rn.

Property 3 ([35]). The gravity vector G(q) satisfies ‖G(q)‖ < ρ, ρ ∈ (0, ∞).

3. DDPGPIR Control Design

In this paper, a control strategy for DDPGPIR for the n-link robotic manipulator system
with a model for uncertainty and time-varying external disturbances is proposed. The
control strategy includes PIR control design, reinforcement learning and policy gradient
method, DDPG adaptive PIR control, DDPGPIR network design, the DDPGPIR learning
process, and the reward function.

3.1. PIR Control Design

In the n-link robotic manipulator system, the position error e(t) is the difference
between the expected joint angle qd(t) and the actual joint angle q(t). The position error
and the error function are defined as follows:

e(t) = qd(t)− q(t) (9)

s =
.
e + Λe (10)

where Λ = ΛT =

 Kr1 · · · 0
...

. . .
...

0 · · · Krn

. Take
.
qs = s(t) +

.
q(t). Then:

.
qs =

.
qd + Λe (11)

..
qs =

..
qd + Λe (12)

Therefore, the dynamic model Equation (3) of the n-link robotic manipulator can be
expressed as follows:
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where
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Es = ∆M(q)
..
qs + ∆C

(
q,

.
q
) .
qs + ∆G(q) + Ff

( .
q
)
+ τd (15)

In PIR control [36], the control law is designed as follows:

τ = τm + τpi + v (16)

τm = M0(q)
..
qs + C0

(
q,

.
q
) .
qs + G0(q) (17)

τpi = Kps + Ki

∫
sdt (18)

v = Kssgn(s) (19)

where τ is the torque applied to each joint of the n-link robotic manipulator, τm is the torque
control term of the model, Kp and Ki are the gain of the proportional term and the gain of
the integral term, respectively, and τs is the robust term used to compensate the nonlinear
dynamic model error and external disturbance. From Equation (13) and Equation (16), it
can be concluded that:

M(q)
.
s + C

(
q,

.
q
)
s + Ki

∫ t

0
sdt = −Kps− Kssgn(s) + Es (20)

Select the Lyapunov function as follows:

V =
1
2

sT Ms +
1
2

(∫ t

0
sdτ

)T
Ki

(∫ t

0
sdτ

)
(21)

The derivation on both sides of the equation leads to:

.
V = sT

[
M

.
s + 1

2

.
Ms + Ki

∫ t
0 sdτ

]
= sT

[
M

.
s + Cs + Ki

∫ t
0 sdτ

]
= sT[−Kps− Kssgn(s) + Es

]
= −sTKps−

n
∑

i=1
Ksii|s|i + sTE

(22)

Because of Ksii ≥ |Ei|,
.

V ≤ −sTKps ≤ 0. Therefore, the control system is asymptoti-
cally stable.

3.2. Reinforcement Learning and Policy Gradient Method

Reinforcement learning is an important branch of machine learning, which is mainly
composed of environment, agent, reward, state, and action. When the agent performs
action at on the environment in state st, the environment will give the agent a reward
rt+1, the state changes to the next state st+1, and the future reward value passes through
the discount coefficient γ(0 ≤ γ ≤ 1) After weighting, the cumulative reward rt can be
expressed as:

rt =
∞

∑
k=0

γkrt+k+1 = rt+1 + γrt+2 + γ2rt+3 + · · · (23)

The policy of reinforcement learning is the functional relationship π between state
space and action space. The objective of a policy-based reinforcement learning method is
to try to find the optimal strategy π∗ to maximize the cumulative reward. In the strategy
gradient method, the optimal strategy is updated along the gradient direction of the
expected cumulative reward as follows:

J(θ) = E
(

N

∑
l=0

r(sl , al)|πθ

)
= ∑

σ

P(σ|θ)r(σ) (24)

θh+1 = θh + ϑ∇θ J(π(θh)) (25)
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where θ is the parameter vector of the policy, J(θ) is the objective function of reinforcement
learning, σ = (s0, a0, s1, a1, · · · sl , al) is a group of state action sequences, and P(σ|θ) is the
action sequence σ Probability of occurrence, ϑ is the learning rate and h is the number of
the current update.

3.3. DDPG Adaptive PIR Control

The schematic diagram of the DDPGPIR control system of the n-link robot manipula-
tor is shown in Figure 1. The input of the controller is the error vector e = (e1, e2, · · · en)
of the n-link robot manipulator. The output is the torque vector acting on the joint
τ = (τ1, τ2, · · · τn). The control performance of the DDPGPIR mainly depends on the
parameter vector g =

(
Kp1, Ki2, Ks2, Kr2, · · ·Kpn, Kin, Ksn, Krn

)
. The control problem of the

n-link robot manipulator can be expressed as:

min
g

n

∑
j=1

ej
(
qd j, qj

(
gj, pj

))
(26)

where the vector qd is the expected joint angle, q is the actual joint angle, p is the physical
parameter of n-link robot manipulator, and j is the j-th link.
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To improve the adaptability and trajectory tracking accuracy of the n-link robot manip-
ulator, the parameter vector of DDPGPIR needs to be adjusted and optimized in real time.
However, the process of setting the parameter is time-consuming, and the optimization
process is continuous; it is not advisable to adjust the parameters manually. Therefore, it is
necessary to find the optimal strategy function µ∗(x), which is one of the effective methods
for solving this problem. The state vector xt = (τ1, e1,

∫
e1dt, · · · , τn, en,

∫
endt) is input

into the optimal strategy function to obtain the optimal parameter vector gt. The goal of
reinforcement learning is to find the optimal strategy for maximizing cumulative rewards.
The objective function can be expressed as:

Jβ(µ) = max
µ

E
[

∞

∑
k=0

γkrt+k+1|xt = x , gt = µ(xt)

]
(27)

where β is the behavior strategy and γ ∈ (0, 1) is the discount factor.
To find the optimal strategy for maximizing the objective function, the strategy gradi-

ent method is usually used to select and execute actions from the distribution function of
strategy probability in each time step. However, this method needs to sample continuous
actions in each time step, which is a huge calculation process. To solve this problem, the de-
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terministic strategy gradient method is used to simplify the calculation process. Therefore,
the gradient of the objective function is calculated as follows:

∇θµ J ≈ Ext∼ρβ

[
∇θµ Qµ(xt, µ(xt))

]
= Ext∼ρβ

[
∇θµ Q

(
x, g; θQ)∣∣

x=xt ,g=µ(xt |θµ)

]
= Ext∼ρβ

[
∇gQ(x, g

∣∣∣θQ)
∣∣∣x=xt ,g=µ(xt)∇θµ µ(xt

∣∣∣θµ)
∣∣∣
x=xt

] (28)

3.4. Network Design of DDPGPIR

The network structure of DDPGPIR includes an actor network, a critic network, and
a corresponding target network. The structure of the actor network is shown in Figure 2.
The input is the state vector xt of the n-link robot manipulator, the two middle hidden
layers are the full connection layer and the activation layer, and the output layer is the
parameter vector gt. The structure of the critic network is shown in Figure 3. The input
includes state vector xt and parameter vector gt. The four middle hidden layers are the
full connection layer, activation layer, superposition layer and activation layer. The output
layer is the Q value of action.
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To make the training data relatively independent, to accelerate the convergence speed,
and to improve the stability of the network update process, the data used for the cur-
rent network update are not the previous state data obtained by decision-making, but
M small batch sample data randomly selected from the experience replay memory. The
critic network includes the current critic network Q(g, x

∣∣θQ) and the target critic net-
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work Q′
(

θQ′
)

.The current critic network is updated using a gradient descent method by
minimizing the loss function as follows:

Qtarget = ri + γQ′
(

xi+1, µ′
(

xi+1

∣∣∣θµ′
)∣∣∣θQ′

)
(29)

L =
1
M

M

∑
i=1

(
Qtarget −Q

(
xi, gi

∣∣∣θQ
))2

(30)

∇L
(

θQ
)
=

1
M

[
Qtarget −Q

(
x, g
∣∣∣θQ
)
∇θQ Q(x, g|θµ)

]
(31)

where Qtarget is the value of the target critic network, Q(x, g|θµ) is the value of the critic
network, i is the ith sample data, and γ(0 ≤ γ ≤ 1) is the discount rate. The actor network
includes the current actor network µ(x|θµ) and the target actor network µ′

(
θµ′
)

. The
current actor network is updated with the deterministic strategy gradient as follows:

∇θµ Jβ(µ) ≈
1
M ∑

i

(
∇gQ

(
x, g
∣∣∣θQ

)∣∣∣x=xi ,g=µ(xi)
∇θµ µ(x; θµ)

∣∣∣
x=xi

)
(32)

where ∇θµ Jβ(µ) represents the gradient direction of the Q value caused by the action
strategy µ, ∇gQ

(
x, g
∣∣θQ )∣∣

x=xi ,g=µ(xi)
represents the change in the Q value caused by

action µ(xi) in the current state, and ∇θµ µ(x; θµ)|x=xi
is the gradient direction of the

current strategy.
The target critic network and the target actor network update the network with a soft

update with an update rate of ρ as follows:{
θi+1

Q′ ← ρθQ + (1− ρ)θi
Q′

θi+1
µ′ ← ρθµ + (1− ρ)θi

µ′ (33)

3.5. Learning Process of DDPGPIR

The DDPGPIR learning process applied to the manipulator is shown in Figure 4.
µ(x|θµ ) and µ′

(
x
∣∣∣θµ′

)
are the current actor network and the target actor network, respec-

tively, and Q
(

x, g
∣∣θQ ) and Q′

(
x, g
∣∣∣θQ′

)
are the current critic network and the target critic

network, respectively. The learning process is described as Algorithm 1. First, parame-
ters (Q, µ, Q′, µ′), memory playback space RM, and noise G of the online network and
the target network are initialized. After the dynamic information xt of the manipulator
is input into the DDPGPIR agent, according to strategy µ and noise G to determine the
optimal parameter gt of the PIR controller, the output torque of the controller acts on the
manipulator. In addition, the system monitors the joint angle qd(t) in real time. If qd(t) is
within a reasonable range, the corresponding reward value will be obtained after this ac-
tion is executed, and the next state xt+1 will be input. Otherwise, the action is immediately
stopped, a negative reward is given, and the agent re-selects the new action and executes it.
The data (xt, gt, rt, xt+1) tuple formed in this process will be stored in the experience replay
memory RM. Small-batch tuple data are randomly extracted from RM, the minimal loss
function method is used to update the critic network, the deterministic strategy gradient
method is used to update the actor network, and the target network is updated by the soft
update method.
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Algorithm 1. DDPGPIR Algorithm.

Initialize the critic network Q(g, x
∣∣θQ) and the actor network µ(x|θµ)

Initialize the target network Q′
(

θQ′
)

and µ′
(

θµ′
)

with the same weights

Initialize replay memory RM
Initialize Gaussian noise G
for episode = 1 · · ·M do

Receive initial observation state x1
for t = 1 · · · T do

select action gt =
(
Kp1, Ki1, Ks1, Kr1, · · ·Kpn, Kin, Ksn, Krn

)
= µ(xt|θµ) + G

select execution action gt
if q(t) /∈ [−ε, ε]

reject gt and add a negative number to r
else:

execute gt and get observed reward rt and observe new state xt+1
store transition (xt, gt, rt, xt+1) in RM
sample mini-batch of M transitions (xi, gi, ri, xt+1) from RM
set Qtarget = ri + γQ′

(
xi+1, µ′

(
xi+1

∣∣∣θµ′
)∣∣∣θQ′

)
update critic according to Equations (29) and (31)
update actor according to Equation (32)
update the target networks according to Equation (33)

end for
end for

Mathematics 2021, 9, x FOR PEER REVIEW 9 of 16 
 

 
Figure 4. DDPGPIR learning process for the manipulator. 

Algorithm 1. DDPGPIR Algorithm. 
Initialize the critic network 𝑄(𝑔, 𝑥|𝜃 ) and the actor network 𝜇(𝑥|𝜃 ) 
Initialize the target network 𝑄 (𝜃 )and 𝜇 (𝜃 ) with the same weights 
Initialize replay memory 𝑅𝑀 
Initialize Gaussian noise 𝐺 
for episode = 1 ⋯ 𝑀 do 

Receive initial observation state 𝑥  
for 𝑡 = 1 ⋯ 𝑇 do 

select action 𝑔 = (𝐾 , 𝐾 , 𝐾 , 𝐾 , ⋯ 𝐾 , 𝐾 , 𝐾 , 𝐾 ) = 𝜇(𝑥 |𝜃 ) + 𝐺 
select execution action 𝑔  
if  𝑞(𝑡) ∉ −𝜀, 𝜀  

reject 𝑔  and add a negative number to 𝑟 
else: 

execute 𝑔  and get observed reward 𝑟  and observe new state 𝑥  
store transition (𝑥 , 𝑔 , 𝑟 , 𝑥 ) in 𝑅𝑀 
sample mini-batch of 𝑀 transitions (𝑥 , 𝑔 , 𝑟 , 𝑥 ) from 𝑅𝑀 
set 𝑄 = 𝑟 + 𝛾𝑄 𝑥 , 𝜇 𝑥 𝜃 𝜃  
update critic according to Equations (29) and (31) 
update actor according to Equation (32) 
update the target networks according to Equation (33) 

end for 
end for 

3.6. Reward Function 
As stated, for most reinforcement learning tasks, there is always a reward function, 

which can reward each behavior of the agent accordingly, so that the agent can make a 
corresponding behavior when facing different states and obtain a higher cumulative 
reward value. To adapt to different reinforcement learning tasks, the reward function 
must be universal and provide abundant information for the reinforcement learning 
agents. In the problems discussed in this paper, the trajectory tracking error 𝑒(𝑡) and the 
joint angle 𝑞(𝑡) of the manipulator are the variables of most concern. When the tracking 
error 𝑒(𝑡) increases, or the joint angle 𝑞(𝑡) exceeds the reasonable range, a negative 
reward value should be given; otherwise, a positive reward value should be given. 
Therefore, the reward function combining the Gaussian function and the Euclidean 
distance is as follows: 

Figure 4. DDPGPIR learning process for the manipulator.

3.6. Reward Function

As stated, for most reinforcement learning tasks, there is always a reward function,
which can reward each behavior of the agent accordingly, so that the agent can make
a corresponding behavior when facing different states and obtain a higher cumulative
reward value. To adapt to different reinforcement learning tasks, the reward function must
be universal and provide abundant information for the reinforcement learning agents. In
the problems discussed in this paper, the trajectory tracking error e(t) and the joint angle
q(t) of the manipulator are the variables of most concern. When the tracking error e(t)
increases, or the joint angle q(t) exceeds the reasonable range, a negative reward value
should be given; otherwise, a positive reward value should be given. Therefore, the reward
function combining the Gaussian function and the Euclidean distance is as follows:

r = αr1 + βr2 + δr3 (34)
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r1 =
n

∑
j=1
−

(
qdj(t)− qj(t)

)2

2c2 (35)

r2 =

√√√√ n

∑
j=1

(
qdj(t)− qj(t)

)2
(36)

r3 =

{
0,

∣∣qj(t)
∣∣ < ε

−1, other
(37)

where α, β and δ are the coefficients of the reward items, qdj(t) and qj(t) are the expected
joint angle and the actual joint angle of the j-th joint, respectively, and ε is a reasonable
critical value of the joint angle.

4. Experiment and Results

To verify the control performance of DDPGPIR, taking a two-link robotic manip-
ulator as an example, the DDPGPIR, PIR and RBFNN are simulated and compared in
MATLAB/Simulink. The dynamic model of two joint manipulators can be deduced by
the Lagrange method [37,38]. The widely studied kinetic models and parameters can be
expressed as follows [39]:

M(q) =
[

p1 + p2 + 2p3 cos q2 p2 + p3 cos q2
p2 + p3 cos q2 p2

]
(38)

C
(
q,

.
q
)
=

[
−p3

.
q2 sin q2 −p3

( .
q1 +

.
q2
)

sin q2
p3

.
q1 sin q2 0

]
(39)

G(q) =
[

p4g cos q1 + p5g cos(q1 + q2)
p5g cos(q1 + q2)

]
(40)

p =
[

p1 p2 p3 p4 p5
]T

=
[

2.9 0.76 0.87 3.04 0.87
]T (41)

In order to achieve better control effect and facilitate comparisons with other con-
trol methods, the simulation sampling step size is set at 0.1 s and the simulation cycle
is set at 20 s. The initial state of the system is q1(0) = −0.5 rad, q2(0) = −0.5 rad,
The expected trajectory path is qd1 = sin 0.5πt, qd2 = sin 0.5πt. The friction force is
Ff = 5sgn

( .
q
)
. The external interference is τd = 10 sin

( .
q
)
. After many attempts, a set of ap-

propriate PIR controller parameters are selected as Kp1 = 60, Ki1 = 45, Ks1 = 35, Kr1 = 3,
Kp2 = 60, Ki2 = 45, Ks2 = 35, Kr2 = 3.

RBFNN has good function approximation and generalization ability and is widely
used in nonlinear function modeling [40,41]. The adaptive control of manipulators based
on RBFNN approximation is as follows [42]:

τ = W∗T ϕ(x) + Kvs− v (42)

where W∗ is the network weight vector and x is the input signal of the network, ϕ(x) is the
column vector of the basis function, Kv is the coefficient of error function term, and v is the
robust term used to overcome the approximation error of neural network.

4.1. Learning Results for DDPGPIR

In Figure 5, the reward value obtained by the DDPGPIR agent in the initial learning
process is low, because the process is in the exploratory stage. However, as the learning
times increase, the reward value gradually increases and tends to be stable and close to the
expected cumulative reward value, which verifies that the reward function proposed in this
paper can effectively avoid the convergence of a deep neural network to the local optimum.
At the same time, the correctness and stability of the DDPGPIR model are proved. Figure 6
shows the changing process of the controller parameters. Because the desired trajectory is
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constantly changing, the controller parameters are also adjusted in real time, to improve
the tracking accuracy of the trajectory.
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4.2. Control Effect Comparison of the Controller

Figures 7–9 show the trajectory tracking performance of the RBFNN, PIR, and DDPG-
PIR controllers. The figures show that the DDPGPIR controller has a shorter response time
and higher trajectory tracking accuracy than the PIR and RBFNN controllers in the case
of friction and time-varying external interference. Figures 10 and 11 show the trajectory
tracking errors of the DDPGPIR, PIR, and RBFNN controllers, respectively. It can be seen
that compared with DDPGPIR, the PIR and RBFNN controllers have larger overshoot and
trajectory tracking errors.
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Mathematics 2021, 9, x FOR PEER REVIEW 12 of 16 
 

 
Figure 7. Trajectory tracking performance of the RBFNN. 

 
Figure 8. Trajectory tracking performance of PIR. 

 
Figure 9. Trajectory tracking performance of DDPGPIR. 

0 2 4 6 8 10 12 14 16 18 20
time(s)

-1

-0.5

0

0.5

1 Desired trajectory
RBFNN

0 2 4 6 8 10 12 14 16 18 20
time(s)

-1

-0.5

0

0.5

1 Desired trajectory
RBFNN

0 2 4 6 8 10 12 14 16 18 20
time(s)

-1

-0.5

0

0.5

1 Desired trajectory
PIR

0 2 4 6 8 10 12 14 16 18 20
time(s)

-1

-0.5

0

0.5

1 Desired trajectory
PIR

0 2 4 6 8 10 12 14 16 18 20
time(s)

-1

-0.5

0

0.5

1 Desired trajectory
DDPGPIR

0 2 4 6 8 10 12 14 16 18 20
time(s)

-1

-0.5

0

0.5

1 Desired trajectory
DDPGPIR
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4.3. Control Performance Index Comparison

To further highlight the effectiveness of the DDPGPIR controller, the integral abso-
lute error (IAE) and the integral time absolute error (ITAE) were used to evaluate the
performance of the controller. The definitions of IAE and ITAE are as follows:

IAE =
∫
|e|dt (43)

ITAE =
∫

t|e|dt (44)

Table 1 shows the IAE and ITAE values of RBFNN, PIR, and DDPGPIR. The table shows
that DDPGPIR has smaller IAE and ITAE values than PIR and RBFNN. Therefore, DDPGPIR
has better adaptability and robustness in the case of friction and external disturbance.
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Table 1. Performance index calculation results.

Controller Indicator Joint 1 Joint 2

RBFNN
IAE 1.5978 0.5440

ITAE 13.4532 3.9454

PIR
IAE 0.4217 0.3476

ITAE 1.6596 1.5451

DDPGPIR
IAE 0.0866 0.0410

ITAE 0.0285 0.0848

5. Conclusions

An adaptive PIR control method based on deep reinforcement learning is proposed
for the n-link robot manipulator system with model uncertainty and time-varying external
disturbances. In this method, the parameters of the PIR controller are adjusted and opti-
mized in real time by using the DDPG algorithm. Among them, the adaptive robust term
is used to compensate for the uncertainty of the robot manipulator system. In addition,
the model-free reinforcement learning method does not need to rely on expert knowledge
and human intervention. The agent of the deep neural network can effectively avoid
reduction of control accuracy caused by sparse discretization and the curse of dimension
caused by dense discretization. In addition, a reward function combining the Gaussian
function and the Euclidean distance is designed to ensure efficient and stable learning of
the reinforcement learning agent.

The proposed method was applied to control the two-link robot manipulator with
a model for uncertainty and external disturbance. The experimental results show that the
reward value obtained by the DDPGPIR agent increases gradually with the increase of
learning times, and finally tends to be stable and close to the expected reward value, which
proves the correctness and stability of the DDPGPIR model. In addition, compared with
PIR and RBFNN, DDPGPIR has better adaptability and robustness, and a higher precision
trajectory tracking ability, for the uncertainty of the n-link robot manipulator system. At
the same time, it is better than PIR and RBFNN in the performance evaluation of IAE
and ITAE.

In future work, since the proposed control method can control the n-link robot arm
system, this method may be applied to more complex control tasks, such as unmanned
aerial vehicles. However, the ability of the control system to handle emergencies remains
a thorny issue. Therefore, our follow-up work will continue to carry out in-depth research
for this problem.
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