
mathematics

Article

An Imitation and Heuristic Method for Scheduling with
Subcontracted Resources

Anna Antonova * , Konstantin Aksyonov and Olga Aksyonova

����������
�������

Citation: Antonova, A.; Aksyonov,

K.; Aksyonova, O. An Imitation and

Heuristic Method for Scheduling

with Subcontracted Resources.

Mathematics 2021, 9, 2098. https://

doi.org/10.3390/math9172098

Academic Editors: Chin-Chia Wu and

Frank Werner

Received: 26 July 2021

Accepted: 27 August 2021

Published: 30 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Information Technology and Automatics, Ural Federal University, 620002 Ekaterinburg, Russia;
k.a.aksyonov@urfu.ru (K.A.); wiper99@mail.ru (O.A.)
* Correspondence: a.s.antonova@urfu.ru

Abstract: A scheduling problem with subcontracted resources is widely spread and is associated
with the distribution of limited renewable and non-renewable resources, both own and subcontracted
ones based on the work’s due dates and the earliest start time. Scheduling’s goal is to reduce the
cost of the subcontracted resources. In the paper, application of a few scheduling methods based
on scheduling theory and the optimization algorithm is considered; limitations of these methods’
application are highlighted. It is shown that the use of simulation modeling with heuristic rules
for allocation of the renewable resources makes it possible to overcome the identified limitations.
A new imitation and heuristic method for solving the assigned scheduling problem is proposed.
The comparison of the new method with existing ones in terms of the quality of the found solution
and performance of the methods is carried out. A case study is presented that allowed a four-fold
reduction of the overall subcontracted resources cost in a real project portfolio.

Keywords: scheduling theory; operations research; subcontracted resources; scheduling on parallel
machines; renewable and non-renewable resources; heuristic methods

1. Introduction

The problem of business processes and project works scheduling is one of the key
problems of organizational system control. Organizational systems are widely spread:
examples are enterprises of various industries, multiservice communication networks, and
project organizations.

To date, some methods to solve the scheduling problem with resource constraints have
been developed depending on the problem statement, restrictions, and objective function.
These are scheduling theory and network methods [1–5], simulation and multi-agent
modelling methods [6,7], heuristic methods [8,9], and methods based on the application of
commercially available solvers [10–14].

According to the machine environment, scheduling problems can be divided into the
main following types with the type notation in brackets [15]: identical parallel machines
(Pm) where work can be performed at any of the machines [1–5,8,9,12,14]; Job shop (Jm)
where each work has to be processed on each of the machines and all works have different
routes [6,7,11,13]; Open shop (Om) where each work has to be processed on each of the
machines and some of this processing time may be zero [10].

According to the processing restrictions, there are several main constraints specified:
release dates (rj), where work j cannot start its processing before its release date [3–5];
precedence constraints (prec), where one or more works have to be completed before
execution of a certain consequent work is allowed [1–9,12–14]; batch processing (batch(b)),
where a machine may be able to process a number of b works simultaneously [11,12]; and
breakdowns (brkdwn), where a machine may not be permanently available [3,5].

The main objective functions of the scheduling problem are: Makespan minimization
(Cmax) is a minimization of the last work’s completion time to leave the system [1–4,6–9];
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and the weighted number of tardy jobs minimization (∑ ωjUj) [5,11–14], throughput
maximization [10].

In general, the scheduling problem is a problem of work’s sequence definition satis-
fying the given restrictions and minimizing makespan. A schedule, or calendar plan, is a
set of work start dates. Commonly, researchers have investigated the renewable restricted
resources that are occupied while a work is being performed and released when the work is
over, as in [1,2,4–6,8–12,14]. Examples of the renewable resources are personnel, aggregates,
vehicles, and other. At the same time, there is an urgent problem to consider non-renewable
resources’ distribution, as in [3,7,13]. The non-renewable resources are consumed at the
work input and produced at the work output. Examples are raw materials, fuel, finance,
and goods.

We consider the scheduling problem on parallel machines in the presence of the
orders’ earliest start times and due dates. We have extended the problem by using subcon-
tracted resources’ cost optimization and accounting for restricted non-renewable resources.
The optimization of subcontracted resources is relevant either for enterprises with a rel-
atively small set of their own resources, or for enterprises with resources of constrained
competence. These enterprises flexibly respond to demand fluctuations in products man-
ufactured or services provided and attract subcontracted resources when it is necessary.
Examples are construction companies and project organizations. They need to reduce the
engaged subcontractors’ cost while keeping with existing time restrictions to reduce the
company’s waste.

The rest of the paper is organized as follows. In Section 2, a literature overview is
presented. Notations used are presented in Section 3. In Section 4, a scheduling problem is
formulated considering own and subcontracted renewable and non-renewable resources.
Application of the scheduling methods to the trial problem and their shortcomings are
given in Section 5. In Section 6, we propose an imitation and heuristic method for the
problem considered. In Sections 7 and 8, a case study is presented providing a comparison
of the application results of the methods considered. We conclude this research and propose
directions for the further work in Section 9.

2. Literature Overview

Network methods for the scheduling problem are introduced in [1,2]. They are
intended to determine a critical path and backup time for a work. A PERT method [1] is
used when works have a probabilistic duration with due dates. A GERT method [2] extends
the PERT method by considering the probabilities of individual works’ implementation.
The methods are very useful in the case of precedence relation occurrence. Network
methods do not support non-renewable resources’ implementation and restrictions on the
works’ earliest start time.

An approximate algorithm proposed in [3] is intended to solve the scheduling problem
with restricted renewable and non-renewable resources in the presence of a deadline and
restrictions on the earliest start time for a work. The algorithm has two stages. At the
first stage, a feasible schedule is calculated based on an assumption that all resources are
non-renewable. At the second stage, the renewable resources’ constraints are added to the
schedule found and then works are packed to satisfy all resource constraints and minimize
the execution time. A disadvantage of the algorithm is that the arrangement solution is
excluded from consideration if contradictions arise between the resource constraints and
work deadlines. For example, excess availability of the own renewable resources for works
on the critical path can exist. In this case, companies can use subcontracted renewable
resources, the cost of which needs to be optimized.

For a scheduling optimization problem in a parallel system with identical non-
renewable resources and orders’ earliest start dates, two algorithms of the scheduling
theory are presented in [4,5]. The algorithms are discussed in detail in Section 5.

A decentralized scheduling approach applied to a job-shop scheduling problem via
agent-based simulation is presented in [6,7]. Multi-agent simulation is a popular technique
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intended to represent decision makers as a community of interacting agents [16]. In this
case, each renewable resource and each single work is represented by an agent. The agents
interact with each other and allocate the resources to the works by mean of negotiations.
In [6], a new control algorithm based on dispatching rules is described. This algorithm is
used to assign a score to each agent-resource proposal to agent-work, then the agent-work
chooses the highest scored one. The resource score depends on the work’s minimum
processing time provided by the current resource compared to all the available alternatives,
and the average cycle time of the system. An advantage of the algorithm is simultaneous
multi-objective optimization of the system’s throughput and cycle time, with weighted
linear convolution of the two into a single objective function. In [7], the schedule is built
via self-organization of software agents forming two networks of demands and resources,
competing and cooperating on a virtual market. Agents of the basic types are the agents
of orders (works), tasks (operations), resources (renewable resources), products (non-
renewable resources), as well as the scene agent. Each agent has its own objective function
named the satisfaction function, which is a weighted sum of components that meet various
criteria. The value of the system’s objective function is refined through the normalized
sum of the agents’ objective functions. The scheduling algorithm given in [7] includes
a negotiation stage used by agents to build a set of conflicting orders for the resources
and a conflict resolution stage, which recursively search for placement options taking into
account existing limitations. The main advantages of the agent-based scheduling approach
proposed in [7] are the agent’s knowledge base of preferences when assigning resources
to operations and the ability to reschedule in real time if the list of available resources or
works has changed.

Heuristic scheduling algorithms based on a genetic algorithm are presented in [8,9].
The genetic algorithm (GA) is a popular optimization technique applicable to various
application fields proposed by Goldberg [17]. In [8,9], a sequence of works is encoded
into a chromosome, a population of the chromosomes is formed to represent a project,
and then the population is transformed via genetic operators. Each of the investigations
proposes a fitness function of the total project duration that is to be minimized. In [8], the
authors introduce a dense gene concept, which is a fixed chromosome section that encodes
a sequence of works that uses the available renewable resources in the most optimal
way, providing the smallest remainder of free resources. The scarcity of the renewable
resource is determined by solving the simplified scheduling problem with assumption
that all the resources are non-renewable and calculating the remaining free resources.
In [9], a scheduling problem of prefabricated buildings is considered. The authors consider
both renewable resources and prefabricated blocks, or non-renewable resources, and their
supplies. The GA consists of two stages: first, a schedule is formed with the assumption
that the non-renewable resources are in shortage; second, the non-renewable resource
supply’s time constraints are added to the schedule and a new search is performed. The
advantage of the algorithm presented in [9] is the use of heuristics to generate an initial
population that allows a reduction in the number of unfeasible solutions produced by GA.

Commercial solvers were applied to the scheduling problem in [10–14].
OptQuest optimizer is a software that incorporates a combination of metaheuristics,

such as scatter search, tabu search, and neural networks [18]. As a part of the AnyLogic
modeling system [19], OptQuest is used to solve the multi-objective scheduling problem
in [10,11]. A simulation model is used as an objective function for the optimization, which
in return determines an optimal configuration of input parameters for the simulation model.
Two algorithms of the renewable resources’ allocation based on dispatching rules or on
agent negotiation are compared using the OptQuest optimizer in [10]. Controlled variables
are the assignment of resources to works, and the objective function is a multi-object func-
tion that estimates the total delay of the works and the total consumption of the renewable
resources. The authors concluded that the use of the multi-agent approach decreases the
resource waiting time for works but does not increase the throughput. The advantage of the
study [11] is that energy consumption is considered as a part of the objective function. The



Mathematics 2021, 9, 2098 4 of 22

author searches for an effective batch size using OptQuest optimizer and then improves
the resources’ utilization within the obtained schedule. It is concluded that batch size has a
greater impact on the total delay rather than on the energy consumption.

A GA-based solver is embedded into the Tecnomatix Plant Simulation software pack-
age [20]. An application of this solver to the scheduling problem is presented in [12,13].
In [12], a flow shop problem is considered with a multi-objective function minimizing the
mean flow time and total setup time. The solver optimizes the batch size and sequence of
the product batches entering the system. In [13], a real-time job shop scheduling problem
is considered with restricted renewable and non-renewable resources and works’ due
dates. A simulation model is used to assess the idling of processing equipment and the
efficiency of the workshop in terms of throughput. The GA solver is used to allocate
the renewable and non-renewable resources to the works. Advantages of the study are
consideration of both types of resources and the integration of the scheduling phase into a
cloud manufacturing system.

Subcontracted renewable resources are considered in [14]. The authors optimize the
schedule cost by allocation of own and subcontracted resources taking into account a
time-cost contradiction. The method is discussed in detail in Section 5.

We consider the scheduling problem optimizing not only own renewable resources
but also subcontracted ones. The problem’s objective function is cost minimization of
the engaged subcontracted resources. The problem restrictions include the time frame
of the earliest and latest work start date and a limited amount of the non-renewable
resources available.

The goal of the present paper is to develop and assess an imitation and heuristic
(IH) method for the scheduling problem with subcontracted resources. We considered
two scheduling theory methods of scheduling on parallel machines by V. S. Tanaev and
Y. A. Mezentsev to be most suitable for solving the given problem. We also considered
application of a commercial solver to the given problem. Use of simulation and heuristics
together allows us to overcome the revealed disadvantages of the considered methods. The
developed IH method was applied for schedule search in a project company.

3. Notations
3.1. Indices

We consider the following indices:

• g is an index of the renewable resource of the allocated competence, g = 1, Qr;
• i is an index of the operation or order contained in the project p, i = 1, Np;
• j is an index of the operation or order that cannot be executed at the same time with

the order i because they are to be processed by a single machine g, j = 1, Np;
• k is an index of the time interval specified by the time constraints in the V.C. Tanaev

method, k = 1, β, β ≤ 2Np − 1;
• L is an index of the order that can be processed during Ek time interval in the V.C.

Tanaev method, L = 1, n(k);
• p is an index of the project contained in the portfolio, p = 1, P;
• r is an index of the renewable resource’s competence, r = 1, R;
• st is an index of the dynamic programming stage of the Y.A. Mezentsev algorithm,

st = 1, Np;
• t is an index of the day, t = τ, T;
• v is an index of the non-renewable resource, v = 1, V;
• η is an index of the iteration stage of the IH algorithm, η = 1, Ψ.

3.2. Sets

We consider the following sets:

• e1 < e2 < . . . < ek+1 is a set of the variables τ0
i and dli values in the V.C. Tanaev method;
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• Nk =
{

ik,1, ik,2, . . . , ik,n(k)

}
is a set of orders that can be processed during Ek interval

with index L in the V.C. Tanaev method;
• Prp is a set of operations in the project p;
• Rown is a set of own renewable resources;
• Rsc is a set of subcontracted renewable resources;
• Z(t, r) is a set of indices for operations performed at time t ≥ τ using own or subcon-

tracted renewable resource r;
• Z(t, v) is a set of indices for operations performed at time t ≥ τ using non-renewable

resource v;
• Θ(t, r) is a set of indices for operations performed at time t ≥ τ using own resource r;
• Y(t, r) is a set of indices for operations performed at time t ≥ τ using subcontracted

renewable resource r.

3.3. Parameters

We identified the following parameters:

• cp,i,r is a duration of the time interval Mp,i,r(η) in the IH algorithm;
• di > 0 is an operation duration in case of one project in the portfolio, i.e., P = 1;
• dli > 0 is a deadline for processing the order i; it can be calculated as: dli = τ1

i + di;
• dp,i > 0 is a duration of the operation i of the project p;
• Ek = (ek; ek+1] is a time interval specified by time constraints in the V.C. Tanaev

method, Ek ⊆
(
τ0

i , dli
]
;

• fg,st
(
τ0

st, dst, yg,st
)

is a completion time of the order i processed via the machine or
renewable resource g at the stage st in the Y.A. Mezentsev algorithm;

• Ft is a total cost of the subcontracted renewable resources;
• H and K′ are parameters of the Y.A. Mezentsev algorithm, they are intended to drop

out some feasible solutions at each search stage to decrease the searching time;
• Kres is a total cost of the used resources, own and subcontracted ones;
• Ksc is a predefined limit of the cost of subcontracted renewable resources;
• M = max

k
n(k) is a quantity of machines or renewable resources, both own and

subcontracted, required to process orders in the V.C. Tanaev method, n(k) ≤ M;
• M′ is the quantity of the needed subcontracted resources in the V.C. Tanaev method,

M′ ≤ (M−Qr);
• ML is an arbitrarily assumed, sufficiently large constant in the Lingo method;
• N is the number of operations of the project portfolio;
• Nst is the current amount of the developed schedules at the stage st in the Y.A. Mezent-

sev algorithm;
• n(k) is the quantity of all the orders constituting the Nk set in the V.C. Tanaev method;
• Qr is the available quantity of the own renewable resource with competence r;
• Qt,v is the current quantity of each non-renewable resource v at time t;
• qp,i,r ≥ 0 is the required amount of renewable resources of allocated competence r to

perform the operation i of the project p; qp,i,r = 0 when the renewable resource r is not
required to process the operation i of the project p;

• q−p,i,v ≤ 0 and q+p,i,v ≥ 0 are the amounts of non-renewable resource v consumed
when the operation i of the project p starts and produced when the operation i ends,
respectively; q−p,i,v = 0 when the non-renewable resource v is not required to start the

operation i of the project p; the variable q+p,i,v = 0 when the non-renewable resource v
is not produced as an outcome of the operation i of the project p;

• SCp,t,r is a cost of the subcontracted resource of allocated competence r engaged in the
project p at the time t;

• sri,r is the daily cost of performing the operation i using a unit quantity of the renew-
able resource r in case of one project in the portfolio, i.e., P = 1;

• srp,i,r ≥ 0 is the daily cost of performing the operation i of the project p using a unit
quantity of the renewable resource of allocated competence r;
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• sr′p,i,r ≥ 0 is the total cost of performing the operation i of the project p using a
subcontracted renewable resource r;

• Tdl is the global project’s deadline that must not be exceeded, Tdl = max
i

dli;

• Up,t,r is the percentage utilization of the renewable resource r engaged in the project p
at the time t.

• U0
p,i,r(η) is the average utilization of the renewable resource r for the operation i of the

project p during the time interval δp,i,r(η) in the IH algorithm;
• U−p,i,r(η) is the average utilization of the renewable resource r for the operation i of the

project p during the time interval δ−p,i,r(η) in the IH algorithm;

• U+
p,i,r(η) is the average utilization of the renewable resource r for the operation i of the

project p during the time interval δ+p,i,r(η) in the IH algorithm;

• ∆k = ek+1− ek is the duration of the time interval Ek in the V.C. Tanaev method;
• δp,i,r(η) is the time interval where the utilization percentage of the renewable resource

r for the operation i of the project p is equal to 100%, U0
p,i,r(η) = 100%, in the IH

algorithm;
• δ−p,i,r(η) is the time interval δp,i,r(η) shifted to the left on the time axis in the IH

algorithm;
• δ+p,i,r(η) is the time interval δp,i,r(η) shifted to the right on the time axis in the IH

algorithm;
• λg,i is the cost of processing the order i by the resource g;
• µg(t) is a function that shows the presence of subcontracted resources g at the time t,

g = Qr, M;
• ξp,i,r is a threshold of the sr′p,i,r total cost of performing the operation i of the project p

using a subcontracted renewable resource r.
• σ(t) is a function of orders allocated to machines or renewable resources in the V.C.

Tanaev method;
• τ0

p,i ≥ τ and τ1
p,i ≥ τ are the earliest and latest possible start times given for the

operation i of the project p; τ0
p,i = τ1

p,i = τ if the operation i is only allowed to start at
the time τ;

• τ0
i and τ1

i are orders’ earliest and latest possible start times in case of one project in
the portfolio, P = 1;

• τ̂g,i is the actual delay between start of the i-th order on the g-th machine upon the
previous order completion in the Y.A. Mezentsev algorithm;

• ϕg,st
(
τ0

i , di, yg,i
)
, i = 1, st is the completion time by the resource g for all the orders

that exist at the stages from the first to the st-th in the Y.A. Mezentsev algorithm;
• ϕst

(
τ0

i , di, yg,i
)
, i = 1, st is the minimal completion time for all the orders existing at

the stages from the first to the st-th in the Y.A. Mezentsev algorithm;
• ω is the cost of processing the order per time unit in conventional units;
• Ψ is the predefined maximum number of the IH algorithm steps.

3.4. Decision Variables

The decision variables may vary regarding the different scheduling problem state-
ments. We identify the following decision variables connected with the problem:

• Sk,g(t) are integer variables of a sequence of orders to perform by each renewable
resource g at each time interval Ek for the scheduling problem given in Section 5.2;

• xp,i ∈ {τ, . . . , T} are integer variables of the operation start times for the scheduling
problem given in Section 4;

• xi ∈ {τ, . . . , T} are integer variables of the operation start times given in Section 5.3 in
case of one project in the portfolio, i.e., P = 1;

• yg,i are Boolean variables for allocating the order i to the machine g for the problems
given in Sections 5.1–5.3. The variable assumes a value of 1 if the order i is to be
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executed by the machine g; otherwise, it equals 0. In Section 5.3, we assume that the
machine g can be an own or subcontracted one;

• εi,j are binary variables for the scheduling problem given in Section 5.3. The variable
indicates orders that cannot be executed at the same time because they are to be
processed by a single machine g. The variable εi,j equals 1 if the order i is to be
completed before the order j; otherwise, it equals 0; (i, j) ∈ Prp.

4. Scheduling Problem Statement

The scheduling problem statement is given by the authors in [21]. Below are the key
points. The notations are presented in Section 3.

We assume that a set of operations in each project p appears in order of increasing of
the operation’s cost srp,i,r; srp,i,r = 0 if the subcontracted resource r is not required by the
operation i of the project p.

We denote the set of indices for the operations performed at the time t ≥ τ utilizing
the renewable resource r as follows:

Z(t, r) =
{

i ∈
[
1, Np

]
xp,i ≤ t < xp,i + dp,i & qp,i,r 6= 0 & p ∈ [1, P]

}
(1)

We denote the set of indices for the operations performed at the time t ≥ τ utilizing
the non-renewable resource v as follows:

Z(t, v) =
{

i ∈
[
1, Np

]
xp,i ≤ t < xp,i + dp,i & q−p,i,v 6= 0 & p ∈ [1, P]

}
. (2)

We denote the set of indices for the operations performed at the time t ≥ τ utilizing
the own renewable resource r within the available amount Qr:

Θ(t, r) = {i ∈ Z(t, r) ∑p∈[1,P] ∑i qp,i,r ≤ Qr}. (3)

The set of indices for the operations performed at the time t ≥ τ utilizing the subcon-
tract resource r is defined as follows:

Y(t, r) = Z(t, r)\Θ(t, r) =
{

i ∈
[
1, Np

]
i ∈ Z(t, r) & i /∈ Θ(t, r)

}
. (4)

The percentage utilization of the resource r engaged in the project p at the time t is
defined as follows:

Up,t,r =

{ (
∑i∈Θ(t,r) qp,i,r/Qr

)
·100%, i ∈ Θ(t, r),

100%, i ∈ Y(t, r).
(5)

The cost of the subcontract resource of an allocated competence r involved in the
project p at the time t is defined by the formula:

SCp,t,r = ∑i∈Y(t,r) srp,i,r · qp,i,r. (6)

The current volume of the non-renewable resource v at the time t is defined as:

Qt,v = Qτ,v + ∑t
α=τ ∑P

p=1 ∑ i ∈ Prp

∧α = xp,i

q−p,i,v + ∑t
α=τ ∑P

p=1 ∑ i ∈ Prp

∧α = xp,i + dp,i

q+p,i,v. (7)

The scheduling problem can be formalized as follows:

Ft = ∑P
p=1 ∑T

t=τ ∑R
r=1 SCp,t,r → min, (8)

∑P
p=1 ∑ i ∈ Z(t, v)

∧t = xp,i

∣∣∣q−p,i,v

∣∣∣ ≤ Qt,v, ∀ t = τ, T, ∀ v = 1, V, (9)
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τ0
p,i ≤ xp,i ≤ τ1

p,i, ∀ p = 1, P, ∀ i = 1, Np. (10)

The objective function (8) minimizes the total cost of the subcontracted resources in
the case of exceeding the availability of the own ones. The constraint (9) ensures availability
of the required amount of non-renewable resources at the time of the operation start. The
constraint (10) imposes a time frame on the start dates of the operations.

5. Scheduling Methods Application

We consider the schedule optimization problem for the parallel system having iden-
tical machines in the presence of delays processing the orders. The problem is one of
the closest problems studied by the scheduling theory. According to [15], the problem
is formalized as follows: Pm/rj/Cmax. For the problem, a parametric algorithm of dy-
namic programming with an alternative dropout option was proposed by Y. A. Mezentsev
et al. [4].

Another closest problem studied by the scheduling theory is a parallel system schedule
optimization using identical machines in the presence of orders’ due dates. The problem is
formalized as follows: Pm/brkdwn, rj/ ∑ ωjUj. As a solution to the problem, a schedule
construction algorithm using the given due dates is proposed by V. S. Tanaev et al. [5].

We also considered Lingo commercial solver’s application to the scheduling prob-
lem according to the scheme given in [14]. Here, the problem is modelled as a mixed
binary linear program that minimizes the project cost, including subcontracted and own
resources cost.

We applied the considered algorithms to solve a trial small-scale scheduling problem
using two own renewable resources Q1 = 2 of the same competence R = 1, and one
project P = 1 with the number of the operations N1 = 7. Seven orders, or operations, are
fed at a different time into a parallel system with two identical machines, or renewable
resources. Table 1 contains the initial information about the operation’s duration and time
frame between order processing’s earliest possible start and latest finish. We assume the
operations are ordered by the earliest start time.

Table 1. Initial information of the trial scheduling problem.

Order Number, i Order Duration, di Earliest Start Time, τ0
i Deadline, dli

1 2 0 3
2 3 0 4
3 2 1 4
4 4 2 7
5 3 3 7
6 2 5 8
7 4 5 10

The progress of solving the problem is given below.

5.1. Method Developed by Y. A. Mezentsev

We applied a parametric dynamic programming algorithm with the optional exclusion
of the found alternatives to the considered scheduling problem. The notations are given
in Section 3. The decision variables are Boolean variables yg,i allocating the order i to the
machine g.

The dynamic algorithm variables can be calculated as given in the study [4]:

fg,st

(
τ0

st, dst, yg,st

)
= max

{
0,
[
τ0

styg,st − ϕg,st−1

(
τ0

st−1, di, yg,i

)]}
+ dstyg,st, (11)

ϕg,st

(
τ0

i , di, yg,i

)
=
{

fg,st

(
τ0

st, dst, yg,st

)
+ ϕg,st−1

(
τ0

i , di, yg,i

)}
, i = 1, st− 1, (12)

ϕst

(
τ0

i , di, yg,i

)
= max

g

{
ϕg,st

(
τ0

st, di, yg,i

)}
, i = 1, st. (13)
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The parametric algorithm includes the following stages:

1. Input of the initial data
(
τ0

i , di, dli
)
, i = 1, Np and H, K′, Qr, and Np parameters. Set

ϕg,0
(
τ0

0 , di, yg,i
)
= 0, st = 0;

2. st = st + 1;
3. If st > Np then go to Point 7;
4. Generate all the feasible schedules and calculate fg,st

(
τ0

st, dst, yg,st
)

and the schedule
length ϕg,st

(
τ0

i , di, yg,i
)
;

5. Check the number of the generated schedules Nst. If Nst ≤ K′ then go to Point 2;
otherwise, go to Point 6;

6. Discard Qr
H−1 out of the schedules generated at Point 4 with the maximum schedule

length ϕg,st
(
τ0

i , di, yg,i
)
. Go to Point 2;

7. Choose the schedules with the minimum makespan. Determine the calendar plan by
reverse dynamic programming.

We consider application of the parametric algorithm to the trial scheduling problem
given in Table 1. Examples of the calculated algorithm characteristics are given in Tables 2
and 3 for the first and last algorithm stages. We set H = 2, K′ = 22 = 4.

Table 2. Results of the first algorithm stage completion.

Stage 1 x1,1 x2,1 fg,1 ϕg,1 = fg,1, ϕ1 = max
g

{ϕg,1}

Order 1
1 0 (max{0,0-0} + 2,0) = (2,0) ϕ1 = max{2,0} = 2

0 1 (0,max{0,0-0} + 2) = (0,2) ϕ1 = max{0,2} = 2

Table 3 contains the dark filled cells connected to the schedules providing the mini-
mum local makespan on the given stage.

Table 4 contains the four schedules identified as the solutions of the given small-scale
scheduling problem.

Since the machines are identical, schedule 1 is equal to schedule 4 and schedule 2 is
equal to schedule 3. Schedules 1 and 2 differ by two last orders allocated to the opposite
machines. All of the schedules reveal deadline violation on orders 6 and 7.

The obtained schedules are shown in Figure 1 in the form of a Gantt chart.
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Table 3. Results of the last algorithm stage completion.

Stage 7 x1,1 x2,1 x1,2 x2,2 x1,3 x2,3 x1,4 x2,4 x1,5 x2,5 x1,6 x2,6 x1,7 x2,7 fg,7
ϕg,7 = {fg,7+ϕg,6},

ϕ7 = max
g

{ϕg,7}

Order 1+ Order 2+
Order 3+
Order 4+
Order 5+
Order 6+
Order 7

1 0 0 1 1 0 0 1 1 0 0 1 1 0 (max{0,5-8} + 4,0) = (4,0) max{2 + 3 + 0 + 0 + 3 + 0 + 4,
0 + 0 + 3 + 4 + 0 + 2 + 0} = 12

1 0 0 1 1 0 0 1 1 0 0 1 0 1 (0,max{0,5-9} + 4) = (0,4) max{2 + 3 + 0 + 0 + 3 + 0 + 0,
0 + 0 + 3 + 4 + 0 + 2 + 4} = 13

1 0 0 1 1 0 0 1 1 0 1 0 1 0 (max{0,5-9} + 4,0) = (4,0) max{2 + 0 + 2 + 0 + 3 + 2 + 4,
0 + 3 + 0 + 4 + 0 + 0 + 0} = 13

1 0 0 1 1 0 0 1 1 0 1 0 0 1 (0,max{0,5-7} + 4) = (0,4) max{2 + 0 + 2 + 0 + 3 + 2 + 0,
0 + 3 + 0 + 4 + 0 + 0 + 4} = 11

1 0 0 1 1 1 0 0 1 0 0 1 1 0 (max{0,5-7} + 4,0) = (4,0) max{2 + 0 + 2 + 0 + 3 + 0 + 4,
0 + 3 + 0 + 4 + 0 + 2 + 0} = 11

0 1 1 0 0 1 1 0 1 0 0 1 0 1 (0,max{0,5-9} + 4) = (0,4) max{2 + 0 + 2 + 0 + 3 + 0 + 0,
0 + 3 + 0 + 4 + 0 + 2 + 4} = 13

0 1 1 0 0 1 1 0 0 1 1 0 1 0 (max{0,5-9} + 4,0) = (4,0) max{0 + 3 + 0 + 4 + 0 + 2 + 4,
2 + 0 + 2 + 0 + 3 + 0 + 0} = 13

0 1 1 0 0 1 1 0 0 1 1 0 0 1 (0,max{0,5-7} + 4) = (0,4) max{0 + 3 + 0 + 4 + 0 + 2 + 0,
2 + 0 + 2 + 0 + 3 + 0 + 4} = 11

0 1 1 0 0 1 1 0 0 1 0 1 1 0 (max{0,5-7} + 4,0) = (4,0) max{0 + 3 + 0 + 4 + 0 + 0 + 4,
2 + 0 + 2 + 0 + 3 + 2 + 0} = 11

0 1 1 0 0 1 1 0 0 1 0 1 0 1 (0,max{0,5-9} + 4) = (0,4) max{0 + 3 + 0 + 4 + 0 + 0 + 0,
2 + 0 + 2 + 0 + 3 + 2 + 4} = 13

0 1 1 0 0 1 1 0 0 1 1 0 1 0 (max{0,5-9} + 4,0) = (4,0) max{0 + 0 + 3 + 4 + 0 + 2 + 4,
2 + 3 + 0 + 0 + 3 + 0 + 0} = 13

0 1 1 0 0 1 1 0 1 0 0 1 0 1 (0,max{0,5-9} + 4) = (0,4) max{2 + 3 + 0 + 0 + 3 + 0 + 0,
0 + 0 + 3 + 4 + 0 + 2 + 4} = 13
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Table 4. Schedules with minimal makespan.

Schedule x1,1 x2,1 x1,2 x2,2 x1,3 x2,3 x1,4 x2,4 x1,5 x2,5 x1,6 x2,6 x1,7 x2,7 ϕ7

1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 11
2 1 0 0 1 1 0 0 1 1 0 0 1 1 0 11
3 0 1 1 0 0 1 1 0 0 1 1 0 0 1 11
4 0 1 1 0 0 1 1 0 0 1 0 1 1 0 11
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As we can see, the schedules found by the Y. A. Mezentsev method for a parallel
system with identical machines and orders’ earliest start time do not support the orders’
due date. Subcontracted resources are not considered by the method. Thus, Ft = 0 for the
schedule found by Y. A. Mezentsev.

5.2. Method Developed by V. C. Tanaev

We considered an algorithm implemented by V. C. Tanaev. The notations used are
given in Section 3.

The decision variables are schedules Sk,g(t) for each resource g at each time interval
Ek. These are integer type variables.

Two cases can occur: (1) M ≤ Qr if the existing machines are enough to process all
the orders within time intervals Ek; (2) M > Qr if the existing machines are not enough
to process all the orders at the Ek time intervals and it is necessary to attract an amount
M′ ≤ (M−Qr) of subcontracted machines.

An algorithm is given in [5] and contains the following stages. We modified the
algorithm by adding the stages 4 to 7 to reduce the number of interruptions:

1. k = 0;
2. The next index of the time interval: k = k + 1. If k > β then go to Point 9; otherwise,

perform the following actions. Form a set of orders Nk =
{

ik,1, ik,2, . . . , ik,n(k)

}
, which

can be processed at the Ek interval. The orders are sorted by descending the cost of
the processing per time unit;

3. If min
i∈Nk
{di} < ∆k then go to Point 8; otherwise, go to Point 4;

4. Start to browse a set of machines with given competence: g = 0;
5. The next index of the machine: g = g + 1. If (g > M) OR (Nk = ∅), then go to Point 2;

otherwise, start to browse the set of orders from the beginning Nk: L = 0;
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6. The next index of the order: L = L + 1. If L > n(k), then go to Point 5; otherwise, go
to Point 7;

7. Assign the machine g to the order ik,L ∈ Nk and form the schedule Sk,g(t) at the Ek
time interval:

a. If (k = 1) OR (k 6= 1 AND the order ik,L at the previous time interval Ek−1 has
not been assigned to the machine g′ 6= g) OR (k 6= 1 AND the order ik,L at the
previous time interval Ek−1 has been assigned to the machine g′ 6= g, g′ > Qr
AND n(k) ≤ Qr), then assign the machine g to the order ik,L:

i. di = di − ∆k, Sk,g(t) = ik,L, where t = (ek; ek+1];
ii. Eliminate the order ik,L from the set Nk. Go to Point 5;

b. If (k 6= 1 AND the order ik,L at the previous time interval Ek−1 has been assigned
to the machine g′ 6= g, g′ ≤ Qr) OR (k 6= 1 AND the order ik,L at the previous
time interval Ek−1 has been assigned to the machine g′ 6= g and g′ > Qr AND
n(k) > Qr), then go to Point 6;

8. Calculate the processing duration of all the orders constituting the Nk set according

to the formula: di
′
{

di, di < ∆k
∆k, di ≥ ∆k

, i ∈ Nk. Apply a packing algorithm intended to

assign the Nk set orders having di
′ durations to the set M machines for the Ek time

interval. At this stage, we consider the following statements are true: di
′ ≤ ∆k, i ∈ Nk

and ∑i∈Nk
di
′ ≤ M∆k:

a. Calculate at the time interval (ek; ek + M∆k] a function σ(t), where:

σ(t) = ik,1 at the time interval (ek; ek + di,k,1];
σ(t) = ik,α at the time interval (ek + ∑A−1

α=1 di,k,α; ek + ∑A
α=1 di,k,α],A = 2, n(k);

if ∑i∈Nk
di < M∆k, then σ(t) = 0 at the time interval

(ek + ∑i∈Nk
di; ek + M∆k];

b. Form the schedule Sk,g(t) = σ(t + (g− 1)∆k), g = 1, M;
c. di = di − di

′, i ∈ Nk. Go to Point 2;

9. The end of the algorithm.

We used the algorithm to solve the scheduling problem given in Table 1. We sorted
the set Np orders according to the information given in Table 1.

We allocated time marks
{

eβ+1
}

, β + 1 = 9 to form a set of time intervals {Ek}, where
k = 1, 8 (Figure 2).
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Results of the method’s execution upon the trial problem are given in Table 5.
Since max

k
n(k) = 4, the number of machines is defined as four. However, the maximum

number of the machines used simultaneously turned out to be three as two orders were
assigned to the machine r1 at the time interval E6 during schedule searching. Hence, we
set M = 3, Qr = 2, and M′ = 1.

The schedule formed by the V. S. Tanaev method is shown in Figure 3.
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Table 5. Schedule search with orders’ due date by the V. S. Tanaev method.

Interval Ek and Its
Length ∆k

Set Nk Schedule Sk,g, g = 1,M
Duration di,

i ∈ Nk

Function σ(t)
Where min

i ∈ Nk
{di} < ∆k

E1 = (0;1]
∆1 = 1 N1 = {i1, i2}

S1,1(t) = i1
S1,2(t) = i2
S1,3(t) = 0

t1 = 2 − 1 = 1
t2 = 3 − 1 = 2

E2 = (1;2]
∆2 = 1 N2 = {i1, i2, i3}

S2,1(t) = i1
S2,2(t) = i2
S2,3(t) = i3

t1 = 1 − 1 = 0
t2 = 2 − 1 = 1
t3 = 2 − 1 = 1

E3 = (4;5]
∆3 = 1 N3 = {i2, i3, i4}

S3,1(t) = i4
S3,2(t) = i2
S3,3(t) = i3

t4 = 4 − 1 = 3
t2 = 1 − 1 = 0
t3 = 1 − 1 = 0

E4 = (3;4]
∆4 = 1 N4 = {i4, i5}

S4,1(t) = i4
S4,2(t) = i5
S4,3(t) = 0

t4 = 3 − 1 = 2
t5 = 3 − 1 = 2

E5 = (4;5]
∆5 = 1 N5 = {i4, i5}

S5,1(t) = i4
S5,2(t) = i5
S5,3(t) = 0

t4 = 2 − 1 = 1
t5 = 2 − 1 = 1

E6 = (5;7]
∆6 = 2 N6 = {i4, i5, i6, i7}

S6,1(t) =
{

i4 i f t ∈ (5; 6]
i5 i f t ∈ (6; 7]

S6,2(t) = i6
S6,3(t) = i7

t4 = 1 − 1 = 0
t5 = 1 − 1 = 0
t6 = 2 − 2 = 0
t7 = 4 − 2 = 2

σ(t) =


i4 i f t ∈ (5; 6]
i5 i f t ∈ (6; 7]

i6 i f t ∈ (7; 9]
i7 i f t ∈ (9; 11]

E7 = (7;8]
∆7 = 1 N7 = {i7}

S7,1(t) = i7
S7,2(t) = 0
S7,3(t) = 0

t7 = 2 − 1 = 1

E8 = (8;10]
∆8 = 2 N8 = {i7}

S8,1(t) =
{

i7 i f t ∈ (8; 9]
0 i f t ∈ (9; 10]

S8,2(t) = 0
S8,3(t) = 0

t7 = 1 − 1 = 0 σ(t) =
{

i7 i f t ∈ (8; 9]
0 i f t ∈ (9; 10]
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We introduce a function µg(t) for subcontracted resources g = Qr, M and define it as

follows: µg(t) =
{

1, i f Sk,g 6= 0, t ∈ Ek
0, else

. We calculate the subcontracted resources cost

according to the formula:

Ft = ω

eβ+1

∑
t=1

M

∑
g=Qr

µg(t) (14)

For the schedule found by the V. S. Tanaev method, the cost of the subcontracted
resources is Ft = 4ω.
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The schedule found is not optimal according to the objective function (8). An example
of a more effective schedule satisfying all the requirements (9)–(10) is shown in Figure 4;
the subcontracted resources cost is Ft = 2ω.
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Without loss of generality, let us identify ω = 100. Then, Ft = 400 for the schedule
found by the V. C. Tanaev method.

5.3. Method Based on the Commercial Solver Application

We applied a method based on a Lingo solver [22] to the trial scheduling problem. We
reduced our mathematical model into a model suitable for linear programming [14].

The decision variables are the following:

• xi are integer variables indicating the start times of the orders, i ∈ Prp;
• yg,i are binary variables indicating what renewable resource g, either own or subcon-

tracted, is allocated to a particular order i;
• εi,j are binary variables indicating orders that cannot be executed at the same time

because they are to be processed by a single resource g.

The mathematical model of this problem applied to a project is described as follows:

Kres = ∑
g∈Rown∪Rsc

∑
i∈Prp

λg,i · yg,i → min, (15)

∑
g∈Rown∪Rsc

yg,i = 1, ∀ i ∈ Prp, (16)

xi + di ≤ xj + ML ·
(
1− εi,j

)
+ ML ·

(
2− yg,i − yg,j

)
, ∀(i, j) ∈ Prp, ∀g ∈ Rown∪Rsc, (17)

xj + dj ≤ xi + ML · εi,j + ML ·
(
2− yg,i − yg,j

)
, ∀(i, j) ∈ Prp, ∀g ∈ Rown ∪ Rsc, (18)

xNp + dNp ≤ Tdl, (19)

Ft = ∑
g∈Rsc

∑
i∈Prp

λg,i · yg,i ≤ Ksc, (20)

xi ≥ τ, ∀i ∈ Prp, (21)

yg,i ∈ {0, 1}, ∀g ∈ Rown ∪ Rsc, ∀ i ∈ Prp, (22)

εi,j ∈ {0, 1}, ∀(i, j) ∈ Prp. (23)

For the problem given in Table 1, the following variable values are set:

• The number of projects is P = 1;
• The cardinality of the Rown set is |Rown| = 2;
• The cardinality of the Rsc set is |Rsc| = 7, where 7 is the number of orders that can be

processed simultaneously;
• The cardinality of the Prp set is

∣∣Prp
∣∣ = 7;
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• Ksc = 400 that is limited by the maximum value of the subcontracted resources cost
found by the V. S. Tanaev and Y. A. Mezentzev methods;

• ML = 10000;
• Tdl = 10 days according to the dli values from Table 1;

• λg,i =

{
1, i f g ∈ Rown
100, i f g ∈ Rsc

∀ i ∈ Prp; we assume that the operation cost should be

much lower when processed by the own resource comparing to the subcontracted.

It is defined for this problem that limited non-renewable resources are not considered
while they are being introduced in the Formulation (8)–(10).

As a result of Lingo execution upon the linear programming problem (15)–(23), a
set of alternative optimal schedules was formed providing the same minimum total used
resources cost Kres = 7. Two optimal schedules are presented in Figure 5.

Mathematics 2021, 9, 2098 15 of 22 
 

 

𝜀௜,௝ ∈ {0,1}, ∀( 𝑖, 𝑗) ∈ 𝑃𝑟௣. (23)

For the problem given in Table 1, the following variable values are set: 
• The number of projects is 𝑃 = 1; 
• The cardinality of the 𝑅𝑜𝑤𝑛 set is |𝑅𝑜𝑤𝑛| = 2; 
• The cardinality of the 𝑅𝑠𝑐 set is |𝑅𝑠𝑐| = 7, where 7 is the number of orders that can 

be processed simultaneously; 
• The cardinality of the 𝑃𝑟௣ set is ห𝑃𝑟௣ห = 7; 
• 𝐾𝑠𝑐 = 400 that is limited by the maximum value of the subcontracted resources cost 

found by the V. S. Tanaev and Y. A. Mezentzev methods;  
• 𝑀𝐿 = 10000; 
• 𝑇𝑑𝑙 = 10 days according to the 𝑑𝑙௜ values from Table 1; 

• 𝜆௚,௜ = ൜1, 𝑖𝑓 𝑔 ∈ 𝑅𝑜𝑤𝑛100, 𝑖𝑓 𝑔 ∈ 𝑅𝑠𝑐 ∀ 𝑖 ∈ 𝑃𝑟௣; we assume that the operation cost should be much 

lower when processed by the own resource comparing to the subcontracted. 
It is defined for this problem that limited non-renewable resources are not considered 

while they are being introduced in the Formulation (8)–(10). 
As a result of Lingo execution upon the linear programming problem (15)–(23), a set 

of alternative optimal schedules was formed providing the same minimum total used re-
sources cost 𝐾𝑟𝑒𝑠 = 7. Two optimal schedules are presented in Figure 5. 

 
Figure 5. Two optimal schedules provided by the commercial solver. 

As we can see, the commercial solver was able to reach subcontracting cost 𝐹𝑡 = 0 
for the schedules found, but there are violations of the deadline and the orders’ earliest 
start time.  

Thus, application of the commercial solver method leads to violation of the re-
strictions (9) and (10) of the problem considered. 

6. Imitation and Heuristic Method 
A key concept of the imitation and heuristic algorithm is integration of processes’ 

imitation and some heuristic rules to improve the initial schedule. The IH method algo-
rithm is based on an application of a multi-agent resource conversion process (MRCP) 
model [23]. The MRCP model is intended to describe discrete processes converting input 
non-renewable resources into output ones using renewable resources, or machines, 
throughout a given time interval.  

An agent of the MRCP model is a decision maker model having formalized 
knowledge about resources’ allocation using production rules. The MRCP model also in-
cludes a logistics agent. The logistics agent controls the current value and lifetime of the 
non-renewable resources and ensures fulfillment of the restriction (9) by launching the 
purchase or production process of the non-renewable resource required in case its current 
volume is decreased to a critical value or the resource’s lifetime is exceeded. 

Figure 5. Two optimal schedules provided by the commercial solver.

As we can see, the commercial solver was able to reach subcontracting cost Ft = 0
for the schedules found, but there are violations of the deadline and the orders’ earliest
start time.

Thus, application of the commercial solver method leads to violation of the restrictions
(9) and (10) of the problem considered.

6. Imitation and Heuristic Method

A key concept of the imitation and heuristic algorithm is integration of processes’
imitation and some heuristic rules to improve the initial schedule. The IH method algorithm
is based on an application of a multi-agent resource conversion process (MRCP) model [23].
The MRCP model is intended to describe discrete processes converting input non-renewable
resources into output ones using renewable resources, or machines, throughout a given
time interval.

An agent of the MRCP model is a decision maker model having formalized knowledge
about resources’ allocation using production rules. The MRCP model also includes a
logistics agent. The logistics agent controls the current value and lifetime of the non-
renewable resources and ensures fulfillment of the restriction (9) by launching the purchase
or production process of the non-renewable resource required in case its current volume is
decreased to a critical value or the resource’s lifetime is exceeded.

The IH algorithm is a cycle with alternating stages of imitation and application of
heuristic rules to improve the schedule. During the imitation stage, the schedule is fed
to the MRCP model input, and the model evaluates the subcontracted resources cost
according to the Formula (8). During the heuristic stage, the algorithm shifts the start days
for the operations, where the subcontracted resources cost exceeds the given threshold.
During shifting, the restriction (10) is ensured. The algorithm stops either in the absence of
exceeding the threshold of the subcontracted resources cost, or in case a certain number of
cycles is reached.
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Let us consider the algorithm of the IH method used the MRCP model. The notations
are given in Section 3.

The algorithm variables are calculated using the following formulas:

• δp,i,r(η) = [a; b] is a time interval where the utilization percentage of the renewable
resource r for the operation i is equal to 100%, U0

p,i,r(η) = 100%;

• cp,i,r = b− a is the duration of the time interval δp,i,r(η);
• δ−p,i,r(η) =

[(
a− (η + 1)·cp,i,r

)
;
(
a− η·cp,i,r

)]
is the time interval δp,i,r(η) shifted on the

(η + 1)·cp,i,r days to the left on the time axis and satisfying the request: U−p,i,r(η) 6=
U0

p,i,r(η);

• U−p,i,r(η) is the average utilization of the renewable resource r for the operation i of the

project p during the time interval δ−p,i,r(η):

U−p,i,r(η) =

a−η·cp,i,r

∑
t=a−(η+1)·cp,i,r

Up,t,r/cp,i,r; (24)

• δ+p,i,r(η) =
[(

b + η·cp,i,r
)
;
(
b + (η + 1)·cp,i,r

)]
is the time interval δp,i,r(η) shifted on

the (η + 1)·cp,i,r days to the right on the time axis satisfying the request: U+
p,i,r(η) 6= 6=

U0
p,i,r(η);

• U+
p,i,r(η) is the average utilization of the renewable resource r for the operation i of the

project p during the time interval δ+p,i,r(η):

U+
p,i,r(η) =

b+(η+1)·c(p,i,r)

∑
t=b+η·c(p,i,r)

Up,t,r/cp,i,r. (25)

The algorithm of the IH method includes the following stages:

1. Conduct experiments with the MRCP model, the input to which are the start dates of
operations xp,i. Form output model parameters: for each moment t and each project
p, define a set of operations Opi ∈ Prp with indexes i ∈ Y(t, r) using the subcontract
renewable resource r to define the subcontracted resources cost sr′p,i,r = srp,i,r · qp,i,r
for each operation; define the utilization Up,t,r for each renewable resource r used for
the project p; define a function of the current resource volume Qt,v dependence on
the time t for each non-renewable resource v. Set p = 1;

2. For the project p, define the operations with index i = 1, .., N′, N′ ≤ Np, where the
subcontracted resources cost sr′p,i,r exceeds the given critical value ξp,i,r. If N′ 6= 0,
then set i = 1, η = 1 and go to Point 3; otherwise, go to Point 6;

3. Define the competence of the resource r for the operation i of the project p. Highlight
a time interval

[
xp,i; xp,i + dp,i

]
with a duration cp,i,r;

4. If the interval δp,i,r(η) exists, then go to Point 7; otherwise, go to Point 5;
5. If (i + 1) ≤ N′, then set i = i + 1 and go to Point 3; otherwise, go to Point 6;
6. If (p + 1) ≤ P then set p = p + 1 and go to Point 2; otherwise, go to Point 14;
7. Calculate the utilizations U−p,i,r(η) and U+

p,i,r(η) for the intervals δ−p,i,r(η) and δ+p,i,r(η);

8. If U−p,i,r(η) < U+
p,i,r(η), then go to Point 9; otherwise, go to Point 10;

9. If τ0
p,i ≤

(
xp,i − cp,i,r·(η + 1)

)
–constraint (10) check–then shift the operation’s start as

follows:

xp,i = xp,i − cp,i,r·(η + 1)–and go to Point 1; otherwise, go to Point 5;

10. If U−p,i,r(η) > U+
p,i,r(η), then go to Point 11; otherwise, go to Point 12;

11. If
(

xp,i + cp,i,r·(η + 1)
)
≤ τ1

p,i, then shift the operation’s start as follows:

xp,i = xp,i + cp,i,r·(η + 1)–and go to Point 1; otherwise, go to Point 5;
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12. If U−p,i,r(η) = U+
p,i,r(η) and U−p,i,r(η) 6= U0

p,i,r(η), then go to Point 9; otherwise, go to
Point 13;

13. If (η + 1) ≤ Ψ, then set η = η + 1 and go to Point 7; otherwise, go to Point 5;
14. The end of the algorithm.

We assess the number of iterations of the IH algorithm.
The number Ψ of search steps is a parameter of the algorithm. For each step, the

algorithm sequentially bypasses all operations of the project portfolio to identify bottlenecks
and eliminate them.

The number of operations of the project portfolio is calculated as follows: N = ∑P
p=1 Np.

Thus, the complexity of the proposed IH algorithm linearly depends on the number of
operations in the project portfolio according to the formula: Ψ·N. The quality of the
schedule found is defined based on the value of the function (8) when restrictions (9)–(10)
are fulfilled.

7. Case Study Results

The modified IH scheduling method was implemented in the BPsim software package
including the BPsim simulation system and BPsim decision support system [24] with a
common database.

The BPsim simulation system is used to develop and simulate the MRCP model of the
processes under investigation. The system supports graphical MRCP notation, where a
user can identify the types of nodes, i.e., operations and agents, logical links between them,
and list the available non-renewable and renewable resources.

The following parameters can be assigned to each operation: the duration, start
condition, amount of non-renewable and renewable resources required to complete the
operation, and amount of produced non-renewable resources. To each agent, the behavior
rules can be described in a form of if-then rules and assigned. The agents can affect the
amount of resources and operations’ start conditions.

The BPsim decision support system includes decision search diagrams based on
the same resources used to build the simulation model. Development of the diagrams
is based on the UML sequence diagrams [25] and Transact-SQL database management
language [26]. The decision search diagrams are used to provide a visual comparison
for multiple alternative decisions utilizing implemented user rules. The diagrams were
applied to implement the algorithm of the IH scheduling method.

A case study was used to assess the subcontracted resources cost depending on the
current schedule of 10 projects with 35 operations in a project company. The company has
its own renewable resources, i.e., a staff of eight people with different skills (competencies).
The following competencies of the staff were defined: documentation design (three people),
carrying out an installation work (four people), and material supply (one person). The non-
renewable resources of the company are the construction objects. The operation duration
varied from 6 days to 90 days depending on the type of operation. The scheduling time
interval was 430 days.

Following the proposed IH scheduling method, a simulation model was developed
in the BPsim simulation system. The model’s inputs are the labor costs and the agreed
start dates for each operation, as well as the schedule. Assessment of the subcontracted
resources cost was produced by the model.

For the initial schedule, the model outcome is presented in Figure 6a. For the schedule
provided by the IH method, the model outcome is presented in Figure 6b.

The figures contain the percentage utilization of the three own resources with different
competence marked with the red, blue, and green lines. When the blue and red resources
utilization reaches the 100% level, it means the subcontracted resources with the matched
competence are used during this time. The green resource utilization does not exceed 30%
in both figures, so subcontracted resources with the same competence are not required.
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schedule; (b) Schedule provided by the IH method. Here, iRes2 is a resource with the documentation design competence,
iRes3 is a resource with the competence to carry out installation works, and iRes4 is a resource with material supply
competence.

The initial and the final schedules coincide up to 110 days due to the low resource
utilization at the initial schedule during these days. Therefore, the IH algorithm has not
shifted the operations’ start day during the first 110 days in the final schedule.

Table 6 contains allocation of the subcontracted resources’ cost in rubles and man per
day (m/d) on the project’s operations for the initial schedule.

Table 6. Subcontracted resources’ cost allocation for the initial schedule.

Operation Name Project 1 Project 3 Project 4 Project 5 Project 9

Development of technical specification
in man per day (m/d) 3.9 m/d 1.68 m/d

Installation and commissioning work
(telemechanics) in m/d 2.45 m/d

Installation and commissioning work
(energy accounting) in m/d 11.54 m/d 8.53 m/d

Installation and commissioning work
(telecommunications) in m/d 13.88 m/d

Overall subcontract cost of the project in man per day 3.9 m/d 11.54 m/d 16.33 m/d 1.68 m/d 8.53 m/d

Overall subcontract cost of the project in rubles 10 249 95 990 65 998 6 746 70 953

Overall subcontract cost of the portfolio in m/d 41.98 man per day

Overall subcontract cost of the portfolio in rubles 249,936 rubles

For the initial schedule, the subcontracted resources are required for the projects 1, 3,
4, 5, and 9. The IH method allowed us to highlight several operations with a subcontracted
resources cost exceeding the critical value equal to 60,000 rubles. The ones are installation
works for projects 3 and 9 (95,990 and 70,953 rubles accordingly), and all operations for
project 4 (65,998 rubles).

Table 7 contains allocation of the subcontracted resources’ cost in rubles and m/d on
the project’s operations for the schedule provided by the IH method.

The IH method is proposed resource allocation and shifting of the operations’ start date
within a given timeframe. Although, the makespan of the found schedule was increased
compared with the initial schedule, all operations and project deadlines were met.

It should be noted that the objective function considered is related to minimization of
the subcontracted resources’ cost while meeting restrictions. As a result, the subcontracted
resources’ cost of the schedule found was reduced compared with the initial schedule in
terms of man per day from 42 m/d to 9 m/d and in terms of rubles from 249,936 rubles to
53,453 rubles for half a year, i.e., more than four times for both outcomes.
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Table 7. Subcontracted resources’ cost allocation for the schedule provided by the IH method.

Operation Name Project 1 Project 3 Project 4 Project 5 Project 9

Development of technical specification
in man per day (m/d) 1.68 m/d

Installation and commissioning work
(energy accounting) in m/d 4.04 m/d

Installation and commissioning work
(telecommunications) in m/d 2 m/d

Customer training in m/d 0.36 m/d 0.46 m/d

Overall subcontract cost of the project in man per day 0.36 m/d 0.46 m/d 2 m/d 1.68 m/d 4.04 m/d

Overall subcontract cost of the project in rubles 946 3826 8330 6746 33,605

Overall subcontract cost of the portfolio in m/d 8.54 man per day

Overall subcontract cost of the portfolio in rubles 53,453 rubles

8. Discussions

The results of the scheduling methods’ comparison are shown in Table 8.

Table 8. The results of the scheduling method comparison.

Method
Subcontracted

Resources
Accounting

Subcontracted
Cost

Optimization, (8)

Non-Renewable
Resources

Accounting, (9)

Deadlines
Accounting

(10)

Earliest Start
Time

Accounting (10)

Multi-Objective
Optimization

Y. A. Mezentsev method [4] No No No No Yes No

V. S. Tanaev method [5] Yes No No Yes No No

Lingo based method [14] Yes Yes No No No No

Agent-based method [7] Yes No Yes Yes Yes Yes

GA-based method [9] No No Yes No No No

OptQuest based method [11] No No No Yes No Yes

Plant Simulation method [13] No No Yes Yes No Yes

IH method Yes Yes Yes Yes Yes No

As we can see from Table 8, all the methods have disadvantages when solving the
project scheduling problem considered. The problem has the following features: search
for a solution with the minimum subcontracted resources cost, large dimension of the
search space, presence of the operations start time interval, and allocation of renewable
and non-renewable resources with a restricted non-renewable resources lifetime. These
features restrain the application of the scheduling theory methods considered. The Y. A.
Mezentsev and V. S. Tanaev methods solve the scheduling problem while minimizing
the makespan by tight packing of operations in compliance with part of the restrictions.
However, the issues of attracting and optimizing the subcontracted resources cost are not
given due attention. The Lingo-based method deals with subcontracting cost optimization,
but the schedule found does not satisfy any constraint. The agent-based method lacks
subcontracted resource optimization but considers all the restrictions, including the non-
renewable resources one. The GA-based method and the commercial solver-based methods,
OptQuest and GA of the Plant Simulation, do not consider the subcontracted resources
and orders’ earliest start times while the GA-based method accounts for restricted non-
renewable resources.

Application of simulation multi-agent modeling with heuristic rules of the resource’s
allocation allows us to consider all features of the scheduling problem except multi-objective
optimization. The HI method optimizes the subcontracted resources cost taking into
account restricted renewable and non-renewable resources and orders’ earliest start times.
At the same time, a project duration may increase wherein the orders deadlines are met.
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For the scheduling problem with 35 operations, eight renewable resources and one
type of non-renewable resource, the running time of the HI algorithm is estimated at 6 min.
This time is comparable to the running time of the methods based on agents, OptQuest,
and Plant Simulation application. The HI algorithm running time is much more than the
one of the methods proposed by Y. A. Mezentsev and V. S. Tanaev as well as the Lingo- and
GA-based ones, estimated at tens of seconds. It should be noted that the search time for
the simulation-based methods is always more than the search time for the methods based
on the optimization algorithms. When simulating, a time for conducting one experiment
varies from a few seconds to several minutes depending on the model dimension and
simulation tool used. In case of solving the optimization problem, it is necessary to search
for solutions in a search space while the alternative solution is estimated by conducting
an experiment with the model; therefore, the total search time increases to tens or even
hundreds of minutes. Nevertheless, simulation-based methods have the advantage of
being able to determine the objective function and the constraints required without a
reduction to a specific mathematical model used in optimization algorithms.

We also applied the HI algorithm to the scheduling problem with a large data set.
A construction holding was considered with 302 building operations, 119 renewable
resources or construction machinery, and 161 types of non-renewable resources or construc-
tion material. The detailed holding description is given in [27]. For the problem with a
large data set, the running time of the HI algorithm is estimated at one hour and 38 min.
The given duration of the algorithm operation is rather long compared to the obtained
one for the small dimension problem but is acceptable for decision making that is not in
real time.

9. Conclusions

The scheduling problem was formulated with the objective function of minimization of
the subcontracted resources cost, presence of restrictions on non-renewable resources, and
operations’ earliest start time and due dates. Analysis of the different scheduling methods
based on the scheduling theory, optimization algorithms, and agent-based simulation was
conducted. The analysis revealed factors preventing application of the methods to the
problem under consideration. The factors include lack of a search for the optimal allocation
of renewable resources on operations in terms of minimizing the subcontracted resources’
cost and lack of accounting for limited non-renewable resources. The given factors indicate
the relevance of the development of the hybrid scheduling method based on integration of
simulation and heuristic modeling.

The IH method algorithm was developed based on the multi-agent simulation model
of the resource’s allocation with operations performing and heuristic rules of the operations
start days shifting. The IH method is used to search the schedule that meets the time and
resources restrictions and has a minimum subcontracted resources cost.

A case study was conducted to assess the subcontracted resources cost for the real
scheduling problem of a project company. Application of the IH method allowed us to
compose a schedule that reduced the company’s waste on subcontracted resources by more
than four-fold for half a year compared with the schedule provided by decision makers
based on their knowledge and experience.

Comparison of the IH method and the other scheduling heuristic methods was per-
formed. The conditions were identified, under which the new IH method is more effective
than the other ones. The conditions include a focus on optimizing the project portfolio
cost with a fixed portfolio duration. In future, the authors plan to refine the IH method
for solving the multicriteria problem of finding a schedule that is optimal in terms of the
makespan and the renewable resources cost.
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