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Abstract: Let F be the normalized Hecke-eigen cusp form for the full modular group and ζ(s, F) be
the corresponding zeta-function. In the paper, the joint universality theorem on the approximation
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1. Introduction

The series of the types

∞

∑
m=1

am

ms and
∞

∑
m=1

ame−λms, s = σ + it,

where {λm} is a nondecreasing sequence of real numbers and limm→∞ λm = +∞ are called
Dirichlet series. The majority of zeta-functions are meromorphic functions in some half-
plane defined by Dirichlet series having a certain arithmetic sense. The most important of
zeta-functions is the Riemann zeta-function

ζ(s) =
∞

∑
m=1

1
ms , σ > 1.

In [1], Voronin discovered a very interesting and important property of ζ(s) to approx-
imate a wide class of analytic functions by shifts ζ(s + iτ), τ ∈ R, and called it universality.
Later, it turned out that some other zeta-functions also are universal in the Voronin sense.
This paper is devoted to the universality of zeta-functions of certain cusp forms.

Let

SL(2,Z) =
{(

a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
be the full modular group. If the function F(z) is holomorphic in the upper half-plane
Imz > 0, and for all elements of SL(2,Z) with some κ ∈ 2N satisfies the functional equation

F
(

az + b
cz + d

)
= (cz + d)κ F(z), (1)

where F(z) is called a modular form of weight κ for the full modular group. Then, F(z)
has Fourier series expansion

F(z) =
∞

∑
m=−∞

c(m)e2πimz.
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If c(m) = 0 for all m 6 0, then F(z) is a cusp form of weight κ. The corresponding
zeta-function (or L-function) ζ(s, F) is defined for σ > κ+1

2 by the Dirichlet series

ζ(s, F) =
∞

∑
m=1

c(m)

ms ,

and has the analytic continuation to an entire function. Additionally, we suppose that F(z)
is a simultaneous eigenfunction of all Hecke operators Tm

TmF(z) = mκ−1 ∑
a,d>0
ad=m

1
dκ ∑

b(mod d)
F
(

az + b
d

)
, m ∈ N.

In this case, c(1) 6= 0; therefore, the form F(z) can be normalized, and thus, we may
suppose that c(1) = 1.

Now, we suppose that F(z) is a normalized Hecke-eigen cusp form of weight κ for
the full modular group. Then, the zeta-function ζ(s, F) can be written, for σ > κ+1

2 , as a
product over primes

ζ(s, F) = ∏
p

(
1− α(p)

ps

)−1(
1− β(p)

ps

)−1

,

where α(p) and β(p) are conjugate complex numbers satisfying the equality α(p) + β(p) =
c(p).

In the paper [2], the universality of the function ζ(s, F) was proved. Let Dκ =
{

s ∈
C : κ

2 < σ < κ+1
2
}

, KF be the class of compact subsets of the strip Dκ with connected
complements, and H0,F(K), K ∈ KF the class of continuous nonvanishing functions on K
that are analytic in the interior of K. Moreover, let measA denote the Lebesgue measure of
a measurable set A ⊂ R. Then, in [2], the following theorem was obtained.

Theorem 1. Suppose that K ∈ KF and f (s) ∈ H0,F(K). Then, for every ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζ(s + iτ, F)− f (s)| < ε

}
> 0.

Theorem 1 shows that there are infinitely many shifts ζ(s + iτ, F) approximating a
given function f (s) ∈ H0,F. In the shifts ζ(s + iτ, F) of Theorem 1, τ takes arbitrary real
values; therefore, the theorem is of continuous type. Further, discrete universality theorems
for the function ζ(s, F) are known. In [3,4], the discrete universality theorems with shifts
ζ(s + ikh, F), k ∈ N, h > 0 being a fixed number, were proved. Denote by H(Dκ) the
space of analytic on Dκ functions endowed with the topology of uniform convergence on
compacta. The paper [5] is devoted to the universality for compositions Φ(ζ(s, F)) with
certain operators Φ : H(Dκ)→ H(Dκ). The results of the latter paper were applied in [6]
for the functional independence of the compositions Φ(ζ(s, F)).

Let, for a fixed l ∈ N,

Γ0(l) =
{(

a b
c d

)
∈ SL(2,Z) : c ≡ 0(mod l)

}
denote the Hecke subgroup of the group SL(2,Z). If F(z) satisfies (1) for all elements of
Γ0(l), then F(z) is called a cusp form of weight κ and level l. The form F(z) is called a new
form if it is not a cusp form of level l1 | l. In [7], a universality theorem was obtained for
zeta-functions of new forms.

The universality theorem of [2] was generalized in [8] for shifts ζ(s + iϕ(τ), F) with differ-
entiable function ϕ(τ) satisfying the estimates (ϕ′(τ))−1 = o(τ) and ϕ(2τ) max

τ6t62τ
(ϕ′(t))−1
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� τ as τ → ∞. The discrete version of results of [8] is given in [9]. In [10], the shifts
ζ(s + iγk, F), where {γk : k ∈ N} is the sequence of nontrivial zeros of ζ(s), are used.

The joint universality of zeta- and L-functions is a more complicated problem of
analytic number theory. In this case, a collection of analytic functions are simultaneously
approximated by a collection of shifts of zeta-functions. The first result in this direction
also belongs to Voronin. He considered [11] the functional independence of Dirichlet
L-functions L(s, χ) with pairwise nonequivalent Dirichlet characters χ and, for this, he
obtained their joint universality. The paper [12] is devoted to the joint universality for
zeta-functions of new forms twisted by Dirichlet characters, i.e., for the functions

∞

∑
m=1

c(m)χ(m)

ms , σ >
κ + 1

2
,

with pairwise nonequivalent Dirichlet characters χ1, . . . , χr.
Joint universality theorems with generalized shifts ζ(s + iϕj(k), F), j = 1, . . . , r, with

some differentiable functions ϕj(τ) can be found in [13]. Continuous and discrete joint
universality theorems for more general zeta-functions are given in [14–16].

Our aim is to obtain a joint universality theorem for zeta-functions of normalized
Hecke-eigen cusp forms by using different shifts. The first of the denseness results for
shifts of a universal function were discussed in [17].

The main result of the paper is the following statement.

Theorem 2. Suppose that h1, . . . , hr are real algebraic numbers linearly independent over the field
of rational numbers Q. For j = 1, . . . , r, let Kj ∈ KF and f j(s) ∈ H0,F(Kj). Then, for every ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

16j6r
sup
s∈Kj

|ζ(s + ihjτ, F)− f j(s)| < ε

}
> 0.

Moreover ”lim inf“ can be replaced by ”lim“ for all but at most countably many ε > 0.

For the proof of Theorem 2, we will apply the probabilistic approach based on a limit
theorem in the space of analytic functions.

2. Mean Square Estimates

Recall the metric in the space H(Dκ). Let {Kl : l ∈ N} ⊂ Dκ be a sequence of compact
subsets such that

Dκ =
∞⋃

l=1

Kl ,

Kl ⊂ Kl+1 for l ∈ N, and if K ⊂ Dκ is a compact, then K ⊂ Kl for some l. For example, we
can take Kl closed rectangles. Then

ρ(g1, g2) =
∞

∑
l=1

2−l

sup
s∈Kl

|g1(s)− g2(s)|

1 + sup
s∈Kl

|g1(s)− g2(s)|
, g1, g2 ∈ H(Dκ),

is a metric in H(Dκ) inducing the topology of uniform convergence on compacta.
Let

Hr(Dκ) = (H(Dκ)× · · · × H(Dκ)︸ ︷︷ ︸
r

.

For g
j
= (gj1, . . . , gjr) ∈ Hr(Dκ), j = 1, 2, define

ρ(g
1
, g

2
) = max

16j6r
ρ(g1j, g2j).



Mathematics 2021, 9, 2161 4 of 13

Then, ρ is a metric in Hr(Dκ) inducing the product topology.
Let θ > 1

2 be a fixed number, and

vn(m) = exp
{
−
(m

n

)θ
}

, m, n ∈ N.

Then, the series

ζn(s, F) =
∞

∑
m=1

c(m)vn(m)

ms ,

in view of the estimate
c(m)� m

κ−1
2 +ε,

is absolutely convergent in every fixed half plane σ > σ̂. However, for our aim, this
convergence is sufficient only for σ > κ

2 .
For brevity, let h = (h1, . . . , hr),

ζ(s + ihτ, F) = (ζ(s + ih1τ, F), . . . , ζ(s + ihrτ, F))

and
ζn(s + ihτ, F) = (ζn(s + ih1τ, F), . . . , ζn(s + ihrτ, F)).

Lemma 1. For all h,

lim
n→∞

lim sup
T→∞

1
T

T∫
0

ρ
(

ζ(s + ihτ, F), ζn(s + ihτ, F)
)

dτ = 0.

Proof. By the definitions of the metrics ρ and ρ, it suffices to show that, for every h ∈ R
and compact set K ⊂ Dκ ,

lim
n→∞

lim sup
T→∞

1
T

T∫
0

sup
s∈K
|ζ(s + ihτ, F), ζn(s + ihτ, F))dτ = 0.

It is well known that for fixed κ
2 < σ < κ+1

2 ,

T∫
−T

|ζ(σ + it, F)|2dt�σ T,

where�σ means that the implied constant depends on σ. Therefore,

T∫
−T

|ζ(σ + iht, F)|2dt�σ,h T,

and, for v ∈ R,

1
T

T∫
0

|ζ(σ + ihτ + iv, F)|2dv�σ,h 1 + |v|. (2)

Let
ln(s) =

z
θ

Γ
( z

θ

)
nz,
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where Γ(z) denotes the Euler gamma-function and θ is a number from the definition of
vn(m). Using the Mellin formula

1
2πi

β+i∞∫
β−i∞

Γ(s)αsds = e−α, α, β > 0,

we find that

exp
{
−
(m

n

)θ
}

=
1

2πi

θ+i∞∫
θ−i∞

1
θ

Γ
(

1
θ

)(m
n

)−s
ds.

Therefore, in virtue of the definition of the function vn(m), we obtain that, for σ > κ
2 ,

ζn(s, F) =
1

2πi

∞

∑
m=1

c(m)

ms

θ+i∞∫
θ−i∞

z
θ

Γ
( z

θ

)(m
n

)−z dz
z

=
1

2πi

θ+i∞∫
θ−i∞

(
ln(z)

z

∞

∑
m=1

c(m)

ms+z

)
dz

=
1

2πi

θ+i∞∫
θ−i∞

ζ(s + z, F)ln(z)
dz
z

. (3)

Let K ∈ Dκ be a fixed compact set. Then, there exists ε > 0 such that, for all s =
σ + it ∈ K, the inequalities κ

2 + 2ε < σ < κ+1
2 − ε are satisfied. We take, for such σ,

θ1 =
κ

2
+ ε− σ.

Then, θ1 < 0. Therefore, by the residue theorem and (3),

ζn(s, F)− ζ(s, F) =
1

2πi

θ1+i∞∫
θ1−i∞

ζ(s + z, F)ln(z)
dz
z

.

Hence, for all s ∈ K,

ζ(s + ihτ, F)− ζn(s + ihτ, F) =
1

2πi

∞∫
−∞

ζ
(κ

2
+ ε + it + ihτ + iv, F

) ln
(

κ
2 + ε− σ + iv

)
κ
2 + ε− σ + iv

dv

=
1

2πi

∞∫
−∞

ζ
(κ

2
+ ε + ihτ + iv, F

) ln
(

κ
2 + ε− s + iv

)
κ
2 + ε− s + iv

dv

� 1
2πi

∞∫
−∞

∣∣∣ζ(κ

2
+ ε + ihτ + iv, F

)∣∣∣ sup
s∈K

∣∣∣∣∣ ln
(

κ
2 + ε− s + iv

)
κ
2 + ε− s + iv

∣∣∣∣∣dv.

Thus, in view of (2),

1
T

∞∫
0

sup
s∈K
|ζ(s + ihτ, F)− ζn(s + ihτ, F)|dτ

�
∞∫
−∞


 1

T

∞∫
0

∣∣∣ζ(κ

2
+ ε + ihτ + iv

)∣∣∣2dτ

1/2

sup
s∈K

∣∣∣∣∣ ln
(

κ
2 + ε− s + iv

)
κ
2 + ε− s + iv

∣∣∣∣∣
dv
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�ε,h,K n−ε

∞∫
−∞

(1 + |v|) exp{−c1|v|}dv�ε,h,K n−ε (4)

Here, we used the estimate

Γ
(

1
θ

(κ

2
+ ε− s + iv

))
� exp

{
− c

θ
|v− t|

}
�κ exp{−c1|v|}, c1 > 0.

Estimate (4) proves the lemma.

Let P be the set of all prime numbers, and γp = {s ∈ C : |s| = 1} for all p ∈ P. Define
the set

Ω = ∏
p∈P

γp.

Then, the torus Ω with product topology and pointwise multiplication is a compact topo-
logical Abelian group. Therefore, on (Ω,B(Ω)) (B(X) is the Borel σ-field of the space X),
the probability Haar measure mH can be defined. Moreover, let

Ω = Ω1 × · · · ×Ωr,

where Ωj = Ω for all j = 1, . . . , r. Once again, Ω is a compact topological Abelian group.
Therefore, on (Ω,B(Ω)) the probability Haar measure mH exists. This gives the probability
space (Ω,B(Ω), mH). Denote by mjH the Haar measure on (Ωj,B(Ωj)), j = 1, . . . , r. Then,
mH is the product of the measures m1H , . . . , mrH . Now, denote by ω = (ω1, . . . , ωr) the
elements of Ω, where ωj ∈ Ωj, j = 1, . . . , r. Let ωj(p) be the pth component of an element
ωj ∈ Ωj, j = 1, . . . , r, p ∈ P. Extend elements ωj(p) to the set N by the formula

ωj(m) = ∏
pl |m

pl+1-m

ωl
j(p), m ∈ N,

and define H(Dκ)-valued random element

ζ(s, ωj, F) =
∞

∑
m=1

c(m)ωj(m)

ms , j = 1, . . . , r.

The later series is uniformly convergent on compact subsets of Dκ for almost all ωj. More-

over, for fixed σ ∈
(

κ
2 , κ+1

2

)
T∫
−T

∣∣ζ(s + it, ωj, F)
∣∣2dt�σ T (5)

for almost all ωj, j = 1, . . . , r [18]. Define one more series

ζn(s, ωj, F) =
∞

∑
m=1

c(m)ωj(m)vn(m)

ms , j = 1, . . . , r,

which also, as ζn(s, F), are absolutely convergent for σ > κ
2 . Let

ζ(s + ihτ, ω, F) = (ζ(s + ih1τ, ω1, F), . . . , ζ(s + ihrτ, ω1, F))

and
ζn(s + ihτ, ω, F) = (ζn(s + ih1τ, ω1, F), . . . , ζn(s + ihrτ, ωr, F)).
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Then, repeating the proof of Lemma 1 and using estimate (5), we arrive to the follow-
ing statement.

Lemma 2. For all h and almost all ω,

lim
n→∞

lim sup
T→∞

1
T

T∫
0

ρ
(

ζ(s + ihτ, ω, F), ζn(s + ihτ, ω, F)
)

dτ = 0.

3. Limit Theorems

On the probability space (Ω,B(Ω), mH), define H(Dκ)-valued random element

ζ(s, ω, F) = (ζ(s, ω1, F), . . . , ζ(s, ω1, F))

and denote by Pζ,F its distribution, i.e.,

Pζ,F(A) = mH

{
ω ∈ Ω : ζ(s, ω, F) ∈ A

}
, A ∈ B(Hr(Dκ)).

Theorem 3. Suppose that h1, . . . , hr are real algebraic numbers linearly independent over Q, and

PT,F(A)
de f
=

1
T

meas
{

τ ∈ [0, T] : ζ(s + ihτ, F) ∈ A
}

, A ∈ B(Hr(Dκ)).

Then, PT,F converges weakly to Pζ,F as T → ∞.

We divide the proof of Theorem 3 into several lemmas.

Lemma 3. Suppose that λ1, . . . , λr are algebraic numbers such that the system log λ1, . . . , log λr
is linearly independent over Q. Then, for arbitrary algebraic numbers β0, β1, . . . , βr that are not all
zeros, the inequality

|β0 + β1 log λ1 + · · ·+ βr log λr| > h−c

holds. Here, h denotes the height of the numbers β0, β1, . . . , βr, and c is an effective constant
depending on r, λ1, . . . , λr and maximum of degrees of the numbers β0, β1, . . . , βr.

The lemma is a Baker result on linear forms of logarithm; see, for example, ref. [19].
For A ∈ B(Ω), define

QT(A) =
1
T

meas
{

τ ∈ [0, T] :
((

p−ih1τ : p ∈ P
)

, . . . ,
(

p−ihrτ : p ∈ P
))
∈ A

}
.

Lemma 4. Let λ1, . . . , λr be the same as in Theorem 3. Then, QT converges weakly to the Haar
measure mH as T → ∞.

Proof. We apply the Fourier transform method. Denote by gT(k1, . . . , kr), kj = {kpj : kpj ∈
Z, p ∈ P}, j = 1, . . . , r the Fourier transform of QT . By the definition of QT , we have

gT(k1, . . . , kr) =
∫
Ω

∏r
j=1 ∏∗

p∈P
ω

kpj
j (p)dQT

1
T

T∫
0

exp

{
−iτ ∑k

j=1 ∑∗
p∈P

hjkpj log p

}
dτ,

(6)

where the star shows that only a finite number of integers kpj are not zero. Obviously,

gT(0, . . . , 0) = 1. (7)
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Now, suppose that (k1, . . . , kr) 6= (0, . . . , 0). Then, there exists a prime number p such that
kpj 6= 0 for some j. Therefore,

βp
de f
=

r

∑
j=1

hjkpj 6= 0

because the numbers h1, . . . , hr are linearly independent over Q. Thus, in view of Lemma 3,

Bk1,...,kr

de f
=

k

∑
j=1

∑∗

p∈P
hjkpj log p = ∑∗

p∈P
βp log p 6= 0.

This and (6) imply

gT(k1, . . . , kr) =
1− exp

{
−iTBk1,...,kr

}
iTBk1,...,kr

.

Therefore, by (7),

lim
T→∞

gT(k1, . . . , kr)
de f
=

{
1 if (k1, . . . , kr) = (0, . . . , 0),
0 if (k1, . . . , kr) 6= (0, . . . , 0),

and this proves the lemma.

For A ∈ B(Hr(Dκ)), define

PT,n,F(A) =
1
T

meas
{

τ ∈ [0, T] : ζn(s + ihτ, F) ∈ A
}

and
PT,n,Ω,F(A) =

1
T

meas
{

τ ∈ [0, T] : ζn(s + ihτ, ω, F) ∈ A
}

.

Moreover, let the mapping un : Ω→ Hr(Dκ) be given by

un,F(ω) = ζn(s, ω, F),

and Vn,F = mHu−1
n,F, where

Vn,F(A) = mH

(
u−1

n,F A
)

, A ∈ B(Hr(Dκ)).

Since the series for ζn(s, ωj, F) are absolutely convergent for σ > κ
2 , the mapping un,F is

continuous. Moreover, by the definitions of QT and PT,n,F, we have PT,n,F = QTu−1
n,F. This

equality, continuity of un,F, Lemma 4, the well-known properties of weak convergence, and
the invariance of the Haar measure mH lead to the following lemma.

Lemma 5. Let h1, . . . , hr be the same as Theorem 3. Then, PT,n,F and PT,n,Ω,F both converge
weakly to the measure Vn,F as T → ∞.

Additionally to PT,F, define

PT,Ω,F(A) =
1
T

meas
{

τ ∈ [0, T] : ζ(s + iτ, ω, F) ∈ A
}

, A ∈ B(Hr(Dκ)).

Lemma 6. Let h1, . . . , hr be the same as Theorem 3. Then, on (Hr(Dκ),B(Hr(Dκ))), there exists
a probability measure PF such that PT,F and PT,Ω,F both converge weakly to PF as T → ∞.
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Proof. Since the series for ζn(s, F) is absolutely convergent, by a standard way it follows—
see, for example [14,18]—that the sequence {Vn,F : m ∈ N} is tight, i.e., for every ε > 0,
there exists a compact set K ⊂ Hr(Dκ)) such that

Vn,F(K) > 1− ε

for all n ∈ N. Hence, by the Prokhorov theorem, see [20], the sequence {Vn,F} is relatively
compact, i.e., each of its subsequences contains a subsequence {Vnk ,F} such that Vnk ,F
converges weakly to a certain probability measure PF on (Hr(Dκ),B(Hr(Dκ))) as k→ ∞.

Let ξT be a random variable defined on a certain probability space with measure ν
and uniformly distributed on [0, T]. Define the Hr(Dκ)-valued random element

XT,n,F = XT,n,F(s) = ζn(s + ihξT , F)

and denote by Xn,F = Xn,F(s) the Hr(Dκ)-valued random element having the distribution
Vn,F. Then, by Lemma 5, we have

XT,n,F
D−−−→

T→∞
Xn,F, (8)

where D−−−→
T→∞

means the convergence in distribution. Moreover, since Vnk ,F converges

weakly to PF, the relation

Xnk ,F
D−−−→

k→∞
PF (9)

is true. Let
XT,F = XT,F(s) = ζ(s + ihξT , F).

Then, using Lemma 1, we find that for every ε > 0,

lim
n→∞

lim sup
T→∞

ν
{

ρ
(
XT,F, XT,n,F

)
> ε
}

6 lim
n→∞

lim sup
T→∞

1
εT

T∫
0

ρ
(

ζ(s + ihτ, F), ζn(s + ihτ, F)
)

dτ = 0.

The later equality together with (8) and (9), and Theorem 4.2 of [20] lead to the relation

XT,F
D−−−→

T→∞
PF. (10)

This proves that PT,F converges weakly to PF as T → ∞.
The relation (10) shows that the limit measure PF is independent of the subsequence

{nk}. Therefore, we have

Xn,F
D−−−→

n→∞
PF. (11)

Define the Hr(Dκ)-valued random elements

XT,n,Ω,F = XT,n,Ω,F(s) = ζn(s + ihξT , ω, F)

an
XT,Ω,F = XT,Ω,F(s) = ζ(s + ihξT , ω, F).

Then, repeating the above arguments using Lemmas 2 and 5, and relation (11), we obtain
that

XT,n,F
D−−−→

T→∞
PF,

and this is equivalent to weak convergence of PT,Ω,F to PF as T → ∞. The lemma
is proved.
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To prove Theorem 3, it remains to show that PF = Pζ,F. For this, we will apply some
elements of the ergodic theory. For brevity, let

hτ =
((

p−ih1τ : p ∈ P
)

, . . . ,
(

p−ihrτ : p ∈ P
))

, τ ∈ R.

Define the transformation of Ω

ϕτ(ω) = hτω, ω ∈ Ω.

Since the Haar measure mH is invariant, the transformation ϕτ is measure-preserving and
{ϕτ : τ ∈ R} is a one-parameter group. A set A ∈ B(Ω) is called invariant with respect to
the group {ϕτ} if the sets A and ϕτ(A), τ ∈ R, differ one from another at most by a set of
mH-measure zero.

Lemma 7. Let h1, . . . , hr be the same as Theorem 3. Then, the group {ϕτ} is ergodic, i.e., the
σ-field of invariant sets consists of sets having mH-measure 1 or 0.

Proof. The characters χ of the group Ω are of the form

χ(ω) =
r

∏
j=1

∏∗

p∈P
ω

kpj
j (p).

This fact already was used in the proof of Lemma 4. Let A be an arbitrary invariant set,
IA its indicator function, and χ be a nontrivial character. Preserving the notation of the
proof of Lemma 4, we have (k1, . . . , kr) 6= (0, . . . , 0) and Bk1,...,kr

6= 0. Therefore, there exists
τ0 ∈ R such that

χ(hτ) = exp
{
−iτ0Bk1,...,kr

}
6= 1. (12)

Moreover, in view of the invariance of A, we have

IA(hτ0
ω) = IA(ω) (13)

for almost all ω ∈ Ω. Denote by ÎA the Fourier transform of IA. Then, by (13),

ÎA(χ) = χ(hτ0
)
∫
Ω

IA(hτ0
ω)χ(ω)dmH = χ(hτ0

) ÎA(χ).

This and (12) show that
ÎA(χ) = 0. (14)

Now, let χ0 denote the trivial character of Ω, and suppose that ÎA(χ0) = α. Then, in
view of (14), we find that

ÎA(χ) = α
∫
Ω

χ(ω)dmH = α̂(χ).

Hence, IA(ω) = α for almost all ω ∈ Ω. Since IA is the indicator function, IA(ω) = 1 or
IA(ω) = 0 for almost all ω. Thus, mH(A) = 1 or mH(A) = 0, and the lemma is proved.

Proof of Theorem 3. We have mentioned that it suffices to show that PF = Pζ,F. By
Lemma 6 and the equivalent of weak convergence in terms of continuity sets, we have

lim
T→∞

PT,Ω,F(A) = PF(A) (15)
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for a continuity set A of the measure PF, i.e., PF(∂A) = 0, where ∂A is the boundary of A.
On the probability space (Ω,B(Ω), mH), define the random variable

ξ(ω) =

{
1 if ζ(s, ω, F) ∈ A,
0 otherwise.

Lemma 7 implies the ergodicity of the random process ξ(ϕτ(ω)). Therefore, by the classical
Birkhoff–Khintchine ergodic theorem, see, for example [21],

lim
T→∞

1
T

T∫
0

ξ(ϕτ(ω))dτ = Eξ = Pζ,F(A), (16)

where Eξ is the expectation of ξ.
However, by the definitions of ϕτ and ξ,

1
T

T∫
0

ξ(ϕτ(ω))dτ =
1
T

meas
{

τ ∈ [0, T] : ζ(s + ihτ, ω, F) ∈ A
}
= PT,Ω,F(A).

This and (16) show that
lim

T→∞
PT,Ω,F(A) = Pζ,F(A).

Therefore, by (15), we obtain that PF(A) = Pζ,F(A) for all continuity sets A of PF(A).
Hence, PF = Pζ,F, and the theorem is proved.

4. Proof of Theorem 2

Recall that the support of the measure Pζ,F is a minimal closed set SF ⊂ Hr(Dκ) such
that Pζ,F(SF) = 1.

Lemma 8. The support of the measure Pζ,F is the set ({g ∈ H(Dκ) : g(s) 6= 0 or g(s) ≡ 0})r.

Proof. Since the space Hr(Dκ) is separable, we have [20],

B(Hr(Dκ)) = (B(H(Dκ))× · · · × B(H(Dκ))︸ ︷︷ ︸
r

.

Therefore, it suffices to consider the measure Pζ,F on the rectangular sets

A = A1 × · · · × Ar, A1, . . . , Ar ∈ H(Dκ).

Let ζ(s, ω, F) be the H(Dκ)-valued random element defined on the probability space
(Ω,B(Ω), mH), where mH is the Haar measure. Then, it is known [10] that the support of
the distribution of ζ(s, ω, F) is the set {g ∈ H(Dκ) : g(s) 6= 0 or g(s) ≡ 0}. Thus, the same
set is the support of the distributions of ζ(s, ωj, F), j = 1, . . . , r. Since the measure mH is
the product of the measures mjH , j = 1, . . . , r, we have

mH

{
ω ∈ Ω : ζ(s, ω, F) ∈ A

}
=

r

∏
j=1

mjH
{

ωj ∈ Ωj : ζ(s, ωj, F) ∈ Aj
}

.

This equality, the minimality of the support, and the support of the distributions of
ζ(s, ωj, F) prove the lemma.
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Proof of Theorem 2. By the Mergelyan theorem on the approximation of analytic functions
by polynomials [22], there exist polynomials p1(s), . . . , pr(s) such that

sup
1≤j≤r

sup
s∈Kj

∣∣∣ f j(s)− epj(s)
∣∣∣ < ε

2
. (17)

Define the set

Gε =

{
(g1, . . . , gr) ∈ Hr(Dκ) : sup

1≤j≤r
sup
s∈Kj

∣∣∣gj(s)− epj(s)
∣∣∣ < ε

2

}
.

In view of Lemma 8, the set Gε is an open neighborhood of an element (ep1(s), . . . , epr(s)) in
support of the measure Pζ,F. Hence,

Pζ,F(Gε) > 0. (18)

This, Theorem 3 and the equivalent of weak convergence in terms of open sets, and the
definitions of PT,F and Gε prove the theorem with “lim inf”. Define one more set

Ĝε =

{
(g1, . . . , gr) ∈ Hr(Dκ) : sup

1≤j≤r
sup
s∈Kj

∣∣gj(s)− f j(s)
∣∣ < ε

}
,

There ∂Ĝε1

⋂
∂Ĝε2 = ∅ for ε1 6= ε2. This shows that Pζ,F

(
∂Ĝε

)
= 0 for all but, for those

countable, many ε > 0. Moreover, (17) and (18) imply that Pζ,F
(
Ĝε

)
> 0. This, Theorem 3

and the equivalent of weak convergence of probability measures in terms of continuity
sets, and the definitions of PT,F and Ĝε prove the theorem with “lim”.
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