
mathematics

Article

To Batch or Not to Batch? Comparing Batching and Curriculum
Learning Strategies across Tasks and Datasets

Laura Burdick *,† , Jonathan K. Kummerfeld and Rada Mihalcea

����������
�������

Citation: Burdick, L.; Kummerfeld,

J.K.; Mihalcea, R. To Batch or Not to

Batch? Comparing Batching and

Curriculum Learning Strategies

across Tasks and Datasets.

Mathematics 2021, 9, 2234.

https://doi.org/10.3390/

math9182234

Academic Editors: Florentina Hristea,

Cornelia Caragea and David Pugalee

Received: 28 June 2021

Accepted: 4 September 2021

Published: 11 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Computer Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
jkummerf@umich.edu (J.K.K.); mihalcea@umich.edu (R.M.)
* Correspondence: lburdick@umich.edu
† Current address: 2260 Hayward Street, Ann Arbor, MI 48109, USA.

Abstract: Many natural language processing architectures are greatly affected by seemingly small
design decisions, such as batching and curriculum learning (how the training data are ordered during
training). In order to better understand the impact of these decisions, we present a systematic analysis
of different curriculum learning strategies and different batching strategies. We consider multiple
datasets for three tasks: text classification, sentence and phrase similarity, and part-of-speech tagging.
Our experiments demonstrate that certain curriculum learning and batching decisions do increase
performance substantially for some tasks.

Keywords: natural language processing; word embeddings; batching; word2vec; curriculum learning;
text classification; phrase similarity; part-of-speech tagging

1. Introduction

When designing architectures for tasks in natural language processing (NLP), rela-
tively small methodological details can have a huge impact on the performance of the
system. In this paper, we consider several methodological decisions that impact NLP
systems that are based on word embeddings. Word embeddings are low-dimensional,
dense vector representations that capture semantic and syntactic properties of words. They
are often used in larger systems to accomplish downstream tasks.

We analyze two methodological decisions involved in creating word embeddings:
batching and curriculum learning. For batching, we consider what batching method to use,
and what batch size to use. We consider two batching methods, which we denote as basic
batching and cumulative batching. Curriculum learning is the process of ordering the data
during training. We consider three curriculum learning strategies: ascending curriculum,
descending curriculum, and default curriculum.

Our batching and curriculum learning choices are evaluated using three downstream
tasks: text classification, sentence and phrase similarity, and part-of-speech tagging. We
consider a variety of datasets of different sizes in order to understand how these strategies
work across diverse tasks and data.

We show that for some tasks, batching and curriculum learning decisions do not have
a significant impact, but for other tasks, such as text classification on small datasets, these
decisions are important considerations. This paper is an empirical study, and while we
make observations about different batching and curriculum learning decisions, we do not
explore the theoretical reasons for these observations.

To begin, we survey related work before introducing the methodology that we use to
create the word embeddings and apply batching and curriculum learning. Next, we define
architectures for our three downstream tasks. Finally, we present our results, and discuss
future work and conclusions.

Mathematics 2021, 9, 2234. https://doi.org/10.3390/math9182234 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9953-4592
https://orcid.org/0000-0001-5030-3016
https://orcid.org/0000-0002-0767-6703
https://doi.org/10.3390/math9182234
https://doi.org/10.3390/math9182234
https://doi.org/10.3390/math9182234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9182234
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9182234?type=check_update&version=2


Mathematics 2021, 9, 2234 2 of 11

2. Related Work

Our work builds off previous work on word embeddings, batching, and curricu-
lum learning.

2.1. Word Embeddings

Throughout this paper, we use a common word embedding algorithm, word2vec [1,2],
which uses a shallow neural network to learn embeddings by predicting context words.
We use the skip-gram word2vec model, a one-layer feed-forward neural network which
tries to optimize the log probability of a target word, given its context words.

In many cases, word embeddings are used as features in a larger system architecture.
The work of Collobert et al. [3] was an early paper that took this approach, incorporating
word embeddings as inputs to a neural network that performed part-of-speech tagging,
chunking, named entity recognition, and semantic role labeling. This line of work has been
expanded to include many other tasks, including text similarity [4], sentiment analysis [5],
and machine translation [6]. In this paper, we use word embeddings in systems for text
classification, sentence and phrase similarity, and part-of-speech tagging.

We explore two methodological decisions in creating word embeddings: batching and
curriculum learning.

2.2. Batching

We use two batching approaches (denoted as basic batching and cumulative batching).
Basic batching was first introduced in Bengio et al. [7], and cumulative batching was first
introduced in Spitkovsky et al. [8]. These approaches are described in more detail in
Section 3.2.

While we use the batching approaches described in these papers, we analyze their
performance on different tasks and datasets. Basic batching was originally proposed for
synthetic vision and word representation learning tasks, while cumulative batching was
applied to unsupervised dependency parsing. We use these batching techniques on NLP
architectures built with word embeddings for the tasks of text classification, sentence and
phrase similarity, and part-of-speech tagging.

In addition to using two batching techniques, we vary the number of the batches that
we use. This was studied previously; Smith et al. [9] showed that choosing a good batch
size can decrease the number of parameter updates to a network.

2.3. Curriculum Learning

This work also explores curriculum learning applied to word embeddings. Curriculum
refers to the order that the data are presented to the embedding algorithm. Previous work
has shown that the curriculum of the training data has some effect on the performance of
the created embeddings [10]. Curriculum learning has also been explored for other tasks in
NLP, including natural language understanding [11] and domain adaptation [12].

3. Materials and Methods

In order to evaluate the effectiveness of different batching and curriculum learning
techniques, we choose a diverse set of tasks and architectures to explore. Specifically,
we consider the downstream tasks of text classification, sentence and phrase similarity,
and part-of-speech (POS) tagging. These were chosen because they have varying degrees
of complexity. Sentence and phrase similarity, where word embeddings are compared
using cosine similarity, has a very simple architecture, while part-of-speech tagging uses a
more complex LSTM architecture. Text classification uses a linear classifier, which is more
complex than a simple cosine similarity, but less complex than a neural network.

Figure 1 shows the experimental setup for these three tasks. For each task, we begin
by training word2vec word embeddings, using Wikipedia training data. We apply batching
and curriculum learning to the process of training word embeddings. These embeddings
are then passed to a task-specific architecture.



Mathematics 2021, 9, 2234 3 of 11

Figure 1. Experimental setup for text classification, sentence and phrase similarity, and POS tagging.

3.1. Initial Embedding Spaces

To obtain word embeddings, we begin with a dataset of sentences from Wikipedia
(5,269,686 sentences; 100,003,406 words; 894,044 tokens) and create word2vec skip-gram
embeddings [1]. We use 300 dimensions and a context window size of 5.

Because the word2vec embedding algorithm uses a shallow neural network, there is
randomness inherent to it. This algorithmic randomness can cause variation in the word
embeddings created [13,14]. In order to account for variability in embeddings, we train
10 embedding spaces with different random initializations for word2vec. (We randomize
the algorithm by changing the random seed. We use the following ten random seeds: 2518,
2548, 2590, 29, 401, 481, 485, 533, 725, 777.) We use these 10 spaces to calculate the average
performance and standard deviation, which allows us to characterize the variation that we
see within the algorithm.

During the process of creating word embeddings, we use different batching and
curriculum learning strategies.

3.2. Batching

We apply batching to the Wikipedia dataset input to the word embedding algorithm.
We batch words (and their contexts) using two strategies: basic batching and cumulative
batching, visualized in Figure 2. For each batching strategy, we consider different numbers
of batches, ranging exponentially between 2 and 200.



Mathematics 2021, 9, 2234 4 of 11

Figure 2. Basic vs. cumulative batching. Rectangles represent chunks of the training data, with
different colors representing different sections of the data.

3.2.1. Basic Batching

As described in Bengio et al. [7], we split the data up into X disjoint batches. Each
batch is processed sequentially, and each batch is run for n epochs (Batch 1 runs for n
epochs, then Batch 2 runs for n epochs, etc.). Once a batch is finished processing, it is
discarded and never returned to. Both X and n are hyperparameters. We try different
values of X between 2 and 200; we set n = 5 for all experiments.

3.2.2. Cumulative Batching

Our second batching strategy [8] begins in the same way, with the data split up into X
disjoint batches. In this strategy, the batches are processed cumulatively (Batch 1 is run for
n epochs, then Batches 1 and 2 combined are run for n epochs, etc.). We try different values
of X between 2 and 200; we set n = 5 for all experiments.

3.3. Curriculum Learning

In addition to batching, we apply different curriculum learning strategies to the
Wikipedia dataset input to the word embedding algorithm.

We consider three different curricula for the data: the default order of Wikipedia
sentences, descending order by sentence length (longest to shortest), and ascending order
by sentence length (shortest to longest). Note that curriculum learning only applies to
the Wikipedia dataset used to create the word embeddings, rather than the task-specific
datasets used for training.

Qualitatively looking at Wikipedia sentences ordered by length, both the shortest and
the longest sentences tend to be unnatural sounding. The shortest sentences are only a
single token, such as a single word or a single punctuation mark. Some of these are most
likely the result of incorrect sentence tokenization. The longest sentences tend to be either
run-on sentences, or lists of a large number of items. For instance, the longest sentence is
725 tokens long, and it lists numerical statistics for different countries. This unnaturalness
may adversely affect the embedding algorithm when using either the ascending or de-
scending curriculum. It is possible that a more complex ordering of the data would achieve
better performance; we leave this exploration to future work.

When evaluating curriculum learning and batching strategies, our baseline strategy is
a default curriculum with basic batching.

Once we have created word embeddings using a specific batching and curriculum
learning strategy, the embeddings are input into task-specific architectures for each of our
three downstream tasks.

3.4. Task 1: Text Classification

The first task we consider is text classification—deciding what category a particular
document falls into. We evaluate 11 datasets, shown in Table 1. (For all tasks, sentences



Mathematics 2021, 9, 2234 5 of 11

are tokenized using NLTK’s Tokenizer.) These datasets span a wide range of sizes (from
96 sentences to 3.6 million training sentences), as well as number of classes to be categorized
(from 2 to 14).

Table 1. Data statistics (number of training sentences, number of test sentences, number of classes)
for text classification. The first eight datasets are from Zhang et al. [15]. Two datasets have both a
polarity (pol.) version with two classes and a full version with more classes.

Dataset # Sent. (Train) # Sent. (Test) # Classes

Amazon Review (pol.) 3.6e6 4e5 2
Amazon Review (full) 3e6 6.5e5 5
Yahoo! Answers 1.4e6 6e4 10
Yelp Review (full) 6.5e5 5e4 5
Yelp Review (pol.) 5.6e5 3.8e4 2
DBPedia 5.6e5 7e4 14
Sogou News 4.5e5 6e4 5
AG News 1.2e5 7600 4
Open Domain Deception 5733 1435 2
Personal Email 260 89 2
Real Life Deception 96 25 2

Of particular note are three datasets that are at least an order of magnitude smaller
than the other datasets. These are the Open Domain Deception Dataset [16] and the Real
Life Deception Dataset [17], both of which classify statements as truthful or deceptive, as
well as the Personal Email Dataset [18], which classifies e-mail messages as personal or
non-personal.

After creating embedding spaces, we use fastText [19] for text classification. (Avail-
able online at https://fasttext.cc/. (accessed on 7 September 2021.) FastText represents
sentences as a bag of words and trains a linear classifier to classify the sentences. The
performance is measured using accuracy.

3.5. Task 2: Sentence and Phrase Similarity

The second task that we consider is sentence and phrase similarity: determining how
similar two sentences or phrases are. We consider three evaluation datasets, shown in
Table 2. The Human Activity Dataset [20] consists of pairs of human activities with four an-
notated relations each (similarity, relatedness, motivational alignment [MA], and perceived
actor congruence [PAC]). The STS Benchmark [21] has pairs of sentences with semantic
similarity scores, and the SICK dataset [22] has pairs of sentences with relatedness scores.

Table 2. Data statistics for sentence and phrase similarity.

Dataset # Pairs (Train) # Pairs (Test) # Tokens (Train)

Human Activity 1373 1000 1446
STS Benchmark 5749 1379 14,546
SICK 4439 4906 2251

For each pair of phrases or sentences in our evaluation set, we average the embeddings
for each word, and take the cosine similarity between the averaged word vectors from
both phrases or sentences. We compare this with the ground truth using Spearman’s
correlation [23]. Spearman’s correlation is a measure of rank correlation. The values of
two variables are ranked in order, and then Pearson’s correlation [24] (a measure of linear
correlation) is taken between the ranked values. Spearman’s correlation assesses monotonic
relationships (are values strictly not decreasing, or strictly not increasing?), while Pearson’s
correlation assesses linear relationships.

https://fasttext.cc/


Mathematics 2021, 9, 2234 6 of 11

3.6. Task 3: Part-of-Speech Tagging

Our final task is part-of-speech (POS) tagging—determining the correct part-of-speech
for a given word in a sentence. For evaluation, we use two datasets: the email and answers
datasets from the English Universal Dependencies Corpus (UD) [25], shown in Table 3.

Table 3. Data statistics for POS tagging.

Dataset # Sentences (Train) # Sentences (Test)

UD Answers 2631 438
UD Email 3770 606

After creating embedding spaces, we use a bi-directional LSTM implemented using
DyNet [26] to perform POS tagging. An LSTM is a type of recurrent neural network that is
able to process sequential data [27]. This is an appropriate architecture for part-of-speech
tagging because we want to process words sequentially, in the order that they appear in
the sentence. Our LSTM has 1 layer with a hidden dimension size of 50, and a multi-layer
perceptron on the output. Performance is measured using accuracy.

4. Results

We apply the different curriculum learning and batching strategies to each task, and
we consider the results to determine which strategies are most effective.

4.1. Task 1: Text Classification

For the larger text classification datasets (>120,000 training sentences), there are no
substantial differences between different curriculum and batching strategies. However, we
do see differences for the three smallest datasets, shown in Figure 3. To compare across
datasets of different sizes, we show the number of sentences per batch, rather than the
number of batches. Because these graphs show many combinations of curriculum and
batching strategies, we report numbers on each dataset’s dev set.

100 101 102 103

Sentences / Batch

0.54

0.56

0.58

0.60

0.62
Open Domain Deception

100 101 102 103

Sentences / Batch

0.1

0.2

0.3

0.4

0.5
Real Life Deception

100 101 102 103

Sentences / Batch

0.75

0.80

0.85

0.90

Personal Email

Default Curr. + Basic Batch.
Default Curr. + Cum. Batch.

Descending Curr. + Basic Batch.
Descending Curr. + Cum. Batch.

Ascending Curr. + Basic Batch.
Ascending Curr. + Cum. Batch.

Figure 3. Accuracy scores on the development set for three text classification datasets. Different lines indicate models
trained with different curriculum and batching strategies (basic, cumulative). Datasets span different ranges of the x-axis
because they are different sizes. Error bars show the standard deviation over ten word2vec embedding spaces, trained
using different random seeds.

On the smallest dataset, Real Life Deception (96 training sentences), we see that above
approximately ten batches, ascending curriculum with cumulative batching outperforms
the other methods. On the test set, we compare our best strategy (ascending curriculum
with cumulative batching) with the baseline setting (default curriculum with basic batch-
ing), both with 100 batches, and we see no significant difference. This is most likely because
the test set is so small (25 sentences).



Mathematics 2021, 9, 2234 7 of 11

4.2. Task 2: Sentence and Phrase Similarity

Next, we consider results from the sentence and phrase similarity task, shown in
Figure 4. Because these graphs show many combinations of curriculum and batching
strategies, we report numbers on each dataset’s train set (we use the train sets rather than
the dev sets because there is no training or hyperparemeter tuning).

0.0

0.2

0.4

0.6

Sp
ea

rm
an

's 
Co

rre
la

tio
n

Human Activity (Similarity) Human Activity (Relatedness) Human Activity (MA)

101 102 103

Sentences / Batch
0.0

0.2

0.4

0.6

Sp
ea

rm
an

's 
Co

rre
la

tio
n

Human Activity (PAC)

101 102 103

Sentences / Batch

STS (Similarity)

101 102 103

Sentences / Batch

SICK (Relatedness)

Default Curr. + Basic Batch.
Default Curr. + Cum. Batch.

Descending Curr. + Basic Batch.
Descending Curr. + Cum. Batch.

Ascending Curr. + Basic Batch.
Ascending Curr. + Cum. Batch.

Figure 4. Spearman’s correlation scores on the train set for sentence and phrase similarity tasks. Different lines indicate
models trained with different curriculum and batching strategies (basic, cumulative). Datasets span different ranges of the
x-axis because they are different sizes. Error bars show the standard deviation over ten word2vec embedding spaces trained
using different random seeds.

First, we note that the relative performance of different strategies remains consistent
across all three datasets and across all six measures of similarity. An ascending curriculum
with cumulative batching performs the worst by a substantial amount, while a descending
curriculum with cumulative batching performs the best by a small amount. As the number
of sentences per batch increases, the margin between the different strategies decreases.
On the test set, we compare our best strategy (descending curriculum with cumulative
batching) with the baseline setting (default curriculum with basic batching), and we see in
Table 4 that the best strategy significantly outperforms the baseline with five batches.

Table 4. Spearman’s correlation on the test set for similarity tasks (all have a standard deviation
of 0.0).

Human Activity

Dataset Sim. Rel. MA PAC STS SICK

Baseline 0.36 0.33 0.33 0.22 0.27 0.51
Best 0.43 0.41 0.41 0.29 0.32 0.53

For all six measures, we observe a time vs. performance trade-off: the fewer sentences
are in a batch, the better the performance is, but the more computational power and time it
takes to run.

4.3. Task 3: Part-of-Speech Tagging

Finally, there are no significant differences in POS tagging between batching and
curriculum learning strategies. For the previous two tasks, we have seen the largest



Mathematics 2021, 9, 2234 8 of 11

changes in performance on the smallest dataset. Both of the datasets that we use to
evaluate POS tagging are relatively large (>2500 sentences in the training data), which may
explain why we do not see significant performance differences here.

5. Conclusions

One strategy does not perform equally well on all tasks. On some tasks, such as
POS tagging, the curriculum and batching strategies that we tried have no effect at all.
Simpler tasks that rely most heavily on word embeddings, such as sentence and phrase
similarity and text classification with very small datasets, benefit the most from fine-tuned
curriculum learning and batching. We have shown that making relatively small changes to
curriculum learning and batching can have an impact on the results; this may be true in
other tasks with small data as well.

In general, cumulative batching outperforms basic batching. This is intuitive because
cumulative batching sees the same training example more times than basic batching, and
overall sees the training data more times. As the number of sentences per batch increases,
the differences between cumulative and basic batching shrink. Even though cumulative
batching has higher performance, it takes more computational time and power than basic
batching. We see a trade-off here between computational resources and performance.

It is inconclusive what the best curriculum is. For text classification, the ascending
curriculum works best, while for sentence and phrase similarity, the descending curriculum
works best. One hypothesis for why we see this is that for text classification, the individual
words are more important than the overall structure of the sentence. The individual
words are able to determine which class the sentence is a part of. Therefore, the algorithm
does better when it looks at smaller sentences first, before building to larger sentences
(an ascending curriculum). With the smaller sentences, the algorithm can focus more
on the words and less on the overall structure. For sentence and phrase similarity, it is
possible that the overall structure of the sentence is more important than the individual
words because the algorithm is looking for overall similarity between two phrases. Thus,
a descending curriculum, where an algorithm is exposed to longer sentences first, works
better for this task.

We have explored different combinations of curriculum learning and batching strate-
gies across three different downstream tasks. We have shown that for different tasks,
different strategies are appropriate, but that overall, cumulative batching performs better
than basic batching.

Since our experiments demonstrate that certain curriculum learning and batching
decisions do increase the performance substantially for some tasks, for future experiments,
we recommend that practitioners experiment with different strategies, particularly when
the task at hand relies heavily on word embeddings.

6. Future Work

There are many tasks and NLP architectures that we have not explored in this work,
and our direct results are limited to the tasks and datasets presented here. However, our
work implies that curriculum learning and batching may have similar effects on other tasks
and architectures. Future work is needed here.

Additionally, the three curricula that we experimented with in this paper (default,
ascending, and descending) are relatively simple ways to order data; future work is
needed to investigate more complex orderings. Taking into account such properties as
the readability of a sentence, the difficulty level of words, and the frequency of certain
part-of-speech combinations could create a better curriculum that consistently works well
on a large variety of tasks. Additionally, artificially simplifying sentences (e.g., substituting
simpler words or removing unnecessary clauses) at the beginning of the curriculum, and
then gradually increasing the difficulty of the sentences could be helpful for “teaching” the
embedding algorithm to recognize increasingly complex sentences.



Mathematics 2021, 9, 2234 9 of 11

There are many other word embedding algorithms (e.g., BERT [28], GloVe [29]);
batching and curriculum learning may affect these algorithms differently than they affect
word2vec. Different embedding dimensions and context window sizes may also make a
difference. More work is needed to explore this.

Finally, our paper is an empirical study, with our observations indicating that the
observed batching variation is something that researchers should consider, even though
we do not explore the theoretical reasons for this.

The code used in the experiments is publicly available at https://lit.eecs.umich.edu/
downloads.html (accessed on 7 September 2021).

Author Contributions: Conceptualization, L.B., J.K.K. and R.M.; methodology, L.B., J.K.K. and
R.M.; software, L.B. and J.K.K.; investigation, L.B. and J.K.K.; writing—original draft preparation,
L.B.; writing—review and editing, L.B., J.K.K. and R.M.; supervision, J.K.K. and R.M.; project
administration, R.M.; funding acquisition, R.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This material is based in part upon work supported by the National Science Foundation
(NSF #1344257), the Defense Advanced Research Projects Agency (DARPA) AIDA program under
grant #FA8750-18-2-0019, and the Michigan Institute for Data Science (MIDAS). Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF, DARPA, or MIDAS.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Wikipedia: The Wikipedia dataset used to create the initial embedding
spaces was used in Tsvetkov et al. [10] and is available by contacting the authors of that paper.
Text classification: Amazon Review (pol.), Amazon Review (full), Yahoo! Answers, Yelp Review
(full), Yelp Review (pol.), DBPedia, Sogou News, and AG News are available at https://course.
fast.ai/datasets#nlp. (accessed on 7 September 2021). The Open Domain Deception Dataset is
available at https://lit.eecs.umich.edu/downloads.html. (accessed on 7 September 2021) under
“Open-Domain Deception." The Real Life Deception Dataset is available at https://lit.eecs.umich.
edu/downloads.html (accessed on 7 September 2021) under “Real-life Deception”. The Personal
Email Dataset is available at https://lit.eecs.umich.edu/downloads.html (accessed on 7 September
2021) under “Summarization and Keyword Extraction from Emails”. Sentence and phrase similarity:
The Human Activity Dataset is available at https://lit.eecs.umich.edu/downloads.html (accessed
on 7 September 2021) under “Human Activity Phrase Data”. The STS Benchmark is available at
https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark (accessed on 7 September 2021). The
SICK dataset is available at https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC (accessed on
7 September 2021). Part-of-speech tagging: The English Universal Dependencies Corpus is available at
https://universaldependencies.org/ (accessed on 7 September 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their

compositionality. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NA, USA, 5–10
December 2013; pp. 3111–3119.

2. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,
arXiv:1301.3781.

3. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing (almost) from scratch. J.
Mach. Learn. Res. 2011, 12, 2493–2537.

4. Kenter, T.; de Rijke, M. Short Text Similarity with Word Embeddings. In Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, Melbourne, Australia, 19–23 October 2015; Association for Computing Machinery:
New York, NY, USA, 2015; CIKM ’15; pp. 1411–1420. [CrossRef]

5. Faruqui, M.; Dodge, J.; Jauhar, S.K.; Dyer, C.; Hovy, E.; Smith, N.A. Retrofitting Word Vectors to Semantic Lexicons. In
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Denver, CO, USA, 31 May–5 June 2015; Association for Computational Linguistics: Stroudsburg, PA,
USA, 2019; pp. 1606–1615. [CrossRef]

https://lit.eecs.umich.edu/downloads.html
https://lit.eecs.umich.edu/downloads.html
https://course.fast.ai/datasets#nlp.
https://course.fast.ai/datasets#nlp.
https://lit.eecs.umich.edu/downloads.html.
https://lit.eecs.umich.edu/downloads.html
https://lit.eecs.umich.edu/downloads.html
https://lit.eecs.umich.edu/downloads.html
https://lit.eecs.umich.edu/downloads.html
https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC
https://universaldependencies.org/
https://universaldependencies.org/
http://doi.org/10.1145/2806416.2806475
http://dx.doi.org/10.3115/v1/N15-1184


Mathematics 2021, 9, 2234 10 of 11

6. Mikolov, T.; Le, Q.V.; Sutskever, I. Exploiting similarities among languages for machine translation. arXiv 2013, arXiv:1309.4168.
7. Bengio, Y.; Louradour, J.; Collobert, R.; Weston, J. Curriculum learning. In Proceedings of the International Conference on

Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 41–48.
8. Spitkovsky, V.I.; Alshawi, H.; Jurafsky, D. From Baby Steps to Leapfrog: How “Less is More” in Unsupervised Dependency

Parsing. In Proceedings of the Human Language Technologies: The 2010 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, Los Angeles, CA, USA, 2–4 June 2010; Association for Computational Linguistics:
Stroudsburg, PA, USA, 2019; pp. 751–759.

9. Smith, S.L.; Kindermans, P.J.; Ying, C.; Le, Q.V. Don’t decay the learning rate, increase the batch size. In Proceedings of the
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

10. Tsvetkov, Y.; Faruqui, M.; Ling, W.; MacWhinney, B.; Dyer, C. Learning the Curriculum with Bayesian Optimization for Task-
Specific Word Representation Learning. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 August 2016; pp. 130–139.

11. Xu, B.; Zhang, L.; Mao, Z.; Wang, Q.; Xie, H.; Zhang, Y. Curriculum Learning for Natural Language Understanding. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics; Association for Computational
Linguistics, Online, 5–10 July 2020; pp. 6095–6104. [CrossRef]

12. Zhang, X.; Shapiro, P.; Kumar, G.; McNamee, P.; Carpuat, M.; Duh, K. Curriculum Learning for Domain Adaptation in Neural
Machine Translation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–9 June 2019; Association for Computational Linguistics:
Stroudsburg, PA, USA, 2019; pp. 1903–1915. [CrossRef]

13. Antoniak, M.; Mimno, D. Evaluating the Stability of Embedding-based Word Similarities. Tran. Assoc. Comput. Linguist. 2018,
6, 107–119. [CrossRef]

14. Wendlandt, L.; Kummerfeld, J.K.; Mihalcea, R. Factors Influencing the Surprising Instability of Word Embeddings. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, New Orleans, LA, USA, 1–6 June 2018; Assocation for Computational Linguistics: Stroudsburg, PA, USA, 2019;
pp. 2092–2102. [CrossRef]

15. Zhang, X.; Zhao, J.; LeCun, Y. Character-level convolutional networks for text classification. In Proceedings of the Advances in
Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 649–657.

16. Pérez-Rosas, V.; Abouelenien, M.; Mihalcea, R.; Burzo, M. Deception detection using real-life trial data. In Proceedings of the
2015 ACM on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13 November 2015; ACM: Seattle, WA,
USA, 2015; pp. 59–66.

17. Pérez-Rosas, V.; Mihalcea, R. Experiments in open domain deception detection. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 1120–1125.

18. Loza, V.; Lahiri, S.; Mihalcea, R.; Lai, P.H. Building a Dataset for Summarization and Keyword Extraction from Emails. In
Proceedings of the Ninth International Conference on Language Resources and Evaluation, Reykjavik, Iceland, 26–31 May 2014;
European Languages Resources Association: Paris, France, 2014; pp. 2441–2446.

19. Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T. Bag of Tricks for Efficient Text Classification. In Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, 3–7 April 2017; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2017; pp. 427–431.

20. Wilson, S.; Mihalcea, R. Measuring Semantic Relations between Human Activities. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), Asian Federation of Natural Language Processing,
Taipei, Taiwan, 27 November–1 December 2017; pp. 664–673.

21. Cer, D.; Diab, M.; Agirre, E.; Lopez-Gazpio, I.; Specia, L. SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and
Crosslingual Focused Evaluation. In Proceedings of the 11th International Workshop on Semantic Evaluation, Vancouver, BC,
Canada, 3–4 August 2017; Association for Computational Linguistics: Stroudsburg, PA, USA, 2017; pp. 1–14. [CrossRef]

22. Bentivogli, L.; Bernardi, R.; Marelli, M.; Menini, S.; Baroni, M.; Zamparelli, R. SICK through the SemEval glasses. Lesson learned
from the evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual
entailment. Lang. Resour. Eval. 2016, 50, 95–124. [CrossRef]

23. Spearman, C. Correlation calculated from faulty data. Br. J. Psychol. 1904–1920 1910, 3, 271–295. [CrossRef]
24. Sedgwick, P. Pearson’s correlation coefficient. Bmj 2012, 345, e4483 . [CrossRef]
25. Nivre, J.; de Marneffe, M.C.; Ginter, F.; Goldberg, Y.; Hajič, J.; Manning, C.D.; McDonald, R.; Petrov, S.; Pyysalo, S.; Silveira, N.;

et al. Universal Dependencies v1: A Multilingual Treebank Collection, Language Resources and Evaluation. In Proceedings
of the Tenth International Conference on Language Resources and Evaluation, Portorož, Slovenia, 23–28 May 2016; European
Languages Resources Association: Paris, France, 2016; pp. 1659–1666.

26. Neubig, G.; Dyer, C.; Goldberg, Y.; Matthews, A.; Ammar, W.; Anastasopoulos, A.; Ballesteros, M.; Chiang, D.; Clothiaux, D.;
Cohn, T.; et al. DyNet: The Dynamic Neural Network Toolkit. arXiv 2017, arXiv:1701.03980.

27. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]

http://dx.doi.org/10.18653/v1/2020.acl-main.542
http://dx.doi.org/10.18653/v1/N19-1189
http://dx.doi.org/10.1162/tacl_a_00008
http://dx.doi.org/10.18653/v1/N18-1190
http://dx.doi.org/10.18653/v1/S17-2001
http://dx.doi.org/10.1007/s10579-015-9332-5
http://dx.doi.org/10.1111/j.2044-8295.1910.tb00206.x
http://dx.doi.org/10.1136/bmj.e4483
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276


Mathematics 2021, 9, 2234 11 of 11

28. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Minneapolis, MN, USA, 2–9 June 2019; Association for Computational Linguistics: Stroudsburg,
PA, USA, 2019; pp. 4171–4186.

29. Pennington, J.; Socher, R.; Manning, C. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Doha, Qatar, 25–29 October 2014;
pp. 1532–1543. [CrossRef]

http://dx.doi.org/10.3115/v1/D14-1162

	Introduction
	Related Work
	Word Embeddings
	Batching
	Curriculum Learning

	Materials and Methods
	Initial Embedding Spaces
	Batching
	Basic Batching
	Cumulative Batching

	Curriculum Learning
	Task 1: Text Classification
	Task 2: Sentence and Phrase Similarity
	Task 3: Part-of-Speech Tagging

	Results
	Task 1: Text Classification
	Task 2: Sentence and Phrase Similarity
	Task 3: Part-of-Speech Tagging

	Conclusions
	Future Work
	References

