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Abstract: This study implements various, maximum overlap, discrete wavelet transform filters to
model and forecast the time-dependent mortality index of the Lee-Carter model. The choice of
appropriate wavelet filters is essential in effectively capturing the dynamics in a period. This cannot
be accomplished by using the ARIMA model alone. In this paper, the ARIMA model is enhanced
with the integration of various maximal overlap discrete wavelet transform filters such as the least
asymmetric, best-localized, and Coiflet filters. These models are then applied to the mortality data of
Australia, England, France, Japan, and USA. The accuracy of the projecting log of death rates of the
MODWT-ARIMA model with the aforementioned wavelet filters are assessed using mean absolute
error, mean absolute percentage error, and mean absolute scaled error. The MODWT-ARIMA (5,1,0)
model with the BL14 filter gives the best fit to the log of death rates data for males, females, and total
population, for all five countries studied. Implementing the MODWT leads towards improvement in
the performance of the standard framework of the LC model in forecasting mortality rates.

Keywords: MODWT; DWT; BL14; Coiflet; least asymmetric; wavelet

1. Introduction

Mortality studies are essential in understanding the demographic structure and indi-
cating the health status of a population. The analysis of mortality and its historical trends
enables a country to comprehend its population dynamics and serves as a foundation for
formulating economic and social policies [1]. Actuaries used mortality forecasts to project
cash flows and evaluate premiums as well as reserves in life insurance and pension plans.
The Lee-Carter (LC) model [2] significantly contributed to the development of various
extensions. A popular extension of this model is by Hyndman and Ullah [3], which used a
functional data paradigm combined with nonparametric smoothing (penalized regression
splines). Currie [4] extended the LC model to a generalized linear model (GLM) framework
where the LC model and its extensions were fitted following the GLM framework in the
Poisson and binomial settings. Neves et al. [5] considered five probability models (Poisson,
binomial, negative binomial, Gaussian, and beta) based on the generalized autoregressive
score (GAS) model to estimate the LC parameters and forecast mortality rates.

Apart from the extensions discussed, the original LC model is still widely used in
mortality forecasting in many countries due to its simplicity and robustness. The LC
model consists of three main parameters. The first and second parameters are age-specific
parameters representing every age group while the third parameter, k(t) defines the time-
varying effect such that the tendency of all age-specific central death rates has the same
pattern of stochastic evolvement over time [6]. In the original LC model, the ARIMA
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model is used to forecast k(t). However, according to Nigri et al. [7], the standard ARIMA
approach has limited ability to recognize unknown and unidentified patterns in future
mortality trends over time. Hainaut and Denuit [8] reported that wavelets are great tools
for investigating mortality trends across time with numerical illustrations. This motivated
the integration of wavelets to enhance the performance of the ARIMA model in forecasting
mortality rates.

Wavelets are commonly used in time series analysis, especially in signal processing,
engineering, economics, and finance (see Percival and Walden [9] for an excellent review on
the use of wavelets in time series). Wavelets decompose the original univariate time series
into a group of time series (detail and smooth coefficients) that have an explicit hierarchical
structure [10]. Wavelet-based methods have significant advantages in terms of denoising
and are robust to outliers [11–13]. To date, research related to the application of wavelets
in mortality is limited and patchily available. Morillas et al. [14] pioneered the use of
wavelets and piecewise polynomial harmonic interpolation to develop a two-stage method
for grading mortality rates and compared it to kernel grading. The wavelet technique can
improve smoothness, fit, and oscillations more effectively than the conventional technique.
Hainaut and Denuit [8] demonstrated that only a small number of wavelets are required to
reconstruct all the mortality curves in the Belgian population from 1965 to 2015. Wavelet
coefficients display clear trends in the Belgian population and are therefore straightforward
to forecast.

This article takes cognizance of the advantages of the maximal overlap discrete wavelet
transform (MODWT) and the ARIMA model to overcome the limitations of the ARIMA
process in forecasting the future evolution of the k(t) parameter. Wavelet transforms (WT)
can be classified as continuous wavelet transforms (CWT) and discrete wavelet transforms
(DWT). The MODWT is a modified version of the DWT which avoids the subsampling
process, leading to a higher level of information in the resulting wavelet and scaling
coefficients. The MODWT was chosen in this study because it can retain down-sampled
values at each level of the decomposition and is well defined for all sample sizes [15]. So
far, no work has been done to study the performance of MODWT wavelet filters such as the
least asymmetric (LA8), best-localized (BL14), and Coiflet (C6) wavelet filters, for modelling
and improving the prediction accuracy of mortality trends in the LC model. Hence, it is of
interest to undertake this task and investigate the performance of the MODWT-based LC
model. In this study, five countries with data on the Human Mortality Database (HMD) for
years 1950 to 2016, involving ages 0 to 90+ were considered to verify the effectiveness of
the MODWT-based LC model.

This paper is organized as follows: Section 2 presents the methodologies used in
constructing the LC model and the MODWT-based LC model, Section 3 illustrates and
compares the performances of the LC model and its wavelet counterparts for five countries
(Australia, England, France, Japan, and USA), and Section 4 concludes.

2. Methodology
2.1. The Lee-Carter (LC) Model

The Lee-Carter [2] model is as follows:

ln(m(x, t)) = a(x) + b(x)k(t) + ε(x, t), x = 1, . . . , ω (1)

where m(x, t) is the central death rate of age x at time t, ω is the beginning of the last
age interval. Here, a(x) describes the average shape of the age profile, b(x) describes
the pattern of deviations from this age profile when k(t) the mortality index at time t
varies. ε(x, t) reflects the age-specific historical influences which are not fully captured
by the model which is independent and identically distributed and follows the N

(
0, σ2)

distribution. The parameters in Equation (1) are estimated using a two-stage method by
imposing the following restrictions:

∑t k(t) = 0 and ∑x b(x) = 1, (2)
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to distinguish a unique solution for the system of equations of the model. The singular value
decomposition approach was applied to the matrix of centered age profiles, ln(mx,t)− a(x),
which allows a first estimation of parameters b(x) and k(t). The model in (1) is fitted to the
crude mortality rates, m̂(x, t) = D(x,t)

E(x,t) where D(x, t) > 0 denotes the number of deaths of
age x at time t, and E(x, t) is the matching central exposure of age x at time t. Once b(x)
and k(t) are estimated by satisfying (2), a second stage estimate of k(t) is found to ensure
that the actual total deaths are identical to the total expected deaths for each t, as a basis for
comparing actual and expected deaths. Hence, the parameter estimates satisfy

ω

∑
x=x1

D(x, t) =
ω

∑
x=x1

E(x, t)exp
(

â(x) + b̂(x) k̂(t)
)
∀t. (3)

This adjustment gives more weight to high rates, thus roughly counterbalancing the
effect of using a log transformation of the mortality rates. To forecast mortality rates, an
appropriate time series was fitted to k(t) using future extrapolation values, i.e., k(t + n).
Subsequently, the forecasted mortality rate would be

ln(m(x, t)) = a(x) + b(x)k(t + n). (4)

For this method, a(x) and b(x) are fixed. The adjusted k̂(t) is then extrapolated using
ARIMA models. Lee and Carter [2] used a random walk with drift model, which can be
expressed as

k(t) = k(t− 1) + d + e(t), (5)

where d is known as the drift parameter and measures the average change according to
time t in the series, and e(t) is an uncorrelated error.

2.2. The MODWT-Based LC Model

Wavelets are based on Fourier transform which show any function as the sum of sine
and cosine functions. WT is a function of time t that obeys the basic rule known as the
admissibility condition [16]:

Cϕ =
∫ ∞

−∞

|ϕ( f )|2

f
d f < ∞ (6)

where ϕ( f ) is the Fourier transform and a function of the frequency f , of ϕ(t). A father
wavelet generates the smooth and low-frequency parts of a signal while a mother wavelet
generates the detailed and high-frequency components. The following equations represent
the father and mother wavelets, respectively, where j = 1, 2, 3, . . . , J in a J-level wavelet
decomposition:

φj, k = 2(
−j
2 )φ

(
t− 2jk

2j

)
,

ϕj, k = 2(
−j
2 )ϕ

(
t− 2jk

2j

)
,

(7)

where J denotes the maximum scale sustainable by the number of data points. The father
and mother wavelets satisfy: ∫

φ(t)dt = 1,∫
ϕ(t)dt = 0.

(8)

In any time series data, a function which is an input represented by wavelet transforms
can be built as a sequence of projections onto father and mother wavelets indexed by
{k} = 2j where k = {0, 1, 2, . . .}, and {S} = 2j where {j = 1, 2, 3, . . .J}.
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The analysis of real discretely sampled data requires creating a lattice for making
calculations. Mathematically, it is convenient to use a dyadic expansion as shown in
Equation (8). The expansion coefficients are given by the projections:

Sj,k =
∫

φj,k f (t)dt,
dj,k =

∫
ϕj,k f (t)dt.

(9)

The wavelet approximation coefficients to f (t), which leads to k(t) in the wavelet
framework of (1) is defined by:

k(t) = ∑ Sj,kφj,k(t) + ∑ dj,k ϕj,k(t) + ∑ dj−1,k ϕj−1,k(t) + · · ·+ ∑ d1,k ϕ1,k(t), (10)

where
Sj(t) = ∑ Sj,kφj,k(t),
Dj(t) = ∑ dj,kφj,k(t).

(11)

WT is used to calculate the wavelet approximation coefficient in (10), for a discrete
signal where Sj(t) and Dj(t) introduce the smooth and detailed coefficients, respectively.
The smooth coefficients emphasize on the most critical features of the data, and the detailed
coefficients detect the main features in the data [9,16].

An orthonormal DWT matrix k(t) can be constructed based on any filter satisfying
the properties of a wavelet filter in (8), namely summation to zero and orthonormality [9].
A Daubechies’ wavelet filter of even width L has a squared gain function:

H(S)( f ) = S
L
2 ( f )AL( f ) (12)

where S( f ) = 4sin2(π f ) defines the squared gain function for the difference filter {1,−1}
and

AL( f ) =
1

2L−1

L
2−1

∑
l=0

( L
2 − 1 + l

l

)
cos2l(π f ) (13)

which establishes the squared function of a low-pass filter. The scaling filter {gl} that
agrees to the Daubechies wavelet filter has a squared gain function given by

G(S)( f ) = H(S)
(

1
2
− f

)
= 2cosL(π f )

L
2−1

∑
l=0

( L
2 − 1 + l

l

)
sin2l(π f ). (14)

As L increases, some additional criteria to select a unique wavelet filter or a unique
scaling filter may be imposed. For the Daubechies filter, let the scaling filter

{
g(ep)

l

}
with

squared gain GS(.) such that

m

∑
l=0

g2
l ≤

m

∑
l=0

[
g(ep)

l

]2
f or m = 0, . . . , L− 1 (15)

where {gl} is any other filter with squared gain G(S)(.) and g(ep)
1 denotes the extremal

phase (ep) scaling filter.
For a least asymmetric filter, the scaling filter whose transfer function G( f ) = [G(S)( f )]

1/2eiθ(G)( f )
, has a phase function θ(G)(.). This is as close as possible to that of a linear phase

filter. The benefit of the least asymmetric filters is that the v of v value minimizes G( f )
to match the scaling and wavelet coefficients in such a way that they can be viewed as
approximately the output of zero-phase filters [9,16].

The approximate zero phase property is significant as it allows us to link the DWT
coefficients meaningfully to different events in the original time series. The least asymmetric
wavelet with an excellent general-purpose has a width which is 8 (LA8). The LA8 wavelet
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filter strikes a balance between providing smooth approximations with few artifacts and
minimal edge effects at data boundaries [9,16].

Let k(t) be associated with the actual time t0 + t∆t. Then, the phase properties of the
least asymmetric filters dictate associating the wavelet coefficient Wj,t with actual time

t0 +
(

2j(t + 1)− 1−
∣∣∣v(H)

j

∣∣∣mod N
)

∆t, t = 0, . . . , Nj − 1, (16)

where ∣∣∣v(H)
j

∣∣∣ = Lj

2
+

L
2
+ v− 1, (17)

and

v =


−L
2 + 1, i f L = 8, 12, 16 or 20 (i.e., L/2 is even)

−L
2 , i f L = 10 or 18
−L
2 + 2, i f L = 14.

(18)

For the scaling coefficient Vj,t, a similar expression is obtained by replacing
∣∣∣v(H)

j

∣∣∣with

∣∣∣v(G)
j

∣∣∣ = Lj − 1
L− 1

|v|, (19)

The Coiflet wavelet filters are alternatives to the Daubechies filters that provide better
approximations to zero phase filters compared to their least asymmetric counterparts [17].
However, they have a less desirable filter form and less embedded differentiating opera-
tions for a specific filter width. Coiflet wavelets and scaling coefficients with actual times
use (19) by substituting v = −2L

3 + 1.
Doroslovacki [18] proposed a best-localized squared gain factorization for the

Daubechies scaling filter. This filter refines the least asymmetric idea by using a new
linear-phase deviation measure that penalizes departures at low frequencies more severely
than those at high frequencies [9]. The best-localized (BL) wavelet filter gives improved
results for the scaling function by minimizing the time-localization measure [18]. A proper
selection of the wavelet-generating-filter transfer function is crucial to make the scaling
functions and wavelets in the binary orthonormal Daubechies form more symmetrical.
The Coiflet (C6), least asymmetric (LA8), and best-localized (BL14) wavelet filters will be
investigated to find the best approximation for k(t).

3. Results and Discussion

The data for this study is obtained from the Human Mortality Database (HMD). Five
developed countries were selected such as Australia, England, Japan, France, and USA
by considering sex-specific, as well as total population for analysis. The data for these
countries are based on single years of age. The data for older ages (age 90 and above)
were grouped to avoid problems associated with erratic rates at these ages. The LC and
MODWT-LC models were fitted to log death rates from 1950 to 2016. To fit these models,
the data for the five countries were divided into training and test sets. The training set
consists of the observed log death rates occurring until 2005, and the test set is chosen
from 2006 onwards. Tables 1–3 provide the forecast accuracy based on mean absolute error
(MAE), mean absolute percentage error (MAPE), and mean absolute scale error (MASE)
for male, female, and total populations for the five countries studied.

The accuracy of two models representing k(t) such as the default ARIMA(0,1,0)
and MODWT-ARIMA(5,1,0) by integrating the LA8, BL14, and C6 wavelet filters were
evaluated. In selecting the suitable form of ARIMA (p, d, q) for the MODWT-LC model,
various values were fitted to p (the number of autoregressive terms), d (the number of
non-seasonal differences required for stationarity), and q (the order of moving average).
The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test Kwiatkowski et al. [19] was used to
test for stationarity and the p-values were significantly lesser than 0.05 for d = 1. This
indicates that one non-seasonal difference is required to achieve stationarity for the data of
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the five countries. Based on the smallest error obtained using MAE, MAPE, and MASE,
p = 5, d = 1 and q = 0 form the best combination in improving k(t) to fit the log of death
rates for the five countries investigated. The structure of the data also suggested that no
moving average term i.e., q is required.

Table 1. Accuracy measures based on MAE, MAPE, and MASE for total population by country (smallest values are bolded).

MAE MAPE MASE

Country LA8 BL14 C6 ARIMA
(0,1,0) LA8 BL14 C6 ARIMA

(0,1,0) LA8 BL14 C6 ARIMA
(0,1,0)

Australia 1.9840 1.7816 2.4849 2.3469 8.9306 8.9978 12.4314 19.4595 0.4880 0.4229 0.6129 0.9825
England 1.5697 1.4881 2.2238 1.9533 22.1293 14.8784 15.8047 21.4726 0.4741 0.4251 0.6678 0.9826
France 1.8971 1.8328 2.5823 2.2057 46.7899 13.6233 19.3140 17.7932 0.4749 0.4342 0.6412 0.9826
Japan 2.8555 2.6186 3.9215 3.2803 21.3071 7.2387 25.4780 18.6707 0.4530 0.3940 0.6146 0.9828
USA 1.2028 1.1426 1.4942 1.4685 7.8074 6.0259 11.1851 18.0986 0.4511 0.4114 0.5592 0.9826

Table 2. Accuracy measures based on MAE, MAPE, and MASE for the male population by country (smallest values are bolded).

MAE MAPE MASE

Country LA8 BL14 C6 ARIMA
(0,1,0) LA8 BL14 C6 ARIMA

(0,1,0) LA8 BL14 C6 ARIMA
(0,1,0)

Australia 1.9442 1.7009 2.5810 2.3013 11.2313 8.7570 21.5385 29.1528 0.4996 0.4180 0.6659 0.9825
England 1.4885 1.3998 2.1093 1.8621 8.8632 8.0906 16.1702 23.6105 0.4698 0.4195 0.6629 0.9826
France 1.7029 1.6557 2.3716 2.0757 8.3331 11.6279 13.2880 20.6962 0.4690 0.4304 0.6456 0.9826
Japan 2.5935 2.3471 3.5118 2.9440 17.2278 7.5573 17.9236 18.1469 0.4626 0.3960 0.6186 0.9828
USA 1.2260 1.1177 1.4552 1.4022 9.8111 6.7211 11.9714 22.2012 0.4686 0.4099 0.5564 0.9826

Table 3. Accuracy measures based on MAE, MAPE, and MASE for female population by country (smallest values are bolded).

MAE MAPE MASE

Country LA8 BL14 C6 ARIMA
(0,1,0) LA8 BL14 C6 ARIMA

(0,1,0) LA8 BL14 C6 ARIMA
(0,1,0)

Australia 2.1886 1.9695 2.6622 2.6321 16.3362 9.4682 17.7354 19.9199 0.4992 0.4393 0.6092 0.9826
England 1.7878 1.6691 2.4163 2.2765 11.6679 8.6624 13.7441 20.9444 0.4881 0.4283 0.6537 0.9826
France 2.3191 2.1789 2.8169 2.5817 9.6123 8.0206 12.4539 25.6141 0.4932 0.4409 0.5942 0.9826
Japan 3.2771 3.0345 4.6137 3.7966 22.1074 7.3877 21.8618 27.0103 0.4473 0.3912 0.6227 0.9828
USA 1.3180 1.2149 1.8348 1.6363 9.3555 6.7910 22.2544 20.9945 0.4623 0.4068 0.6390 0.9826

Note: for Tables 1–3, LA8, BL14, and C6 represent the filters used in the MODWT ARIMA (5,1,0) model representing k(t).

Tables 1–3 show that the MODWT-ARIMA (5,1,0) model gives the smallest MAE,
MAPE, and MASE values for the total, male and female populations of the countries
studied. It can be seen from Tables 1–3 that the BL14 filter consistently outperforms its
counterparts. In the LC model, k(t) plays a significant role in capturing the mortality
trend over time. The application of the BL14 MODWT-ARIMA) to model k(t) for the
log death rates data decomposes them into various resolution levels that reveal their
essential structure and generates detailed coefficients at every level. The MODWT with
filters were used to capture the pattern of the k(t) series over time. The MODWT-based
decomposition (Alenezy et al. [20] and Cornish et al. [15]) is an effective approach for
revealing variations, magnitudes, and phases of the data. In capturing the pattern of the
k(t) series, the BL14 filter has markedly better phase properties than the LA8 and C6 filters.
The best localized filter penalizes deviations at low frequencies more heavily than those at
high frequencies [18].

For the total population of Australia (Table 1) and the male population of France
(Table 2), the LA8 filter appeared to have a slight edge when using the MAPE measure.
Simulation is not required to prove the effectiveness of the BL14 filter because the proper
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choice of ARIMA model equipped with the MOWDT-BL14 filter is versatile in capturing
extreme values.

Figures 1–3 show values of k(t) from 1950 to 2005 and forecasted values of k(t)
from 2006 to 2016 for the Japanese total, male, and female populations. The forecasted
values using BL14 MODWT-ARIMA (5,1,0) is closer to the observed k(t) compared to its
ARIMA(0,1,0) counterpart. On the other hand, it is apparent from Figures 4–6 that the
BL14 MODWT-ARIMA(5,1,0) model gives a good fit for Japanese log of death rates in 2016
compared to ARIMA (0,1,0) and MODWT-ARIMA (0,1,0).

Mathematics 2021, 9, x FOR PEER REVIEW 7 of 11 
 

 

Table 3. Accuracy measures based on MAE, MAPE, and MASE for female population by country (smallest values are 
bolded). 

 MAE MAPE MASE 

Country LA8 BL14 C6 ARIMA 
(0,1,0) LA8 BL14 C6 ARIMA 

(0,1,0) LA8 BL14 C6 ARIMA 
(0,1,0) 

Australia 2.1886 1.9695 2.6622 2.6321 16.3362 9.4682 17.7354 19.9199 0.4992 0.4393 0.6092 0.9826 
England 1.7878 1.6691 2.4163 2.2765 11.6679 8.6624 13.7441 20.9444 0.4881 0.4283 0.6537 0.9826 
France 2.3191 2.1789 2.8169 2.5817 9.6123 8.0206 12.4539 25.6141 0.4932 0.4409 0.5942 0.9826 
Japan 3.2771 3.0345 4.6137 3.7966 22.1074 7.3877 21.8618 27.0103 0.4473 0.3912 0.6227 0.9828 
USA 1.3180 1.2149 1.8348 1.6363 9.3555 6.7910 22.2544 20.9945 0.4623 0.4068 0.6390 0.9826 

Note: for Tables 1–3, LA8, BL14, and C6 represent the filters used in the MODWT ARIMA (5,1,0) model representing 𝑘(𝑡). 

Tables 1–3 show that the MODWT-ARIMA (5,1,0) model gives the smallest MAE, 
MAPE, and MASE values for the total, male and female populations of the countries stud-
ied. It can be seen from Tables 1–3 that the BL14 filter consistently outperforms its coun-
terparts. In the LC model, 𝑘(𝑡) plays a significant role in capturing the mortality trend 
over time. The application of the BL14 MODWT-ARIMA) to model 𝑘(𝑡) for the log death 
rates data decomposes them into various resolution levels that reveal their essential struc-
ture and generates detailed coefficients at every level. The MODWT with filters were used 
to capture the pattern of the 𝑘(𝑡) series over time. The MODWT-based decomposition 
(Alenezy et al. [20] and Cornish et al. [15]) is an effective approach for revealing variations, 
magnitudes, and phases of the data. In capturing the pattern of the 𝑘(𝑡) series, the BL14 
filter has markedly better phase properties than the LA8 and C6 filters. The best localized 
filter penalizes deviations at low frequencies more heavily than those at high frequencies 
[18]. 

For the total population of Australia (Table 1) and the male population of France (Ta-
ble 2), the LA8 filter appeared to have a slight edge when using the MAPE measure. Sim-
ulation is not required to prove the effectiveness of the BL14 filter because the proper 
choice of ARIMA model equipped with the MOWDT-BL14 filter is versatile in capturing 
extreme values. 

Figures 1–3 show values of 𝑘(𝑡) from 1950 to 2005 and forecasted values of 𝑘(𝑡) 
from 2006 to 2016 for the Japanese total, male, and female populations. The forecasted 
values using BL14 MODWT-ARIMA (5,1,0) is closer to the observed 𝑘(𝑡) compared to its 
ARIMA(0,1,0) counterpart. On the other hand, it is apparent from Figures 4–6 that the 
BL14 MODWT-ARIMA(5,1,0) model gives a good fit for Japanese log of death rates in 
2016 compared to ARIMA (0,1,0) and MODWT-ARIMA (0,1,0). 

 
Figure 1. Actual and forecasted values of k(t) for Japanese (total population).

Mathematics 2021, 9, x FOR PEER REVIEW 8 of 11 
 

 

Figure 1. Actual and forecasted values of 𝑘(𝑡) for Japanese (total population). 

 
Figure 2. Actual and forecasted values of 𝑘(𝑡) for Japanese (male population). 

 
Figure 3. Actual and forecasted values of 𝑘(𝑡) for Japanese (female population). 

Figure 2. Actual and forecasted values of k(t) for Japanese (male population).



Mathematics 2021, 9, 2295 8 of 11

Mathematics 2021, 9, x FOR PEER REVIEW 8 of 11 
 

 

Figure 1. Actual and forecasted values of 𝑘(𝑡) for Japanese (total population). 

 
Figure 2. Actual and forecasted values of 𝑘(𝑡) for Japanese (male population). 

 
Figure 3. Actual and forecasted values of 𝑘(𝑡) for Japanese (female population). Figure 3. Actual and forecasted values of k(t) for Japanese (female population).

Mathematics 2021, 9, x FOR PEER REVIEW 9 of 11 
 

 

 
Figure 4. Observed and predicted death rates in Japan on log scale (year 2016) for total population 
using ARIMA(0,1,0), MODWT-ARIMA(0,1,0) and MODWT-ARIMA(5,1,0) with BL14 filter. 

 
Figure 5. Observed and predicted death rates in Japan on log scale (year 2016) for: male popula-
tion using ARIMA(0,1,0), MODWT-ARIMA(0,1,0), and MODWT-ARIMA(5,1,0) with BL14 filter. 

Figure 4. Observed and predicted death rates in Japan on log scale (year 2016) for total population
using ARIMA(0,1,0), MODWT-ARIMA(0,1,0) and MODWT-ARIMA(5,1,0) with BL14 filter.



Mathematics 2021, 9, 2295 9 of 11

Mathematics 2021, 9, x FOR PEER REVIEW 9 of 11 
 

 

 
Figure 4. Observed and predicted death rates in Japan on log scale (year 2016) for total population 
using ARIMA(0,1,0), MODWT-ARIMA(0,1,0) and MODWT-ARIMA(5,1,0) with BL14 filter. 

 
Figure 5. Observed and predicted death rates in Japan on log scale (year 2016) for: male popula-
tion using ARIMA(0,1,0), MODWT-ARIMA(0,1,0), and MODWT-ARIMA(5,1,0) with BL14 filter. 
Figure 5. Observed and predicted death rates in Japan on log scale (year 2016) for: male population
using ARIMA(0,1,0), MODWT-ARIMA(0,1,0), and MODWT-ARIMA(5,1,0) with BL14 filter.

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 11 
 

 

 
Figure 6. Observed and predicted death rates in Japan on log scale (year 2016) for female popula-
tion using ARIMA(0,1,0), MODWT-ARIMA(0,1,0), and MODWT-ARIMA(5,1,0) with BL14 filter. 

4. Conclusions 
This study considered the hybrid of the MODWT with the Lee-Carter model to im-

prove the forecast accuracy of the time-dependent mortality index, 𝑘(𝑡). The MODWT is 
more advantageous than the DWT for mortality modelling. The MODWT can handle any 
sample size. In each level, there are detail (wavelet) and smooth (scale) coefficients which 
are associated with zero phase filters. The MODWT also produces a more asymptotically 
efficient wavelet variance estimator than the DWT. This clearly shows that the MODWT 
has an edge over its counterparts. Overall, the results of this study show that the hybrid 
of the MODWT using BL14 filters with the Lee-Carter [2] model entails significant im-
provement in forecasting accuracy. Our findings show that the minimization of a time-
localization measure offered by BL14 wavelet filters can improve results in forecasting 𝑘(𝑡). The MODWT-ARIMA-(5,1,0) with the BL14 filter generally shows excellent proxim-
ity to the actual log-mortality rates for the five countries studied. For future studies, the 
extension of wavelet-based neural network models with the LC model is of interest. 

Author Contributions: Conceptualization, D.P.; data curation, N.A.Y.; formal analysis, N.A.Y., J.J.J.; 
methodology, N.A.Y., D.P. and J.J.J.; project administration, D.P.; software, N.A.Y. and J.J.J.; super-
vision, D.P. and I.M.; validation, D.P. and S.A.; writing—original draft, N.A.Y., D.P.; writing—re-
view and editing, D.P., S.A. All authors have read and agreed to the published version of the man-
uscript. 

Funding: This research was funded by the University of Malaya, Faculty Research Grant [GPF028B-
2018]. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Human Mortality Database, University of California, Berkeley (USA), 
and Max Planck Institute for Demographic Research (Germany), 2020; dataset available at 
www.mortality.org, accessed on 7 April 2020. 

Figure 6. Observed and predicted death rates in Japan on log scale (year 2016) for female population
using ARIMA(0,1,0), MODWT-ARIMA(0,1,0), and MODWT-ARIMA(5,1,0) with BL14 filter.



Mathematics 2021, 9, 2295 10 of 11

4. Conclusions

This study considered the hybrid of the MODWT with the Lee-Carter model to
improve the forecast accuracy of the time-dependent mortality index, k(t). The MODWT is
more advantageous than the DWT for mortality modelling. The MODWT can handle any
sample size. In each level, there are detail (wavelet) and smooth (scale) coefficients which
are associated with zero phase filters. The MODWT also produces a more asymptotically
efficient wavelet variance estimator than the DWT. This clearly shows that the MODWT has
an edge over its counterparts. Overall, the results of this study show that the hybrid of the
MODWT using BL14 filters with the Lee-Carter [2] model entails significant improvement
in forecasting accuracy. Our findings show that the minimization of a time-localization
measure offered by BL14 wavelet filters can improve results in forecasting k(t). The
MODWT-ARIMA-(5,1,0) with the BL14 filter generally shows excellent proximity to the
actual log-mortality rates for the five countries studied. For future studies, the extension of
wavelet-based neural network models with the LC model is of interest.
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