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Abstract: This paper explores the time dependent squeezing flow of a viscous fluid between parallel
plates with internal heat generation and homogeneous/heterogeneous reactions. The motive of the
present effort is to upgrade the heat transformation rate for engineering and industrial purpose with
the rate of chemical reaction. For this purpose the equations for the conservation of mass, momentum,
energy and homogeneous/heterogeneous reactions are transformed to a system of coupled equations
using the similarity transformation. According to HAM, with the proper starting assumptions and
other factors, a similarity solution may be found. On the way to verifying the validity and correctness
of HAM findings, we compare the HAM solution with numerical solver programme BVP4c to see
whether it matches up. The results of a parametric inquiry are summarized and presented with the
use of graphs.

Keywords: computational study; fluid model; homogeneous and heterogeneous reactions; viscous
fluid; thermal reduction; mathematical analysis

1. Introduction

It is easy to modify and regulate the convergence area of an infinite series solution
using homotopy analysis by introducing an additional parameter. Tests are conducted on a
few test cases to verify the method’s validity, efficiency and applicability. As a consequence
of the results, the to be highly efficient, clear, and simple. HAM has several advantages
over many traditional analytical methods. It is a series expansion method that does not
straightforwardly rely upon small or large physical parameters. Accordingly, it is pertinent
for weakly as well as powerfully nonlinear issues. It gives fantastic adaptability to the
declaration of the solution and how the solution is specifically gotten, and gives incredible
opportunity in picking the base elements of the ideal solution the corresponding auxil-
iary auxiliary linear operator of homotopy. HAM provides a simple way to ensure the
convergence of the solution series and is able to combine with other techniques employed
in nonlinear differential equations such as spectral methods, PadÃ© approximates, and
so on. Squeezing flow of the viscous fluid between parallel plates is one of the most
important type of the flow. The importance of the squeezing flow could be observed in
many industries such as injection, moulding liquid-metal, lubricated bearings, compres-
sion, squeezed films in power transmission, cooling and heat water. Heterogeneous and
homogeneous reactions in chemically reactive systems are known. In food processing,
ceramics production, and crop loss owing to freezing and wetness over agricultural fields
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and orchards, the interplay between these two reactions have uses. The researchers are
taking great interest because of its vast choices of useful application for the investigation of
the velocity field and heat transfer between squeezing plates. Stefan [1] did the initial work
on the squeezing flow and investigated lubrication system in their research. Stefan opened
a new field of research for the scientists on squeezing flow. In recent years the study of the
squeezing flow has been pushed forward by different researchers. Ran [2] investigated
the quasi-steady axisymmetric Newtonian fluid squeezed between two parallel plates and
found an analytical solution by homotopy analysis method (HAM). Mustafa [3] studied
an unsteady viscous and squeezing flow between squeezing plates with heat and mass
transfer. Sheikholislami [4] studied a nanofluid of a squeezed duct by neural network. He
investigated this problem for the effect of growth ratio, nanopartical absorption, power
law indexed and Reynolds number.

Hayat [5] explored the effects of the chemical reaction and convective conditions on
squeezing flow and mostly awareness has been focused on the coverlet flow. Ahmad [6]
has recently examined the impact on the transportation features of the squeezed fluid on
velocity, thermal and solvent effects on the transport properties. The fluid velocity near
both plates decays with larger Darcy number, the flow have obtained more resistance.
Hayat [7] showed in a theoretical analysis in a Darcy–Forchheimer-permeable medium
with thermal radiation in the gripping flow of water-based carbon nanotubes. In another
paper, Ahmad [8] has proposed to investigate in theoretical terms the combination of
thermal-radiation effect and chemical reaction in squeezing fluency of the Sutterby fluid in
the squeezed tube. It was recently studied by Cortell [9] Nonlinear thermal radiation with
the effect of heat transfer on the flow of an extended sheet and increased Prandtl number,
Pr, lead to thermal boundary layer thickness decrease. Recently Shehzad [10] have been
addressed the nonlinear thermal effects of Jeffrey nanofluid on the 3D flow and obtained the
increased functions of the radiation parametric quantity of temperature and nanoparticle
absorption. Mustafa [11] study the effect of heat generation/absorption and radiation on
the movement of the second-grade nanofluid on a three-dimensional boundary layer and its
transformation into a fluid operating in nanoparticles and the combination of solar incident
radiation. More natural convection of nano-fluids is important for next-generation nuclear
reactor equipment, heat exchangers, solar film collectors, etc. Hayat [12] has investigated a
chemical reaction between homogeneous and heterogeneous reactions with nano-fluid and
obtained that the strength of the heterogeneous parameter increases the profiles of attention.
Ravikiran and Radhakrishnamacharya [13] investigated the effect of homogeneous and
heterogeneous effects on peristaltic flow of the wall through the porous medium has shown
the effective dispersion coefficient to be increased with Darcy and the slippy parameter
in both homogenates, mixed and homogeneous chemical reactions. Hayat [14] discussed
Homogeneous and heterogeneous chemical reactions with effects of heat transfer on Carreau
and hall stream flows and showed the similar deeds are experimental on temperature profile
and heat transfer coefficient in submissive wall parameters.

Sheikholeslami [15] discussed a nano-fluid flow between two magnetic field impact
parallel panels of time-dependent and achieved at the surface decreases with increasing
values of the strong points of homogeneous and heterogeneous chemical reaction param-
eters. Sheikholeslami [16] studied the effect of radiation on the movement of nanofluids
using a two-stage model and MHD. The recession by the radiation parameter would be the
boundary layer thickness of the temperature. Hayat [17] studied the effects of MHD on the
bidirectional flow of a homogenous and heterogeneous nanofluid, considering slip velocity
and velocity profiles in the second-order, decreases the functions of the slip velocity and
volume fraction of nanoparticles. It was suggested by Merkin [18], a mathematical pattern
for homogenous and heterogeneous isothermal reactions with boundary layer flow and
has been shown that the primary production of the surface reaction is dominated only by
the results of the homogeneous reaction as the flow from the leading surface progresses.
Raju [19] discussed the chemical reactions and impacts of radiation on thermophoretic
MHD fluidity over the associated isothermal surface and numerical observations show
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that the magnetic field surface parameter velocity profiles are more effectively affecting.
Toghraie [20] studied the numerical thermal analysis of water’s boiling heat transfer based
on a turbulent jet impingement on heated surface. The researchers in [21] investigated
the Impact of variable fluid properties on forced convection of Fe3O4/CNT/water hybrid
nanofluid in a double-pipe mini-channel heat ex-changer.

According to the current survey of the literature review, the earlier researchers have not
tried to examine the study of Homogeneous and Heterogeneous reactions with an internal
heat generation/absorption and thermal radiation between squeezing plates. An analysis is
made on the impact of the homogeneous and heterogeneous chemical reaction on the flow
between the parallel squeezing plates. In this paper, the effects of various parameters are
discussed on velocity field, heat distribution, homogeneous and heterogeneous reactions,
coefficient of skin friction, heat and mass fluxes.

2. Mathematical Formulation

Consider a laminar, axisymmetric, incompressible and viscous fluid between hor-
izontally parallel and squeezing plates. The two plates are separated by a distance
h(t) = l

√
1− αt, where l is the representative length equivalent to the plates separa-

tion at t = 0 as shown in Figure 1. For α > 0, the two plates are squeezed until they touch
at t = 1

α and for α < 0, the two plates are separated. The velocity field is also under the
influence of a uniform magnetic field B(t) = B0√

1−αt
applied in the y− direction. The upper

and lower plates are kept at constant temperature Tu and Tl , respectively. An analysis of
heat transfer is made in the presence of internal heat generation/absorption and thermal
radiation. The upper and lower plates are maintained at a constant temperature Tu and Tl ,
respectively. The Chaudhary [22] model is adopted for the investigation of homogeneous
and heterogeneous reactions. The homogeneous reaction in cubic autocatalysis looks
like this:

A1 + 2A2→ 3A2, (1)

and the rate is Kcab2, whereas on the catalyst surface, heterogeneous reaction is

A1→ A2, (2)

Figure 1. Geometry of the Problem.

The concentration of the chemical species A1 and A2 are presented by a and b, re-
spectively, and the rate constants are denoted by kc. The reaction rate vanishes beyond
the boundary layer edge in external flow, as shown by the equations above. The key
time-dependent conservation of mass, momentum, thermal energy, homogeneous and
heterogeneous reactions in the Cartesian coordinates (x, y, z) taken at the center of the
lower plate are [23–25].
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Conservation of Mass Equation:

∂u∗

∂x
+

∂v∗

∂y
= 0 (3)

Conservation of Momentum Equation:

∂u∗

∂t
+ u∗

∂u∗

∂x
+ v∗

∂u∗

∂y
= −1

ρ

∂p
∂x

+
µ

ρ

(
∂2u∗

∂x2 +
∂2u∗

∂y2

)
− σ$2u∗ (4)

∂v∗

∂t
+ u∗

∂v∗

∂x
+ v∗

∂v∗

∂y
= −1

ρ

∂p
∂y

+
µ

ρ

(
∂2v∗

∂x2 +
∂2v∗

∂y2

)
(5)

Conservation of Energy Equation:

∂T
∂t

+ u∗
∂T
∂x

+ v∗
∂T
∂y

=
k

(ρcp)

(
∂2T
∂x2 +

∂2T
∂y2

)
+

1
(ρcp)

16σ∗T3
0

3κ∗
∂2T
∂y2 +

Q∗

(ρcp)
(T − T0) (6)

Homogeneous and Heterogeneous Equations:

∂a
∂t

+ u∗
∂a
∂x

+ v∗
∂a
∂y

= DA
∂2a
∂y2 − Kcab2 (7)

∂b
∂t

+ u∗
∂b
∂x

+ v∗
∂b
∂y

= DB
∂2b
∂y2 + Kcab2 (8)

In the following equations, u∗, v∗ represent the horizontal and vertical velocity com-
ponents, respectively, where T is the temperature distribution, p is the fluid pressure and a,
b are the homogeneous and heterogeneous reaction variables, ρ is the fluid density, (ρcp)
is the heat capacity and σ is electrical conductivity of the fluid, DA, DB display chemical
species of the diffusion coefficients A and B, respectively, K∗ is the permeability, k is the
thermal conductivity and Q∗ is the heat generation.

3. Boundary Conditions

The boundary conditions are defined as:

u∗ = 0, v∗ = 0, T = Tl , DA
∂a
∂y

= k3a, DB
∂b
∂y

= −k3a at y = 0

u∗ = 0, v∗ =
−αD

2
√

1− αt
, T = Tu∗ , a = a0 b = 0 at y = h(t)

(9)

The differential equations system was converted into the system of ordinary differen-
tial equations using the following similarity transformations [26].

u∗ =
αx f ′(η)

2(1− αt)
, v∗ =

−αl f (η)
(1− αt)

, T = θ(η)Tl , η =
y

l
√

1− αt

and
a = a0H(η), b = a0G(η), B(t) =

B0√
1− at

, θ =
T − Tu

Tl − Tu
,

Here f , f ′, θ, G and H are the velocity components, fluid temperature, homogeneous
and heterogeneous reactions, respectively.

The continuity Equation (3) is identically satisfied and the momentum, energy, homo-
geneous and heterogeneous equations takes the following form,

f ′′′′ − S
(

f ′′ f ′ + 2 f ′′ − f f ′′′ + η f ′′′
)
− Ha2L f ′′ = 0 (10)
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θ′′
(

1 +
4
3

R
)
+ PrS

(
f θ′ − 2ηθ + Qθ

)
= 0 (11)

H′′ − ScK1HG2 − ScS
(

ηH′ − f H
)
= 0 (12)

G′′δ− ScK1HG2 − ScS
(

ηG′ − f G′
)
= 0. (13)

The boundary conditions are transformed as:

f (0) = 0, f ′(0) = 0, θ(0) = 1, H′(0) = K2H(0), δG′(0) = −K2H(0)

f (1) = 0.5, f ′(1) = 0, θ(1) = 0, H(1) = 1 G(1) = 0,
(14)

Here S = αl2

2v f
is the squeezed Reynolds number, Ha = lB0

√
σf
µ f

, is the Hartman

number, L =
ασn f

x is the length parameter, R =
4σ∗T3

0
KK∗ is the radiation parameter, Pr =

µcp
K

is the Prandtl number, Q = 2Q∗(1−αt)
ρcpα is the heat generation parameter, Sc =

v f
DA

is the

Schmidt number, K1 =
8kca2

0(1−αt)
α3 is the homogeneous reaction strength, K2 = ks

DA
is the

heterogeneous reaction strength, δ = DA
DB

is the ratio of the diffusion coefficients.
Here, it is consider that A and B diffusion coefficients of chemical species to be

comparable size. The other hypothesis is, DA and DB are equivalent, so δ = DA
DB

= 1, also
G(η) + H(η) = 1 [18],

Coefficients of Interest

The local Nusselt number (Nu), Sherwood number (Sh) and skin-friction coefficient
(C f ), are some of the coefficient of interest in engineering. C∗f =

S
h C f = f ′′(0) , −θ′(0) =

Nu, −G′(0) = −H′(0) = Sh,

4. Approximate Analytical Solution

To solve system of Equations (10)–(13) is used the analytic method HAM. Due to
HAM, the functions f ($), θ($), H($) and G($) can be stated, by a set of base functions
$c, c ≥ 0 as “Rashidi (2015)”[27]:

fΨ($) =
∞

∑
ξ=0

aξ $ξ , (15)

θΨ($) =
∞

∑
ξ=0

bξ $ξ , (16)

HΨ($) =
∞

∑
ξ=0

cξ $ξ , (17)

GΨ($) =
∞

∑
ξ=0

dξ $ξ , (18)

where aξ , bξ , cξ and dξ are the constant coefficients to be determined. Initial approximations
are chosen follows:

f0($) =
3
2

$2 − $3, (19)

θ0($) = (Sr − 1)$ + 1, (20)

H0($) = 1− $, (21)
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G0($) = 1− $. (22)

The auxiliary operators are chosen as

` f =
∂4

∂$4 , `θ =
∂2

∂$2 , `H =
∂2

∂$2 , `G =
∂2

∂$2 , (23)

with the following properties

` f (ξ1$3 + ξ2$2 + ξ3$ + ξ4) = 0, (24)

`θ(ξ5$ + ξ6) = 0, (25)

`H(ξ7$ + ξ8) = 0, (26)

`G(ξ9$ + ξ10) = 0, (27)

where ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9 and ξ10 are arbitrary constants.
The zeroth order deformation problems can be obtained as:

(1; v)` f [ f̄ ($; v)− f0($)] = qh̄ f N f [ f̄ ($; v), θ̄($; v), m̄($; v), n̄($; v)], (28)

(1; v)`θ [θ̄($; v)− θ0($)] = qh̄θNθ [ f̄ ($; v), θ̄($; v), m̄($; v), n̄($; v)], (29)

(1; v)`H [H̄($; v)− H0($)] = qh̄HNH [ f̄ ($; v), H̄($; v), Ḡ($; v)], (30)

(1; v)`G[Ḡ($; v)− G0($)] = qh̄GNG[ f̄ ($; v), H̄($; q), Ḡ($; v)]. (31)

The nonlinear operators of Equations (20)–(23) are defined as

N f [ f̄ ($; v), θ̄($; v)] =
∂4 f̄ ($; v)

∂$4 − S
[

$
∂3 f̄ ($; v)

∂$3 + 2
∂2 f̄ ($; v)

∂$2

+
∂2 f̄ ($; v)

∂$2
∂ f̄ ($; v)

∂$
− f

∂3 f̄ ($; v)

∂$3

]
− Ha2L

∂2 f̄ ($; v)

∂$2

(32)

Nθ [ f̄ ($; v), θ̄($; v)] =
∂2θ̄($; v)

∂$2 (1 + 4/3R) + PrS
[

f
∂θ̄($; v)

∂$
− 2$θ̄($; v) + Qθ̄($; v)

]
(33)

NH [ f̄ ($; v), H̄($; v), Ḡ($; v)] =
∂2H̄($; v)

∂$2

−MScK1H̄($; v)
∂2Ḡ($; v)

∂$2 −MScS
[

$
∂H̄($; v)

∂$
− f H̄($; v)

]
, (34)

NG[ f̄ ($; v), H̄($; v), Ḡ($; v)] =
∂2Ḡ($; v)

∂$2 δ

− ScK1H̄($; v)
∂2Ḡ($; v)

∂$2 − ScS
[

$
∂Ḡ($; v)

∂$
− f

∂Ḡ($; v)

∂$

]
, (35)

where v is an embedding parameter, h̄ f , h̄θ , h̄H and h̄G are the nonzero auxiliary parameter
and N f , Nθ , NH and NG are the nonlinear parameters.

For v = 0 and 1, we have

f̄ ($, 0) = fo($), f̄ ($, 1) = f ($),

θ̄($, 0) = θo($), θ̄($, 1) = θ($),

H̄($, 0) = Ho($), H̄($, 1) = H($),

Ḡ($, 0) = Go($), Ḡ($, 1) = G($),

(36)
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so we can say that as v varies from 0 to 1, f̄ ($, 0), θ̄($, 0), H̄($, 0), Ḡ($, 0) varies from
initial guesses f0($), θ0($), H0($) and G0($) to exact solution f ($), θ($), H($) and G($),
respectively.

Taylor’s series expansion of these functions yields:

f ($; v) = f0($) +
∞

∑
Ψ=1

vΨ fΨ($), (37)

θ($; v) = θ0($) +
∞

∑
Ψ=1

vΨθΨ($), (38)

H($; v) = H0($) +
∞

∑
Ψ=1

vΨHΨ($), (39)

G($; v) = G0($) +
∞

∑
Ψ=1

vΨGΨ($), (40)

fΨ($) =
1

Ψ!
∂Ψ f ($; v)

∂$Ψ

∣∣∣∣
v=0

, θΨ($) =
1

Ψ!
∂Ψθ($; v)

∂$Ψ

∣∣∣∣
v=0

,HΨ($) =
1

Ψ!
∂Ψ H($; v)

∂$Ψ

∣∣∣∣
v=0

,

GΨ($) =
1

Ψ!
∂ΨG($; v)

∂$Ψ

∣∣∣∣
v=0

(41)

it should be noticed that the convergence of above series strongly depends upon h̄ f , h̄θ , h̄H
and h̄G.

Assuming that these nonzero auxiliary parameters are chosen so that
Equations (38)–(41) converges at v = 1. Therefore one can obtain

f ($) = f0($) +
∞

∑
Ψ=1

fΨ($), (42)

θ($) = θ0($) +
∞

∑
Ψ=1

θΨ($), (43)

H($) = H0($) +
∞

∑
Ψ=1

HΨ($), (44)

G($) = G0($) +
∞

∑
Ψ=1

GΨ($), (45)

Differentiating the deformation Equations (28)–(31) Ψ− times with respect to v and
putting v = 0, we have

` f [ fΨ($)− χΨ fΨ−1($)] = h̄ f R f ,Ψ($), (46)

`θ [θΨ($)− χΨθΨ−1($)] = h̄θ Rg,Ψ($), (47)

`H [HΨ($)− χΨ HΨ−1($)] = h̄H RH,Ψ($), (48)

`G[GΨ($)− χΨGΨ−1($)] = h̄φRG,Ψ($), (49)

subject to the boundary conditions

fΨ(0) = 0, f ′Ψ(0) = 0, θΨ(0) = 1, H′Ψ(0) = k2H(0), δG′Ψ(0) = −k2H(0),

fΨ(1) = 0.5, f ′Ψ(1) = 0, θΨ(1) = 0, HΨ(1) = 1, G′Ψ(1) = 0,
(50)
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where

R f ,Ψ($) = f ′′′′Ψ−1($)− S
[

$ f ′′′Ψ−1($) + 2 f ′′Ψ−1($) + 2
Ψ−1

∑
j=0

f j($) f ′′Ψ−j−1($)

−
Ψ−1

∑
j=0

f j($) f ′′′Ψ−j−1($)

]
− Ha2L f ′′Ψ−1($) (51)

Rθ,Ψ($) = θ′′Ψ−1($)(1+ 4/3R) + PrS
[ Ψ−1

∑
j=0

f j($)θ
′
Ψ−j−1($)− 2$θΨ−1($) + QθΨ−1($)

]
(52)

RH,Ψ($) = H′′Ψ−1($) + MScK1

Ψ−1

∑
j=0

Hj($)G′′Ψ−j−1($)

−MScS
[

$H′Ψ−1($)−
Ψ−1

∑
j=0

f j($)HΨ−j−1($)

]
(53)

RG,Ψ($) = G′′Ψ−1($)δ− ScK1

Ψ−1

∑
j=0

Hj($)G2
Ψ−j−1($)− ScS

[
$G′Ψ−1($)−

Ψ−1

∑
j=0

f j($)G′Ψ−j−1($)

]
(54)

and χΨ =

{
1, i f Ψ > 1, and 0, Ψ = 1.

Finally, the general solution of Equations (46)–(49) can be written as

fΨ($) =
∫ $

0

∫ $

0

∫ $

0

∫ $

0
h̄ f R f ,Ψ(z)dzdzdzdzdz + χΨ fΨ−1 + ξ1$3 + ξ2$2 + ξ3$ + ξ4, (55)

θΨ($) =
∫ $

0

∫ $

0
h̄θ Rθ,Ψ(z)dzdz + χΨθΨ−1 + ξ5$ + ξ6, (56)

HΨ($) =
∫ $

0

∫ $

0
h̄H RH,Ψ(z)dzdz + χΨ HΨ−1 + ξ11$ + ξ12, (57)

GΨ($) =
∫ $

0

∫ $

0
h̄GRG,Ψ(z)dzdz + χΨGΨ−1 + ξ13$ + ξ14, (58)

and so the exact solution f ($), θ($), H($) and H($) becomes

f ($) ≈
Ψ

∑
n=0

fn($), θ($) ≈
Ψ

∑
n=0

θn($), H($) ≈
Ψ

∑
n=0

Hn($), G($) ≈
Ψ

∑
n=0

Gn($). (59)

Optimal Convergence Control Parameters

It is important to note that the series solutions (56)–(59) include h̄ f , h̄θ , h̄H and h̄G non-
zero auxiliary parameters that define the convergence area as well as rate of the homotopy
series solutions. The so-called average residual error identified by the “Liao (2010)” to get
optimal values of h̄ f , h̄θ , h̄H and h̄G was used as.

ε
f
Ψ =

1
ξ + 1

ξ

∑
j=0

[
N f

( Ψ

∑
i=0

f̄ ($),
Ψ

∑
i=0

θ̄($)

]2

d$, (60)

εθ
Ψ =

1
ξ + 1

ξ

∑
j=0

[
Nθ

( Ψ

∑
i=0

f̄ ($),
Ψ

∑
i=0

θ̄($)

)
n=jDun

]2

d$, (61)

εH
Ψ =

1
ξ + 1

ξ

∑
j=0

[
NH

( Ψ

∑
i=0

f̄ ($),
Ψ

∑
i=0

H̄($),
Ψ

∑
i=0

Ḡ($)

)
n=jDun

]2

d$, (62)
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εG
Ψ =

1
ξ + 1

ξ

∑
j=0

[
NG

( Ψ

∑
i=0

f̄ ($), v
Ψ

∑
i=0

H̄($),
Ψ

∑
i=0

Ḡ($)

)
n=jDun

]2

d$, (63)

Due to “Liao (2010)”
εt

Ψ = ε
f
Ψ + εθ

Ψ + εH
Ψ + εG

Ψ, (64)

where εt
Ψ is the total squared residual error. Total average squared residual error is mini-

mized by employing Mathematica package (BVPh 2.0, 2014.)

5. Error Analysis

An error analysis is carried out to ensure that the analysis is credible for minimum
residual errors. The problem is solved both analytically and numerically by HAM and
BVP4c, respectively. Analyses are carried out using 40th order of approximation. This
analysis is also performed to ahead the reliability of HAM techniques using mathematica
package BVPh 2.0 for minimum residual error 10−40. For authenticity and accuracy of the
HAM solution, the results are compared with numerical solution of BVP4c using Matlab.
HAM is an analytical method that offers solutions in series form. Although the BVP4c
package is a numerical solver that uses non-uniform meshes for establishing error in each
step size. Therefore, the BVP4c package is called collocation codes; they solve BVPs by
computing a cube-spline on each subinterval of an interval mesh, so the method may be
seen as a collocation or finite difference method with continuous extension. Error analyses
shown in Figure 2 and Tables 1–12 are provided to investigated the accuracy of both the
methods for different involved physical parameters.

Figure 2 depicts the residual error at various orders of approximation for f (η), θ(η),
H(η) and G(η). It is obvious from the sub-figures that the error is persistently decreased
up to 15th order of approximation. The cumulative residual error for the various ap-
proximation orders of fixed Pr = 0.5, S = −0.5, L = 2, Q = 4, R = 0.5, δ = 2,
Sc = K1 = K2 = Ha = 0.5 values is shown in Table 1. Table 2 has been shown at
various orders of approximation with distinct average squared residual error. The com-
parison of the analytical and numerical values by HAM and BVP4c shown in Table 3 for
various values of η and fixed values of other parameters Pr = −0.5, S = −0.5, L = 0.01,
Q = 5, R = 0.7, δ = 1, Sc = 2.5, K1 = 0.1, K2 = 1 and Ha = 0.1.

Table 1. Total residual error of f (η), θ(η), G(η) and H(η) with fixed values of Pr = 0.5, S = −0.5,
L = 2, Q = 4, R = 0.5, δ = 2, Sc = K1 = K2 = Ha = 0.5.

m ε f m εθm εH m εGm

1 0.0112969 2.02804× 10−7 3.20315× 10−7 9.51647× 10−9

5 5.95295× 10−15 3.41791× 10−21 1.21043× 10−21 7.69318× 10−22

10 1.98406× 10−29 4.95817× 10−34 1.03519× 10−34 4.0926× 10−36

15 1.88587× 10−32 5.99659× 10−34 1.05926× 10−34 2.37732× 10−36

20 1.78726× 10−32 5.99659× 10−34 1.05926× 10−34 2.40741× 10−36

25 1.73796× 10−32 5.99659× 10−34 1.05926× 10−34 2.40741× 10−36

30 1.73796× 10−32 5.99659× 10−34 1.05926× 10−34 1.92593× 10−36

33 1.73796× 10−32 5.99659× 10−34 1.05926× 10−34 2.40741× 10−36

37 1.73796× 10−32 5.99659× 10−34 1.05926× 10−34 2.40741× 10−36

40 1.73796× 10−32 5.99659× 10−34 1.05926× 10−34 2.40741× 10−36
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Figure 2. Illustration of the error profiles of f (η), θ(η), G(η) and H(η) with fixed values of Pr = −0.5,
S = −0.5, L = 0.01, Q = 5, R = 0.7, δ = 1, Sc = 2.5, K1 = 0.1, K2 = 1 and Ha = 0.1.
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Table 2. Convergence of the homotopy solution for differing orders of calculation for f ′′(η), −θ′(η),
−H′(η) and −G′(η) when S = −0.5, Pr = R = M = Sc = K1 = K2 = Ha = 0.5, L = δ = 2, Q = 4.

η f ′′(η) −θ′(η) −G′(η) −H′(η)

0 3.0185 −1.1595 0.7556 −0.3778
0.1001 2.4245 −1.1043 0.7556 −0.3778
0.2002 1.8116 −1.0582 0.7548 −0.3775
0.3003 1.2021 −1.0216 0.7533 −0.3769
0.4004 0.5795 −0.9927 0.7513 −0.3761
0.5005 −0.0320 −0.9717 0.7490 −0.3752
0.6006 −0.6448 −0.9572 0.7465 −0.3741
0.7007 −1.2437 −0.9488 0.7440 −0.3728
0.8008 −1.8148 −0.9460 0.7414 −0.3713
0.9009 −2.3714 −0.9478 0.7388 −0.3696

1 −2.8938 −0.9533 0.7360 −0.3675

Table 3. Computations for f (η), θ(η), H(η) and G(η) when S = −2, Pr = R = Sc = K1 = K2 =

Ha = 0.5, L = δ = 2, Q = 4 and various values of η. Furthermore, A = 6.57027× 10−17 and
B = −4.0827× 10−19.

η
HAM Result Numerical Result

f (η) θ(η) G(η) H(η) f (η) θ(η) G(η) H(η)

0 0 1 0.6668 0.1650 0 1 0.6656 0.1648
0.1001 0.0140 0.8882 0.7001 0.1483 0.0141 0.8841 0.6989 0.1481
0.2002 0.0523 0.7808 0.7335 0.1317 0.0526 0.7743 0.7322 0.1315
0.3003 0.1086 0.6772 0.7670 0.1151 0.1092 0.6695 0.7655 0.1149
0.4004 0.1770 0.5764 0.8004 0.0985 0.1779 0.5686 0.7988 0.0983
0.5005 0.2513 0.4780 0.8339 0.0819 0.2524 0.4707 0.8321 0.0817
0.6006 0.3254 0.3811 0.8673 0.0654 0.3265 0.3750 0.8654 0.0652
0.7007 0.3933 0.2853 0.9007 0.0489 0.3942 0.2806 0.8989 0.0488
0.8008 0.4489 0.1899 0.9340 0.0325 0.4495 0.1868 0.9325 0.0324
0.9009 0.4864 0.0946 0.9672 0.0161 0.4866 0.0932 0.9663 0.0161

1 0.5 A 1 B 0.5000 −0.0000 1.0000 0

6. Results and Discussions

Here, Equations (10)–(13) subject to the boundary conditions given in Equation (14)
are used to model the flow between squeezing plates using the governing model for
unsteady Newtonian fluid. These equations are solved and compared for numerical inves-
tigations through HAM and BVP4c. To investigate and analyze the problem graphically,
Figures 3–10 are drawn. The squeeze Reynolds number, S = αl2

2v f
, is the ratio between the

normal velocity of the upper plate and the kinematic viscosity of the fluid. It is important to
remember that the slow or fast vertical velocity of an upper plate to the lower plate is mean
the small and large values of S. Furthermore, positive values of S implies that the upper
plate moves out from the lower plate or increases the gap between the parallel plates, while
negative values of S means that the top plate moves in the direction of the lower plate
or decreases the distance between the plates. Figure 3 shows the influence of S on f ′(η),
f (η), θ(η) and H(η). The increase in the distance between the plates, i.e., S = −0.5, −2.5,
−4.5, −6.5 with fixed values of Pr = 0.1, Ha = 1, R = 0.05, L = 0.01, K1 = K2 = Sc = 0.5,
Q = 10, δ = 5 will allow the fluid to move in the x-axis direction, which reduces the
radial velocity f ′(η). As the fluid moves through the central region, it begins to increase as
seen in Figure 3a. This occurrence also reduces the velocity when the velocity leads in the
squeezing effect. It is also obvious from Figure 3b, that the fluid friction makes squeezing
of plates, which generate heat and this heat raises the fluid temperature.

Impacts of relevant parameters on velocity, temperature distributions are noticed
graphically in this part. The squeezing velocity distribution f (η), is noticed for the pa-
rameter Ha in Figure 4a. The magnetic field makes the resistive force act between the
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particles causing about the smaller velocity. Thus, diminishing Ha expands the velocity. Ha
oppositely affects the temperature θ(η) (see Figure 4b). This resistive force produces heat
that outcomes in the reducing in temperature. Figure 6 shows the impact of Prandtl number
on f (η) and θ(η). It is noticed that an expansion in Pr causes a decline in temperature.
Most extreme reduction is found in the fluid field. Furthermore, a opposite conduct is
noted for θ(η). Figure 7 portrays the impact of heat generation Q on non-dimensional tem-
perature and velocity models on f (η) and θ(η), individually. We saw that the temperature
increment with an increase in Q. The result is based on the choices that any heat generated
would increase in the liquid’s nuclear power. We also saw that the fluid temperature is
higher to a smaller than the fluid temperature. Figure 8 depicts the impact of Radiation
parameter R on the velocity and temperature profiles of the flow. It is obvious to say that
the radiation parameter have inclination to diminish the velocity and temperature profiles
of the flow. This may occur because of the way that lessens in the radiation produces heat
energy to the flow, which leads to decline in the velocity and temperature of the liquid.
The influence on concentration profiles f (η), H(η) and G(η) of the equations to describe of
a homogenous parameter k1 and the equations to describe of a heterogeneous parameter
k2 can be observed in Figure 9, respectively. The increase in the concentration profiles
f (η), H(η) and G(η), is observed due to increase in k1. According to this, an increase in
the homogeneous chemical reaction parameter which decreases viscosity. However, the
heterogeneous k2 parameter indicates the reverse of the k1 above can seen in Figure 9.
Because of the diffusion decreases with an increase in k2 and a smaller amount of dif-
fused particles will reduce in the concentration of f (η) and H(η) but it will increase in
the concentration of G(η). The Schmidt number Sc’s effects can be seen in Figure 10, in
which the value of Sc increases. As the fluid concentration profiles f (η) and θ(η) increases
because of the ratio viscus diffusion Sc to the molecular diffusion rate. Tables 4–12 are
made to numerically examine the impact of various definite parameters. It can be seen
from given tables that all consequences have excellent agreement with the results found
through BVP4c and HAM. It is seen that the impacts of skin friction coefficient, velocity,
temperature, both homogeneous and heterogeneous parameters have the tendency to
increase the mass transfer rate. However, it does not depict a huge change in friction factor
and heat transfer rate. An enhancement of the internal heat generation depreciates the
coefficient of skin friction and the rate of heat. We have found similar results with an
increase in the Squeeze parameter S. The friction factor decreases because of an increase in
the squeeze parameter S and increasing in the local Nusselt and Sherwood numbers. A
decrease in the skin friction coefficient was found, indicating that the surface drags on the
fluid. Tables 4–12 are made to show the effects of f ′′(0), f (0), θ(0), G(0), H′(0) , −θ′(0),
−G′(0) and −H′(0), respectively.

Table 4. Computational for f ′′(0), −θ′(0), −H′(0) and −G′(0) with Pr = R = Sc = K1 = K2 =

Ha = 0.5, L = δ = 2, Q = 4 and differing values of S.

S
HAM Result BVP4c Result

f ′′(0) −θ′(0) −H′(0) −G′(0) f ′′(0) −θ′(0) −H′(0) −G′(0)

−0.5 3.0186 −1.1595 0.3328 −0.1664 3.0186 −1.1595 0.3328 −0.1664
−1 3.0143 −1.3111 0.3324 −0.1662 3.0143 −1.3111 0.3324 −0.1662
−1.5 3.0122 −1.4555 0.3320 −0.1660 3.0122 −1.4555 0.3320 −0.1660
−2 3.0157 −1.7257 0.3311 −0.1656 3.0157 −1.7257 0.3311 −0.1656
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Table 5. Computational for f ′′(0), −θ′(0), −H′(0) and −G′(0) with S = −0.5, Pr = R = Sc = K1 =

K2 = 0.5, L = δ = 2, Q = 4 and differing values of Ha.

Ha
HAM Result Numerical Result

f ′′(0) −θ′(0) −H′(0) −G′(0) f ′′(0) −θ′(0) −H′(0) −G′(0)

0.5 3.0186 −1.1595 0.3328 −0.1664 3.0186 −1.1595 0.3328 −0.1664
1 3.0916 −1.3111 0.3324 −0.1662 3.0916 −1.3111 0.3324 −0.1662

1.5 3.2102 −1.4555 0.3320 −0.1660 3.2102 −1.4555 0.3320 −0.1660
2 3.3702 −1.7257 0.3311 −0.1656 3.3702 −1.7257 0.3311 −0.1656

Table 6. Computational for f ′′(0), −θ′(0), −H′(0) and −G′(0) with S = −0.5, Pr = Ha = R = Sc =
K1 = K2 = 0.5, L = 2, Q = 4 and differing values of δ.

D
HAM Result Numerical Result

f ′′(0) −θ′(0) −H′(0) −G′(0) f ′′(0) −θ′(0) −H′(0) −G′(0)

1 3.0186 −1.1595 0.3322 −0.3322 3.0186 −1.1595 0.3322 −0.3322
2 3.0186 −1.1595 0.3328 −0.1664 3.0186 −1.1595 0.3328 −0.1664
3 3.0186 −1.1595 0.3329 −0.1110 3.0186 −1.1595 0.3329 −0.1110
4 3.0186 −1.1595 0.3329 −0.0832 3.0186 −1.1595 0.3329 −0.0832

Table 7. Computational for f ′′(0), −θ′(0), −H′(0) and −G′(0) with S = −0.5, Ha = R = Sc = K1 =

K2 = 0.5, δ = L = 2, Q = 4 and differing values of Pr.

Pr
HAM Result Numerical Result

f ′′(0) −θ′(0) −H′(0) −G′(0) f ′′(0) −θ′(0) −H′(0) −G′(0)

1 3.0186 −1.1595 0.3322 −0.3322 3.0186 −1.1595 0.3322 −0.3322
2 3.0186 −1.1595 0.3328 −0.1664 3.0186 −1.1595 0.3328 −0.1664
3 3.0186 −1.1595 0.3329 −0.1110 3.0186 −1.1595 0.3329 −0.1110
4 3.0186 −1.1595 0.3329 −0.0832 3.0186 −1.1595 0.3329 −0.0832

Table 8. Computational for f ′′(0), −θ′(0), −H′(0) and −G′(0) with S = −0.5, Pr = Ha = R = Sc =
K1 = K2 = 0.5, L = δ = 2 and differing values of Q.

Q
HAM Result Numerical Result

f ′′(0) −θ′(0) −H′(0) −G′(0) f ′′(0) −θ′(0) −H′(0) −G′(0)

1 3.0186 −1.0137 0.3328 −0.1664 3.0186 −1.0137 0.3328 −0.1664
2 3.0186 −1.0632 0.3328 −0.1664 3.0186 −1.0632 0.3328 −0.1664
3 3.0186 −1.1118 0.3328 −0.1664 3.0186 −1.1118 0.3328 −0.1664
4 3.0186 −1.1595 0.3328 −0.1664 3.0186 −1.1595 0.3328 −0.1664

Table 9. Computational for f ′′(0), −θ′(0), −H′(0) and −G′(0) with S = −0.5, Pr = Ha = Sc =

K1 = K2 = 0.5, L = δ = 2, Q = 4 and differing values of R.

R
HAM Result Numerical Result

f ′′(0) −θ′(0) −H′(0) −G′(0) f ′′(0) −θ′(0) −H′(0) −G′(0)

0.1 3.0186 −1.2318 0.3328 −0.1664 3.0186 −1.2318 0.3328 −0.1664
0.2 3.0186 −1.2082 0.3328 −0.1664 3.0186 −1.2082 0.3328 −0.1664
0.3 3.0186 −1.1890 0.3328 −0.1664 3.0186 −1.1890 0.3328 −0.1664
0.4 3.0186 −1.1730 0.3328 −0.1664 3.0186 −1.1730 0.3328 −0.1664
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Table 10. Computational for f ′′(0), −θ′(0), −H′(0) and −G′(0) with S = −0.5, Pr = Ha = R =

K1 = K2 = 0.5, L = δ = 2, Q = 4 and differing values of Sc.

Sc
HAM Result Numerical Result

f ′′(0) −θ′(0) −H′(0) −G′(0) f ′′(0) −θ′(0) −H′(0) −G′(0)

0.1 3.0185 −1.1595 0.3332 −0.1666 3.0185 −1.1595 0.3332 −0.1666
0.2 3.0185 −1.1595 0.3331 −0.1666 3.0185 −1.1595 0.3331 −0.1666
0.3 3.0185 −1.1595 0.3330 −0.1665 3.0185 −1.1595 0.3330 −0.1665
0.4 3.0185 −1.1595 0.3329 −0.1664 3.0185 −1.1595 0.3329 −0.1664

Table 11. Computational for f ′′(0), −θ′(0), −H′(0) and −G′(0) with S = −0.5, Pr = Ha = Sc =

R = K2 = 0.5, L = δ = 2, Q = 4 and differing values of K1.

K1
HAM Result Numerical Result

f ′′(0) −θ′(0) −H′(0) −G′(0) f ′′(0) −θ′(0) −H′(0) −G′(0)

0.5 3.0186 −1.1595 0.3328 −0.1664 3.0186 −1.1595 0.3328 −0.1664
1 3.0186 −1.1595 0.3326 −0.1663 3.0186 −1.1595 0.3326 −0.1663
2 3.0186 −1.1595 0.3323 −0.1661 3.0186 −1.1595 0.3323 −0.1661
3 3.0185 −1.1595 0.3317 −0.1659 3.0185 −1.1595 0.3317 −0.1659

Table 12. Computational for f ′′(0), −θ′(0), −H′(0) and −G′(0) with S = −0.5, Pr = Ha = Sc =

R = K1 = 0.5, L = δ = 2, Q = 4 and differing values of K2.

K2
HAM Result Numerical Result

f ′′(0) −θ′(0) −H′(0) −G′(0) f ′′(0) −θ′(0) −H′(0) −G′(0)

0.5 3.0186 −1.1595 0.3328 −0.1664 3.0186 −1.1595 0.3328 −0.1664
1 3.0186 0.5010 0.5010 −0.2505 3.0186 0.5010 0.5010 −0.2505
2 3.0185 −1.1595 0.6704 −0.3352 3.0185 −1.1595 0.6704 −0.3352
3 3.0185 −1.1595 0.7556 −0.3778 3.0185 −1.1595 0.7556 −0.3778
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(a)

(b)

(c)

(d)

Figure 3. Impact of S on (a) velocity component along y-axis f ′(η), (b) velocity component along
x-axis f (η), (c) heat distribution variable θ(η) and (d) homogeneous reaction H(η) for the specific
values Pr = 0.1, Ha = 1, R = 0.05, L = 0.01, K1 = K2 = Sc = 0.5, Q = 10, δ = 5.
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(a)

(b)

Figure 4. Impact of Ha on (a) velocity component f (η) and (b) heat distribution variable θ(η) for
specific values S = −2, Pr = 1, K1 = K2 = M = R = Sc = 0.5, Q = 10, δ = L = 2.

(a)

(b)

Figure 5. Impact of δ on (a) homogeneous reaction H(η) and (b) heterogeneous reaction G(η) for
specific values S = −2.5, K1 = K2 = Ha = R = 0.1, Q = 10, Pr = Sc = L = 0.05.
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(a)

(b)

Figure 6. Impact of Pr on (a) velocity component along x-axis f (η) and (b) heat distribution variable
θ(η) for specific values S = −10, Ha = 1, δ = Sc = K1 = K2 = 0.5, L = 0.01, Q = 10.

(a)

(b)

Figure 7. Impact of Q on (a) velocity component along x-axis f (η) and (b) heat distribution variable
θ(η) for specific values S = −4, Ha = 1, Pr = Sc = K1 = K2 = 0.5, L = δ = 2, R = −0.5.



Mathematics 2021, 9, 2309 18 of 22

(a)

(b)

Figure 8. Impact of R on (a) velocity component along x-axis f (η) and (b) heat distribution variable
θ(η) for specific values S = −10, Pr = Ha = 1, Sc = K1 = K2 = 0.5, L = 0.01, δ = 0.5, Q = 10.

(a)

(b)

Figure 9. Cont.
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(c)

(d)

(e)

(f)

Figure 9. Illustration of the impact of (a) K1 on f (η), (b) K2 on f (η), (c) K1 on G(η), (d) K2 on G(η),
(e) K1 on H(η) and (f) K2 on H(η) for specific values S = −2, Pr = Sc = 1, R = 0.5, = Ha = 0.1,
L = 2, δ = 5, Q = 10.
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(a)

(b)

Figure 10. Impact of Sc on (a) velocity component f (η) and (b) homogeneous reaction H(η) for
specific values S = −0.5, R = 0.1, Pr = K1 = K2 = 0.5, = Ha = 0.1, L = 2, δ = 5, Q = 10.

7. Conclusions

This paper offers the numerical solution for analyzing the consequence of the flow
between two squeezing plates with the homogeneous and heterogeneous reaction in the
presence of internal heat generation/absorption and thermal radiation. The effect of non-
dimensional leading parameters on velocity, temperature and concentration profiles with
the friction factor, local Nusselt, and Sherwood numbers are explained and displayed using
graphs and tables. The conclusions of the present analysis are as follows:

• It is found that increasing the distance between discs, decrease the radial velocity and
increase tangential velocity, while decreasing the distance between discs have shown
opposite behavior.

• Homogeneous and heterogeneous parameters assist in the monitoring of the stream’s
utility profiles.

• It is also found that increase in prandtl number increasing skin friction, mass flux
while it decrease heat flux.

• Table 2 depicts a drop in the skin friction and a decreases in the local Nusselt and
Sherwood numbers.

• Table 4 depict that as the friction factor, local Nusselt and Sherwood numbers all are
reduces as the squeezing parameter.

• As heat generation Ha increases the friction factor decreases, it can be seen from
Table 5 that the local Nusselt and Sherwood numbers decrease in the fluid viscosity.

• It is also observed from Tables 8 and 9 that Heat generation Q and radiation R
parameter tend to reduce the friction factor.
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Nomenclatures

µ Dynamic viscosity
P pressure
ρ effective density
(ρcp) effective heat capacity
σ Electrical conductivity
u, v velocity
T Temperature
Tu and Tl upper and lower plates are at a constant temperature.
DA and DB Diffusion coefficients of the chemical species
δ = DA

DB
ratio of the diffusion coefficients

K∗ Permeability

K1 =
8kc a2

0(1−αt)
α3 homogeneous reaction strength

K2 = ks
DA

heterogeneous reaction strength
k Thermal conductivity
Q∗ heat generation
S = αl2

2v f
squeeze number

Pr =
µcp
K Prandtl number

Ha = lB0

√
σf

µ f
Hartman number

R =
4σ∗T3

0
KK∗ radiation

Q = 2Q∗(1−αt)
ρcpα Heat generation parameter

L = ασ
x length

C f skin-friction coefficient
Nu local Nusselt number
Sh Sherwood number
A1 and A2 chemical species
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