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Abstract: For generality, we observed that some of the optimization methods lack the mathematical
rigor and some of them are based on intuitive arguments which result in the solution procedures
being questionable from logical viewpoints of a mathematical analysis such as those in the work
by Ouyang et al. (2009). They consider an economic order quantity model for deteriorating items
with partially permissible delays in payments linked to order quantity. Basically, their inventory
models are interesting, however, they ignore explorations of interrelations of functional behaviors
(continuity, monotonicity properties, differentiability, et cetera) of the total cost function to locate
the optimal solution, so those shortcomings will naturally influence the implementation of their
considered inventory model. Consequently, the main purpose of this paper is to provide accurate
and reliable mathematical analytic solution procedures for different scenarios that overcome the
shortcomings of Ouyang et al.

Keywords: inventory modeling; mathematical analytic solution procedures; economic order quantity
(EOQ) model; deteriorating products; trade-credit financing; partially permissible delay in payments;
object function (that is, total annual cost function); supply chain management

JEL Classification: Primary 91B24; 93C15; Secondary 90B30

1. Introduction

Deterioration plays an essential role in many inventory systems and deterioration
refers to factors such as product damage, spoilage, dryness and evaporation which de-
creases the original quality and quantity of the product, so it is important to control and
maintain the inventories of deteriorating items. Inventory problems for deteriorating items
have been studied extensively by numerous researchers. Research in this area began with
the work of Whitin [1], who considered fashion goods deteriorating at the end of their pre-
scribed storage period. An exponentially decaying inventory was first developed by Ghare
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and Schrader [2]. A considerable amount of work has been conducted on deteriorating
inventory systems, the details of which can be found in review articles by Nahmias [3], the
perishable inventory theory, Raafat [4], Goyal and Giri [5], Bakker et al. [6], Mahata [7] and
Janssen et al. [8].

Due to huge competition among the business enterprises in the local and in the global
market, the business enterprises adopt various tolls to sell their products efficiently. The
trade credit policy is one of the most effective promotional tools to push a product. In
practice, suppliers usually offer some credit periods to retailers to stimulate the demand
for items they produce and reduce the selling price of the item indirectly. They do not
charge any interest on the outstanding amount if retailers settle their account within the
permissible delay period. This brings some economic advantages to retailers because they
earn interest from the revenue realized during the stated period. Offing a trade credit to
the small and micro-retailers is commonplace and acceptable as these retailers lack the
financial means to pay in full upon the receipt of the items. Meanwhile, the supplier prefers
to provide better terms of trade credit such as a payment extension date when the retailer
orders a large enough quantity. Furthermore, the trade credit plays a major role in the
inventory system for both the supplier and the retailer. Haley and Higgins [9] introduce
the first model to consider the economic order quantity (EOQ) model under conditions of a
permissible delay of payments. Goyal [10] developed an EOQ model for a retailer when the
supplier offers a permissible delay in payments, which differs from the viewpoint of Haley
and Higgins [9]. In general, Goyal [10] is more popular than Haley and Higgins [9]; thus,
Chang et al. [11] adopted the viewpoints of Goyal [10] for their review article on inventory
models under trade credit. Stokes [12] indicates that trade credit represents one of the
most flexible sources of short-term financing available to firms principally because it arises
spontaneously with the firm’s purchases. Khouja and Mehrez [13] were the first to discuss
suppliers only offering a permissible delay in payment when the order quantity is larger
than a predetermined quantity. Furthermore, Chang et al. [14] established an EOQ model
for deteriorating items, in which the supplier provides a permissible delay to the purchaser
if the order quantity is greater than or equal to a predetermined quantity. Many related
articles can be found, such as those by Liao [15], Chung [16], Chung [17], Chung et al. [18],
Chang et al. [19] and Liao et al. [20].

Numerous published papers assume that the supplier offers the retailer a fully permis-
sible delay in payments independent of the order quantity. Huang [21] considers the case of
a conditionally permissible delay, assuming that the supplier only offers the retailer a fully
permissible delay in payments if they order more than a predetermined quantity. With the
novel invention of Ghare and Schrader [2], the researchers developed various models for
deteriorating items under trade credit policy in different circumstances such as Yang [22]
further adopts the concept of Huang [21], considering inventory models for deteriorating
items in a discount cash flow analysis under alternatives to conditionally permissible
delays in payments and cash discounts. Ouyang et al. [23] incorporate the concepts of
Ghare and Schrader [2], Goyal [10], Khouja and Mehrez [13], and Huang [21] to consider an
EOQ model for deteriorating items with partially permissible delay in payments linked to
order quantity. Liao et al. [24] explore an EOQ model for non-instantaneous deteriorating
items with imperfect quality and trade credit financing. The purpose of their article is to
find an optimal ordering policy for minimising the total relevant inventory cost for the
retailer. For literature review, other related articles in this field were given in the articles of
Taleizadeh et al. [25], Lashgari et al. [26], Taleizadeh [27], Tiwari et al. [28], Chang et al. [29],
Li et al. [30] and Tiwari et al. [31].

Essentially, in order to explore the functional behaviors (such as continuity, monotonic-
ity (increasing and decreasing) properties, differentiability, et cetera) of the object functions
(that is, the total cost functions), one can and should apply the mathematically accurate and
reliable solution procedures. In fact, if the object function (that is, the total cost functions)
is convex, it is easier to find the optimal solution by using the convexity property. In this
direction, Chung et al. [32] notice shortcomings in the solution procedure in Leung’s proof
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based on the complete squares method used by Leung [33]. They then correct and improve
the investigation by Leung [33], reiterating the well-established fact that mathematical
analytical techniques guarantee accuracy as well as dependability in inventory modelling
problems. Chung et al. [34] overcome the shortcomings of Chang and Teng [35] and derive
all optimal solutions for the annual total relevant cost Z(T); their paper also presents
in detail the mathematically correct methods for deriving Z(T) and locating all optimal
solutions. Srivastava et al. [36] modify the annual total relevant cost TRC(T) in the study
of Teng et al. [37] and present the correct derivations of TRC(T). They also expose logical
and mathematical problems in Teng et al.’s proof of Theorem 1. Teng et al. [38] discuss
two payment methods for the EPQ model; however, Chung et al. [39] find that the total
annual profit for the manufacturer under payment method 1 is incorrect and provided the
correct solution procedure for the correct total annual profit. Chung et al. [39] also adopt
an alternative but much easier to understand method of characterising the total annual
profit, and provide the correct solution algorithm for the total annual profit.

Based upon above arguments, we have observed that some of the optimization meth-
ods lack the mathematical rigor and some of them are based on intuitive arguments which
result in the solution procedures are questionable from logical viewpoints of mathematical
analysis such as Ouyang et al. [23]. They ignored explorations of interrelations of functional
behaviors of the total cost function to locate the optimal solution, so those shortcomings
will naturally influence the implementation of their considered inventory model. For this
reason, it is worth mentioning that, by the usage of the mathematical analytic solution
procedures, to overcome the shortcomings of Ouyang et al. [23]. Although Ping [40] ex-
plores the optimal solutions from the mathematical points to overcome the shortcomings
of Ouyang et al. [23], we will present more complete solution procedures for improvement.

As a summary, the present study will show that the total annual cost function is
convex by exploring the functional properties of the total annual cost function such as
(for example) the continuity, convexity, monotonicity (increasing and decreasing) and
differentiability properties.

Ouyang et al. [23] at least have the following shortcomings about the theoretical results
and solution procedures.

(1) Theorem B (Varberg et al. [41], page 164) can be stated as follows:

Theorem B (Second Derivative Test)
Let f ′ and f ′′ exist at every point in an open interval (a, b) containing c, and suppose

that f ′(c) = 0.

(i) If f ′′ (c) < 0, then f (c) is a local maximum value of f .
(ii) If f ′′ (c) > 0, then f (c) is a local maximum value of f .

So, Theorem B(ii) demonstrates that Equations (A4) and (B4) in Ouyang et al. [23] only
assure that T1 and T3 are local minimum points of both TRC1(T) and TRC3(T), respectively.
Many examples (Varberg et al. [41]) show that Theorem B cannot draw a conclusion about
maxima or minima without more information in general.

Consequently, although the results of Lemmas 1–8 and Theorems 1–3 in Ouyang et al. [23]
are correct, the processes of proofs of them have shortcomings. Equations (A17a–c), (A26a–c),
(A33a–c), (A43a–c) and (A53a–c) reveal the correct ways of discussions about the minimum
points T1, T2, T3, T4 and T5 of TRCi(T) (i = 1, 2, 3, 4, 5).

(2) Ouyang et al. [23] do not demonstrate why Equations (43) and (44) hold. Lemma 1(B)
in this paper overcomes these shortcomings.

(3) Equations (36) and (42) in this paper reveal that Equation (25) in Ouyang et al. [23]
is wrong. The correct formulation of ∆6 should be Equation (45) in this paper. Fur-
thermore, Ouyang et al. [23] do not demonstrate why Equations (46) and (47) hold.
Lemma 1(A, B, H) in this paper overcome these shortcomings.

(4) Equations (36) and (52) in this paper reveal that Equation (30) in Ouyang et al. [23] is
wrong. The correct formulation of ∆9 should be equation (53) in this paper. Furthermore,
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Ouyang et al. [23] do not demonstrate why Equations (56) and (57) hold. However,
Lemma 1(A, B) and Equations (53)–(55) imply that Equations (56) and (57) hold.

(5) Since Equation (30) in Ouyang et al.’s [23] is wrong, it should not be true in general
that Ouyang et al. [23] conclude ∆9 ≥ ∆7 and ∆7 ≥ ∆5. Therefore, it influences the
validity of Theorem 3 in Ouyang et al.’s [23]. Theorem 4 in this paper gives the correct
results about Case 3.

(6) Ouyang et al. [23] do not explore the convexity of TRCi(T). However, Theorem 1 in
this paper provides the proof of the convexity of TRCi(T) (i = 1, 2, 3, 4, 5).

(7) From the discussion about Case 3 in Ouyang et al.’s [23], TRC(T0) = TRC4(T0). If
TRC5(T0) 6= TRC4(T0), then TRC(T0) 6= TRC5(T0). Therefore, if TRC5(T0) 6= TRC4(T0),
Equation (15) in Ouyang et al.’s [23] is invalid. The correct formulations of TRC(T) for Case 3
should be Equation (18a–d) in this paper.

2. Mathematical Formulation

The fallowing notation and assumptions are used in the whole paper.

Assumptions

1. Replenishments are instantaneous.
2. Demand rate, D, is known and constant.
3. Shortages are not allowed.
4. The inventory system involves only one type of inventory.
5. The time horizon is infinite.
6. If Q < W, the partially delayed payment is permitted. Otherwise, the fully delayed

payment is permitted. Hence, if Q ≥W, pay cQ after M time periods from the time
the order is filled. Otherwise, as the order is filled, the retailer must make a partial
payment, (1− α)cDT, to the supplier. Then, the retailer must pay off the remaining
balances, αcDT, at the end of the trade credit period. This assumption constitutes the
major difference of the proposed model from previous ones.

7. During the time period that the account is not settled, the generated sales revenue is
deposited in an interest-bearing account.

8. Ik ≥ Ie.

Indeed, based upon the above detailed notations and assumptions, we present a rather
brief description of the model used Ouyang et al. [23].

The inventory level decreases owing to demand as well as deterioration. Thus, the
change of inventory level can be represented by the following differential equation:

dI(t)
dt

+ θ I(t) = −D, 0 < t < T, (1)

with the boundary condition I(T) = 0. The solution of Equation (1) is:

I(t) =
D
θ
[eθ(T−t) − 1], 0 < t < T. (2)

Hence, the order quantity for each cycle is:

Q = I(0) =
D
θ

(
eθT − 1

)
. (3)

From Equation (3), we can obtain the time interval that W units are depleted to zero
due to both demand and deterioration as:

TW =
1
θ

ln(
D
θ

W + 1). (4)

If Q ≥ W (i.e., T ≥ TW), then a fully delayed payment is permitted. Otherwise, the
partially delayed payment is permitted. Hence, if Q < W (i.e., T < TW), then the retailer
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must take a loan (with the interest charged of Ik) to pay the supplier the partial payment of
(1− α)cQ when the order is filled at time 0. From the constant sale revenue pD, the retailer
will be able to pay off the loan (1− α)cQ at time (1− α)(c/p)(eθT − 1)/θ.

Note that (1) if T ≥ TW, and the payoff time of the partial payment at (1− α)(c/p)(eθT − 1)/θ

is shorter or equal to the permissible delay M, then T ≤ T0 ≡ 1
θ ln
(

θ pM
(1−α)c + 1

)
, and vice versa.

Ouyang et al. [23] assume:
T0 > M. (5)

After that, based on the values of M, TW and T0, we had three possible cases: (1) T0 >
M ≥ TW , (2) T0 ≥ TW > M and (3) TW ≥ T0 > M.

Case 1. T0 > M ≥ TW

Ouyang et al. [23] reveal that the annual total relevant cost for the retailer in Case 1
can be expressed as:

TRC(T) =


TRC1(T) if M ≤ T (6a)

TRC2(T) if TW ≤ T ≤ M (6b)

TRC3(T) if 0 < T < TW (6c)

where

TRC1(T) =
A
T
+

(cθ + h)D
θ2T

(eθT − θT − 1) +
cIkD
θ2T

[
eθ(T−M)_θ(T −M)− 1]− pIeDM2

2T
(7)

TRC2(T) =
A
T
+

(cθ + h)D
θ2T

(eθT − θT − 1)− pIeD(M− T
2
) (8)

TRC3(T) = A
T + (cθ+h)D

θ2T (eθT − θT − 1) + cIk(c/p)(1−α)2D
2θ2T (eθT − 1)2

− pIeD
2T [T − (1− α)(c/p)(eθT − 1)/θ]

2 − pIeD(M−T)
T [T − (1− α)(c/p)(eθT − 1

)
/θ]

(9)

Equations (7)–(9) show:

TRC1(M) = TRC2(M), (10)

and

TRC3(T)− TRC2(T) =
cD(Ik−Ie)(

c
p )(1−α)2

2θ2T (eθT − 1)2
+ pIeD(1− α)( c

p )
(eθT−1)

θ

+ pIeD(M−T)(1−α)c
pθT (eθT − 1)

> 0 i f 0 < T ≤ M.

(11)

Therefore,
TRC3(TW) > TRC2(TW). (12)

Therefore, TRC(T) is continuous except at T = TW .

Case 2. T0 ≥ TW > M

Similar to the approach used in Case 1, the annual total relevant cost for the retailer in
this case can be expressed as:

TRC(T) =


TRC1(T) if TW ≤ T, (13a)

TRC4(T) if M ≤ T < TW , (13b)

TRC3(T) if T ≤ M. (13c)
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where

TRC4(T) = A
T + (cθ+h)D

θ2T (eθT − θT − 1) + cIk(c/p)(1−α)2D
2θ2T (eθT − 1)2

+ cIk D
θ2T [eθ(T−M) − θ(T −M)− 1]

− pIeD
2T [M− (1− α)(c/p)(eθT − 1

)
/θ]

2

(14)

Equations (7) and (14) show:

TRC4(T)− TRC1(T) =
( c2

p )(Ik−Ie)(1−α)2D
2θ2T (eθT − 1)2

+ IeDcM(1−α)
θT (eθT − 1)

> 0 i f T > 0,
(15)

and
TRC4(M) = TRC3(M). (16)

Therefore,
TRC4(TW) > TRC1(TW). (17)

Therefore, TRC(T) is continuous except at T = TW .

Case 3. TW ≥ T0 > M

Similar to the approach in Case 1, the annual total relevant cost for the retailer in Case 3 is:

TRC(T) =


TRC1(T) if TW < T, (18a)

TRC5(T) if T0 < T ≤ TW , (18b)

TRC4(T) if M ≤ T ≤ T0, (18c)

TRC3(T) if T ≤ M. (18d)

where

TRC5(T) = A
T + (cθ+h)D

θ2T (eθT − θT − 1) + cIk(c/p)(1−2α+2α2)D
2θ2T (eθT − 1)2

+
cIkαD(eθT−1)

θT [ (1− α)(c/p)(eθT − 1
)
/θ −M].

(19)

Since TRC3(M) = TRC4(M), TRC4(T0) 6= TRC5(T0) and TRC5(TW) 6= TRC1(TW),
TRC(T) is continuous except at T = T0 and TW .

3. The Functional Behaviors of TRCi(T)(i = 1 ∼ 5)

Lemma 1.

(A) θTeθT − eθT + 1 is increasing on T > 0.
(B) θTeθT − eθT + 1 > 0 if T > 0.
(C) θ2T2eθT − 2θTeθT + 2eθT − 2 is increasing on T > 0.
(D) θ2T2eθT − 2θTeθT + 2eθT − 2 > 0 if T > 0.
(E) 4θ2T2e2θT − 2θ2T2eθT − 2(eθT − 1)(2θTeθT − eθT + 1) is increasing on T > 0.
(F) 4θ2T2e2θT − 2θ2T2eθT − 2(eθT − 1)(2θTeθT − eθT + 1) > 0 if T > 0.
(G) θTeθ(T−M) − eθ(T−M) − θM + 1 is increasing on T > 0.
(H) θTeθ(T−M) − eθ(T−M) − θM + 1 > 0 if T > M.
(I) θ2T2eθ(T−M) − 2θTeθ(T−M) + 2eθ(T−M) + 2θM− 2 is increasing on T > 0.
(J) θ2T2eθ(T−M) − 2θTeθ(T−M) + 2eθ(T−M) + 2θM− 2> 0 if T > M.
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Proof. The detailed proof of Lemma 1 has been proved in Appendix A.1. �

Case 1: T0 > M ≥ TW

Equations (7)–(9) yield the first-order derivatives of TRCi(T)(i = 1 ∼ 5) with respect
to T as follows:

TRC′1(T) =
−A
T2 + (cθ+h)D(θTeθT−θT+1)

θ2T2 + cIk D[θTeθ(T−M)−eθ(T−M)−θM+1]
θ2T2

+ pIeDM2

2T2 ,
(20)

TRC′′1 (T) =
2A
T3 + D(cθ+h)

θ2T3 (θ2T2eθT − 2θTeθT + 2eθT − 2)

+ cIk D
θ2T3 (θ

2T2eθ(T−M) − 2θTeθ(T−M) + 2eθ(T−M) + 2θM− 2)− pIeDM2

T3 ,
(21)

TRC′2(T) =
−A
T2 +

D(cθ + h)(θTeθT − eθT + 1)
θ2T2 +

pIeD
2

, (22)

TRC′′2 (T) =
2A
T3 +

D(cθ + h)
θ2T3 (θ2T2eθT − 2θTeθT + 2eθT − 2) > 0, (23)

TRC′3(T) =
−A
T2 + [D(cθ+h)+θ IeDc(1−α)M]

θ2T2 (θTeθT − eθT + 1)

+
( c2

p )(Ik−Ie)(1−α)2D
2θ2T2 (eθT − 1)(2θTeθT − eθT + 1) + pIeD

2 ,

(24)

TRC′′3 (T) =
2A
T3 + [D(cθ+h)+θ IeDc(1−α)M

θ2T3 ](θ2T2eθT − 2θTeθT + 2eθT − 2)

+
( c2

p )(Ik−Ie)(1−α)2D[4θ2T2e2θT−2θ2T2eθT−2(eθT−1)(2θTeθT−eθT+1)]
2θ2T3

> 0,

(25)

Lemma 1(B) and Equations (20), (22) and (24) imply:

TRC′1(M) = TRC′2(M) =
∆1

M2 , (26)

TRC′3(T) > TRC′2(T) > 0 if T > 0, (27)

and
TRC′3(TW) > TRC′2(TW), (28)

where
TRC′2(TW) =

∆2

TW
2 , (29)

TRC′3(TW) =
∆3

TW
2 , (30)

∆1 = −A +
(cθ + h)D

θ2 (θMeθM − eθM + 1) +
pIeDM2

2
, (31)

∆2 = −A +
(cθ + h)D

θ2 (θTWeθTW − eθTW + 1) +
pIeDTW

2

2
, (32)

and
∆3 = −A + [D(cθ+h)+θ IeDc(1−α)M]

θ2 (θTWeθTW − eθTW + 1)

+
( c2

p )(Ik−Ie)(1−α)2D
2θ2 (eθTW − 1)(2θTWeθTW − eθTW + 1) + pIeDTW

2

2 ,

(33)
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Since M ≥ TW , Lemma1(A,B) implies:

∆1 ≥ ∆2 (34)

and
∆3 > ∆2 (35)

Let Ti denote the minimum point of TRCi(T) for all i = 1, 2, 3, 4, 5. Then, we had the
following results.

Lemma 2.

(A) (i) If ∆1 > 0, then TRC1(T) is increasing on [M, ∞).
(ii) If ∆1 ≤ 0, then T1 ∈ [M, ∞). We also have that TRC1(T) is decreasing on (0, T1]

and increasing on [T1, ∞).
(B) (i) If ∆2 > 0, then TRC2(T) is increasing on [TW , ∞).

(ii) If ∆2 ≤ 0 < ∆1, then T2 ∈ [TW , M). We also have that TRC2(T) is decreasing on
[TW , T2] and increasing on [T2, M].

(iii) If ∆1 ≤ 0, then TRC2(T) is decreasing on [TW , M).
(C) (i) If ∆3 > 0, then T3 ∈ (0, TW). We also have that TRC3(T) is decreasing on (0, T3]

and increasing on [T3, TW).
(ii) If ∆3 ≤ 0, then TRC3(T) is decreasing on (0, TW).

Proof. The detailed proof of Lemma 2 has been proved in Appendix A.2. �

Case 2: T0 ≥ TW > M

Equation (14) yields:

TRC′4(T) =
−A
T2 + [D(cθ+h)+θ IeDc(1−α)M]

θ2T2 (θTeθT − eθT + 1)

+ cIk D
θ2T2 [θTeθ(T−M) − eθ(T−M) − θM + 1]

+
( c2

p )(Ik−Ie)(1−α)2D
2θ2T2 (eθT − 1)(2θTeθT − eθT + 1) + pIeDM2

2T2 .

(36)

and

TRC′′4 (T) =
2A
T3 + [D(cθ+h)+θ IeDc(1−α)M]

θ2T3 (θ2T2eθT − 2θTeθT + 2eθT − 2)

+
( c2

p )(Ik−Ie)(1−α)2D[4θ2T2e2θT−2θ2T2eθT−2(eθT−1)(2θTeθT−eθT+1)]

2θ2T3

+ cIk D
θ2T3 [θ

2T2eθ(T−M) − 2θTeθ(T−M) + 2eθ(T−M) + 2θM− 2]− pIeDM2

T3

(37)

Equations (20), (24), (36) and Lemma 1(A) imply:

TRC′4(M) = TRC′3(M) =
∆5

M2 , (38)

and
TRC′4(T) > TRC′1(T) if T > 0 (39)

Of course,
TRC′4(TW) > TRC′1(TW), (40)

where
TRC′1(TW) =

∆4

TW
2 , (41)

TRC′4(TW) =
∆6

TW
2 , (42)



Mathematics 2021, 9, 2311 9 of 28

∆5 = D(cθ+h)
θ2 (θMeθM − eθM + 1) +

( c2
p )(Ik−Ie)(1−α)2D

2θ2 (eθM − 1)(2θMeθM − eθM + 1)

+ pIeDM2

2 + IeD(1−α)cM
θ (θMeθM − eθM + 1)− A,

(43)

∆4 = [D(cθ+h)]
θ2

(
θTWeθTW − eθTW + 1)+ cIk D

θ2

(
θTWeθ(TW−M) − eθ(TW−M) − θM + 1

)
+ pIeDM2

2 − A
(44)

and

∆6 = D(cθ+h)
θ2

(
θTWeθTW − eθTW + 1

)
+ cIk D

θ2

[
θTWeθ(TW−M) − eθ(TW−M) − θM + 1

]
+

( c2
p )(Ik−Ie)(1−α

)2
D

2θ2

(
eθTW − 1)(2θTWeθTW − eθTW + 1

)
+ pIeDM2

2

+ IeD(1−α)cM
θ

(
θTWeθTW − eθTW + 1

)
− A.

(45)
Since TW > M, Equations (41)–(45) and Lemma 1(A,B,H) imply:

∆6 > ∆4, (46)

and
∆6 > ∆5. (47)

Lemma 3.

(A) (i) If ∆4 > 0, then TRC1(T) is increasing on [TW , ∞).
(ii) If ∆4 ≤ 0, then T1 ∈ [TW , ∞). We also have that TRC1(T) is decreasing on [TW , T1]

and increasing on [T1, ∞).
(B) (i) If ∆6 ≤ 0, then TRC4(T) is decreasing on [M, TW).

(ii) If ∆5 ≤ 0 < ∆6, then T4 ∈ [M, TW). We also have that TRC4(T) is decreasing on
[M, T4] and increasing on [T4, TW).

(ii) If ∆5 > 0, then TRC4(T) is increasing on [M, ∞).
(C) (i) If ∆5 > 0, then T3 ∈ (0, M). We also have that TRC3(T) is decreasing on (0, T3]

and increasing on [T3, M].
(ii) If ∆5 ≤ 0, then TRC3(T) is decreasing on (0, M].

Proof. The detailed proof of Lemma 3 has been proved in Appendix A.3. �

Case 3. TW > T0 > M

Equation (19) yields:

TRC′5(T) =
−A
T2 + [Dcθ(1−IkαM)+Dh]

θ2T2 (θTeθT − eθT + 1)

+
c2
p Ik D

2θ2T2 (eθT − 1)(2θTeθT − eθT + 1),

(48)

and

TRC′′5 (T) =
2A
T3 + [Dcθ(1−IkαM)+Dh]

θ2T3 (θ2T2eθT − 2θTeθT + 2eθT − 2)

+
( c2

p )Ik D
2θ2T3 [4θ2T2e2θT − 2θ2T2eθT − 2(eθT − 1)(2θTeθT − eθT + 1)]

> 0.

(49)
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Equations (36) and (48) show:

TRC′5(TW) =
∆8

T2
W

, (50)

TRC′5(T0) =
∆7

T2
W

(51)

TRC′4(T0) =
∆9

T2
W

(52)

where

∆8 = [Dcθ(1−IkαM)+Dh]
θ2 (θTWeθTW − eθTW + 1)

+
( c2

p )Ik D
2θ2 (eθTW − 1)(2θTWeθTW − eθTW + 1)− A

(53)

∆7 = [Dcθ(1−IkαM)+Dh]
θ2 (θT0eθT0 − eθT0 + 1)

+
( c2

p )Ik D
2θ2 (eθT0 − 1)(2θT0eθT0 − eθT0 + 1)− A

(54)

and

∆9 = [D(cθ+h)+θ IeDc(1−α)M]
θ2 (θT0eθT0 − eθT0 + 1)

+ cIk D
θ2 [θT0eθ(T0−M) − eθ(T0−M) − θM + 1]

+
( c2

p )(Ik−Ie)(1−α)2D
2θ2 (eθT0 − 1)(2θT0eθT0 − eθT0 + 1) + pIeDM2

2 − A

(55)

Since TW > T0 > M, Equations (38), (A40), (53)–(55) and Lemma 1(A,B) reveal that:

∆8 > ∆7, (56)

and
∆9 > ∆5. (57)

Lemma 4.

(A) (i) If ∆4 > 0, then TRC1(T) is increasing on [TW , ∞).
(ii) If ∆4 ≤ 0, then T1 ∈ [TW , ∞). We also have that TRC1(T) is decreasing on [TW , T1]

and increasing on [T1, ∞).
(B) (i) If ∆7 ≥ 0, then TRC5(T) is increasing on (T0, ∞).

(ii) If ∆7 < 0 < ∆8, then T5 ∈ [T0, TW). We also have that TRC5(T) is decreasing on
(T0, T5] and increasing on [T5, TW).

(iii) If ∆8 ≤ 0, then TRC5(T) is decreasing on [T0, TW).
(C) (i) If ∆5 > 0, then TRC4(T) is increasing on [M, ∞).

(ii) If ∆5 ≤ 0 < ∆9, then T4 ∈ [M, T0). We also have that TRC4(T) is decreasing on
[M, T4] and increasing on [T4, T0].

(iii) If ∆9 ≤ 0, then TRC4(T) is decreasing on [M, T0].
(D) (i) If ∆5 > 0, then T3 ∈ (0, M). We also have that TRC3(T) is decreasing on (0, T3]

and increasing on [T3, M].
(ii) If ∆5 ≤ 0, then TRC3(T) is decreasing on (0, M].

Proof. The detailed proof of Lemma 4 has been proved in Appendix A.4. �
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Theorem 1.

(A) If 2A− pIeDM2 ≥ 0, then TRC1(T) is convex on T ≥ M.
(B) TRC2(T) is convex on T > 0.
(C) TRC3(T) is convex on T > 0.
(D) If 2A− pIeDM2 ≥ 0, then TRC4(T) is convex on T ≥ M.
(E) TRC5(T) is convex on T > 0.

Proof.

(A) Equation (21) and Lemma 1(D,J) imply that (A) holds.
(B) Equation (23) and Lemma 1(D) imply that (B) holds.
(C) Equation (25) and Lemma 1(D,F) imply that (C) holds.
(D) Equation (37) and Lemma 1(D,F,J) imply that (D) holds.
(E) Equation (49) and Lemma 1(D,F) imply that (E) holds.

Incorporating (A)–(E), we completed the proof of Theorem 1. �

4. Theorems for the Optimal Replenishment Cycle Time T∗ of TRC(T)

Theorem 2. For T0 > M ≥ TW , the optimal replenishment cycle time T∗ that minimizes TRC(T)
is given as follows:

(A) If ∆1 ≤ 0 and ∆3 ≤ 0, then TRC(T∗) = TRC1(T1) and T∗ = T1.
(B) If ∆1 ≤ 0 and ∆3 > 0, then TRC(T∗) = min{TRC1(T1), TRC3(T3)} and T∗ = T1 or T3

associated with the least cost.
(C) If ∆1 > 0, ∆2 ≤ 0 and ∆3 > 0, then TRC(T∗) = TRC2(T2) and T∗ = T2.
(D) If ∆2 > 0, then TRC(T∗) = min{TRC2(TW), TRC3(T3)} and T∗ = TW or T3 associated

with the least cost.
(E) If ∆1 > 0 and ∆3 ≤ 0, then TRC(T∗) = TRC2(T2) and T∗ = T2.

Proof. The detailed proof of Theorem 2 has been proved in Appendix A.5. �

Actually, based upon the above detailed arguments, we have the following remark:

Remark 1. If ∆1 > 0, ∆2 ≤ 0 and ∆3 > 0, then Ouyang et al. [23] imply T∗ = T2 or T3.
However, Theorem 2(C) in this paper concludes T∗ = T2. So, Theorem 2(C) in this paper simplifies
the corresponding result of Theorem 1 in Ouyang et al. [23].

Theorem 3. For T0 ≥ TW > M, the optimal replenishment cycle time T∗ that minimizes TRC(T)
is given as follows:

(A) If ∆6 ≤ 0, then TRC(T∗) = TRC1(T1) and T∗ = T1.
(B) If ∆4 ≤ 0, ∆5 ≤ 0 and ∆6 > 0, then TRC(T∗) = TRC1(T1) and T∗ = T1.
(C) If ∆4 ≤ 0 and ∆5 > 0, then TRC(T∗) = min{TRC1(T1), TRC3(T3)} and T∗ = T1 or T3.
(D) If ∆4 > 0 and ∆5 ≤ 0, then TRC(T∗) = min{TRC4(T4), TRC1(TW)} and T∗ = T4 or

TW associated with the least cost.
(E) If ∆4 > 0 and ∆5 > 0, then TRC(T∗) = min{TRC3(T3), TRC1(TW)} and T∗ = T3 or

TW associated with the least cost.

Proof. The proof of Theorem 3 is similar to the proof of Theorem 2. �

Likewise, based upon the above theorem, we had the following remarks:
Consider the following two conditions:

(C1) ∆6 ≤ 0;
(C2) ∆4 ≤ 0, ∆5 ≤ 0 and ∆6 > 0.
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Remark 2. About (C1): If (C1) holds, then Ouyang et al. [23] imply T∗ = T1 or M. However,
Theorem 3(A) in this paper concludes T∗ = T1.

Remark 3. About (C2): If (C2) holds, then Ouyang et al. [23] imply T∗ = T1 or T4. However,
Theorem 3(B) in this paper concludes T∗ = T1.

Combining the above arguments, we reveal that Theorem 3(A,B) in this paper simplify
the corresponding results of Theorem 2 in Ouyang et al. [23], this conclusion is the same
as Ping [40].

Next, let:
G1 = TRC5(T0)− TRC4(T0), and (58)

H1 = TRC1(TW)− TRC5(TW). (59)

Then, there are four situations to occur.
(S1) G1 > 0 and H1 > 0 if, and only if:

TRC5(T0) > TRC4(T0), and (60)

TRC1(TW) > TRC5(TW). (61)

(S2) G1 > 0 and H1 ≤ 0 if, and only if:

TRC5(T0) > TRC4(T0), and
TRC1(TW) ≤ TRC5(TW)

(62)

(S3) G1 ≤ 0 and H1 > 0 if, and only if:

TRC5(T0) ≤ TRC4(T0), and
TRC1(TW) > TRC5(TW).

(63)

(S4) G1 ≤ 0 and H1 ≤ 0 if, and only if:

TRC5(T0) ≤ TRC4(T0), and
TRC1(TW) > TRC5(TW).

Theorem 4. For TW > T0 > M, the optimal replenishment cycle time T∗ that minimizes TRC(T)
is given as follows:

(A) Suppose ∆4 > 0, ∆5 > 0 and ∆7 ≥ 0. Hence,

(a1) if G1 > 0 and H1 > 0, then TRC(T∗) = TRC3(T3).
(a2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC3(T3), TRC1(TW)}.
(a3) if G1 ≤ 0 and H1 > 0, hence,

(i) if TRC5(T0) ≥ TRC3(T3), then TRC(T∗) = TRC3(T3).
(ii) if TRC5(T0) < TRC3(T3), then T∗ does not exist.

(a4) if G1 ≤ 0 and H1 ≤ 0, hence, (i)(ii)(iii)

(i) if TRC5(T0) ≥ min{TRC3(T3), TRC1(TW)},
then TRC(T∗) = min{TRC3(T3), TRC1(TW)}.

(ii) if TRC5(T0) = TRC4(T0), then TRC(T∗) = min{TRC3(T3), TRC1(TW)}.
(iii) if TRC5(T0) < TRC4(T0) and TRC5(T0) ≥ min{TRC3(T3), TRC1(TW)},

then TRC(T∗) = min{TRC3(T3), TRC1(TW)}.
(B) Suppose ∆4 > 0, ∆5 > 0 and ∆7 < 0 < ∆8. Hence,

(b1) if G1 > 0 and H1 > 0, then TRC(T∗) = min{TRC3(T3), TRC5(T5)}.
(b2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC3(T3), TRC5(T5), TRC1(TW)}.
(b3) if G1 ≤ 0 and H1 > 0, then TRC(T∗) = min{TRC3(T3), TRC5(T5)}.
(b4) if G1 ≤ 0 and H1 ≤ 0, then TRC(T∗) = min{TRC3(T3), TRC5(T5), TRC1(TW)}.
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(C) Suppose ∆4 > 0, ∆5 > 0 and ∆8 ≤ 0. Hence,

(c1) if G1 > 0 and H1 > 0, hence,

(i) if TRC5(TW) ≥ TRC3(T3), then TRC(T∗) > TRC3(T3).
(ii) if TRC5(TW) < TRC3(T3), then T∗ does not exist.

(c2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC3(T3), TRC1(TW)}.
(c3) if G1 ≤ 0 and H1 > 0, hence,

(i) if TRC5(TW) ≥ TRC3(T3), then TRC(T∗) = TRC3(T3).
(ii) if TRC5(TW) < TRC3(T3), then T∗ does not exist.

(c4) if G1 ≤ 0 and H1 ≤ 0, then TRC(T∗) = min{TRC3(T3), TRC1(TW)}.
(D) Suppose ∆4 > 0, ∆5 ≤ 0, ∆7 ≥ 0 and ∆9 > 0. Hence,

(d1) if G1 > 0 and H1 > 0, then TRC(T∗) = TRC4(T4).
(d2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC4(T4), TRC1(TW)}.
(d3) if G1 ≤ 0 and H1 > 0, hence,

(i) if TRC5(T0) ≥ TRC4(T4), then TRC(T∗) = TRC4(T4).
(ii) if TRC5(T0) < TRC3(T3), then T∗ does not exist.
(iii) if TRC5(T0) = TRC4(T0), then TRC(T∗) = TRC4(T4).

(d4) if G1 ≤ 0 and H1 ≤ 0, hence,

(i) if TRC5(T0) ≥ min{TRC4(T4), TRC1(TW)},
then TRC(T∗) = min{TRC4(T4), TRC1(TW)}.

(ii) if TRC5(T0) < min{TRC4(T4), TRC1(T1)}, then T∗ does not exist.
(iii) if TRC5(T0) = TRC4(T0), then TRC(T∗) = min{TRC4(T4), TRC1(TW)} .

(E) Suppose ∆4 > 0, ∆5 ≤ 0, ∆7 < 0 < ∆8 and ∆9 > 0. Hence,

(e1) if G1 > 0 and H1 > 0, then TRC(T∗) = min{TRC4(T4), TRC5(T5)}.
(e2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC4(T4), TRC5(T5), TRC1(TW)} .
(e3) if G1 ≤ 0 and H1 > 0, then TRC(T∗) = min{TRC4(T4), TRC5(T5)}.
(e4) if G1 ≤ 0 and H1 ≤ 0, then TRC(T∗) = min{TRC4(T4), TRC5(T5), TRC1(TW)} .

(F) Suppose ∆4 > 0, ∆5 ≤ 0, ∆8 ≤ 0 and ∆9 > 0. Hence,

(f1) if G1 > 0 and H1 > 0, hence,

(i) if TRC5(TW) ≥ TRC4(T4), then TRC(T∗) = TRC4(T4).
(ii) if TRC5(TW) < TRC4(T4), then T∗ does not exist.

(f2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC4(T4), TRC1(TW)}.
(f3) if G1 ≤ 0 and H1 > 0, hence,

(i) if TRC5(TW) ≥ TRC4(T4), then TRC(T∗) = TRC4(T4).
(ii) if TRC5(TW) < TRC4(T4), then T∗ does not exist.

(f4) if G1 ≤ 0 and H1 ≤ 0, then TRC(T∗) = min{TRC4(T4), TRC1(TW)}.
(G) Suppose ∆4 > 0, ∆5 ≤ 0, ∆7 ≥ 0 and ∆9 ≤ 0. Hence,

(g1) if G1 > 0 and H1 > 0, then TRC(T∗) = TRC4(T0).
(g2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC4(T0), TRC1(TW)}.
(g3) if G1 ≤ 0 and H1 > 0, hence,

(i) if TRC5(T0) < TRC4(T0), then T∗ does not exist.
(ii) if TRC5(T0) = TRC4(T0), then TRC(T∗) = TRC4(T0).

(g4) if G1 ≤ 0 and H1 ≤ 0, hence,

(i) if TRC5(T0) ≥ TRC1(TW), then TRC(T∗) = TRC1(TW).
(ii) if TRC5(T0) < TRC4(T0) and TRC5(T0) < TRC1(TW), then T∗ does

not exist.

(H) Suppose ∆4 > 0, ∆5 ≤ 0, ∆7 < 0 < ∆8 and ∆9 ≤ 0. Hence,

(h1) if G1 > 0 and H1 > 0, then TRC(T∗) = min{TRC4(T0), TRC5(T5)}
(h2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC4(T0), TRC5(T5), TRC1(TW)}.
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(h3) if G1 ≤ 0 and H1 > 0, then TRC(T∗) = TRC5(T5).
(h4) if G1 ≤ 0 and H1 ≤ 0, then TRC(T∗) = min{TRC5(T5), TRC1(TW)}.

(I) Suppose ∆4 ≤ 0, ∆5 ≤ 0, ∆8 ≤ 0 and ∆9 ≤ 0. Hence,

(i1) if G1 > 0 and H1 > 0, hence,

(i) if TRC5(TW) ≥ TRC4(T0), then TRC(T∗) = TRC4(T0).
(ii) if TRC5(TW) < TRC4(T0), then T∗does not exist.

(i2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC4(T0), TRC1(TW)}.
(i3) if G1 ≤ 0 and H1 > 0, then T∗ does not exist.
(i4) if G1 ≤ 0 and H1 ≤ 0, then TRC(T∗) = TRC1(TW).

(J) Suppose ∆4 > 0, ∆5 > 0 and ∆7 ≥ 0. Hence,

(j1) if G1 > 0 and H1 > 0, then TRC(T∗) = min{TRC3(T3), TRC1(T1)}.
(j2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC3(T3), TRC1(T1)}.
(j3) if G1 ≤ 0 and H1 > 0, hence,

(i) if TRC5(T0) ≥ min{TRC3(T3), TRC1(T1)},
then TRC(T∗) = min{TRC3(T3), TRC1(T1)}.

(ii) if TRC5(T0) < min{TRC3(T3), TRC1(T1)}, then T∗ does not exist.
(iii) if TRC5(T0) = TRC4(T0), then TRC(T∗) = min{TRC3(T3), TRC1(T1)}.

(j4) if G1 ≤ 0 and H1 ≤ 0, hence,

(i) if TRC5(T0) ≥ min{TRC3(T3), TRC1(T1)},
then TRC(T∗) = min{TRC3(T3), TRC1(T1)}.

(ii) if TRC5(T0) < TRC4(T0) and TRC5(T0) < min{TRC3(T3), TRC1(T1)},
then T∗ does not exist.

(iii) if TRC5(T0) = TRC4(T0), then TRC(T∗) = min{TRC3(T3), TRC1(T1)}.
(K) Suppose ∆4 ≤ 0, ∆5 > 0 and ∆7 < 0 < ∆8. Hence,

(k1) if G1 > 0 and H1 > 0, then TRC(T∗) = min{TRC1(T1), TRC3(T3), TRC5(T5)}.
(k2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC1(T1), TRC3(T3), TRC5(T5)}.
(k3) if G1 ≤ 0 and H1 > 0, then TRC(T∗) = min{TRC1(T1), TRC3(T3), TRC5(T5)}.
(k4) if G1 ≤ 0 and H1 ≤ 0, then TRC(T∗) = min{TRC1(T1), TRC3(T3), TRC5(T5)}.

(L) Suppose ∆4 ≤ 0, ∆5 > 0 and ∆8 ≤ 0. Hence,

(l1) if G1 > 0 and H1 > 0, hence,

(i) if TRC5(TW) ≥ min{TRC3(T3), TRC1(T1)},
then TRC(T∗) = min{TRC3(T3), TRC1(T1)}.

(ii) if TRC5(TW) < min{TRC3(T3), TRC1(T1)}, then T∗ does not exist.

(l2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC3(T3), TRC1(T1)}.
(l3) if G1 ≤ 0 and H1 > 0, hence,

(i) if TRC5(TW) ≥ min{TRC3(T3), TRC1(T1)},
then TRC(T∗) = min{TRC3(T3), TRC1(T1)}.

(ii) if TRC5(TW) < min{TRC3(T3), TRC1(T1)}, then T∗ does not exist.

(l4) if G1 ≤ 0 and H1 ≤ 0, then TRC(T∗) = min{TRC3(T3), TRC1(T1)}.
(M) Suppose ∆4 ≤ 0, ∆5 ≤ 0, ∆7 ≥ 0 and ∆9 > 0. Hence,

(m1) if G1 > 0 and H1 > 0, then TRC(T∗) = min{TRC4(T4), TRC1(T1)}.
(m2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC4(T4), TRC1(T1)}.
(m3) if G1 ≤ 0 and H1 > 0, hence,

(i) if TRC5(T0) ≥ min{TRC4(T4), TRC1(T1)},
then TRC(T∗) = min{TRC4(T4), TRC1(T1)}.

(ii) if TRC5(T0) < TRC4(T0) and TRC5(T0) < min{TRC4(T4), TRC1(T1)},
then T∗ does not exist.

(iii) if TRC5(T0) = TRC4(T0), then TRC(T∗) = min{TRC4(T4), TRC1(T1)}.
(m4) if G1 ≤ 0 and H1 ≤ 0, hence,
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(i) if TRC5(T0) ≥ min{TRC4(T4), TRC1(T1)},
then TRC(T∗) = min{TRC4(T4), TRC1(T1)}.

(ii) if TRC5(T0) < TRC4(T0) and TRC5(T0) < min{TRC4(T4), TRC1(T1)},
then T∗ does not exist.

(iii) if TRC5(T0) = TRC4(T0), then TRC(T∗) = min{TRC4(T4), TRC1(T1)}.
(N) Suppose ∆4 ≤ 0, ∆5 ≤ 0, ∆7 < 0 < ∆8 and ∆9 > 0. Hence,

(n1) if G1 > 0 and H1 > 0, then TRC(T∗) = min{TRC4(T4), TRC5(T5), TRC1(T1)}.
(n2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC4(T4), TRC5(T5), TRC1(T1)}.
(n3) if G1 ≤ 0and H1 > 0, then TRC(T∗) = min{TRC4(T4), TRC5(T5), TRC1(T1)} .
(n4) if G1 ≤ 0 and H1 ≤ 0, then TRC(T∗) = min{TRC4(T4), TRC5(T5), TRC1(T1)}.

(O) Suppose ∆4 ≤ 0, ∆5 ≤ 0, ∆8 ≤ 0 and ∆9 > 0. Hence,

(o1) if G1 > 0 and H1 > 0, hence,

(i) if TRC5(TW) ≥ min{TRC4(T4), TRC1(T1)},
then TRC(T∗) = min{TRC4(T4), TRC1(T1)}

(ii) if TRC5(TW) < min{TRC4(T4), TRC1(T1)}, then T∗ does not exist.

(o2) if G1 > 0 and H1 ≤ 0, then TRC5(TW) = min{TRC4(T4), TRC1(T1)}.
(o3) if G1 ≤ 0 and H1 > 0, hence,

(i) if TRC5(TW) ≥ min{TRC4(T4), TRC1(T1)},
then TRC(T∗) = min{TRC4(T4), TRC1(T1)}

(ii) if TRC5(TW) < min{TRC4(T4), TRC1(T1)}, then T∗ does not exist.

(o4) if G1 ≤ 0 and H1 ≤ 0, then TRC(T∗) = min{TRC4(T4), TRC1(T1)}.
(P) Suppose ∆4 ≤ 0, ∆5 ≤ 0, ∆7 ≥ 0 and ∆9 ≤ 0. Hence,

(p1) if G1 > 0 and H1 > 0, then TRC(T∗) = min{TRC4(T0), TRC1(T1)}.
(p2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC4(T0), TRC1(T1)}.
(p3) if G1 ≤ 0 and H1 > 0, hence,

(i) if TRC5(T0) ≥ TRC1(T1), then TRC(T∗) = TRC1(T1).
(ii) if TRC5(T0) < TRC4(T0) and TRC5(T0) < TRC1(T1), then T∗ does

not exist.
(iii) if TRC5(T0) = TRC4(T0), then TRC(T∗) = min{TRC4(T0), TRC1(T1)}.

(p4) if G1 ≤ 0 and H1 ≤ 0, hence,

(i) if TRC5(T0) ≥ TRC1(T1), then TRC(T∗) = TRC1(T1).
(ii) if TRC5(T0) < TRC4(T0) and TRC5(T0) < TRC1(T1), then T∗ does

not exist.
(iii) if TRC5(T0) = TRC4(T0), then TRC(T∗) = min{TRC4(T0), TRC1(T1)}.

(Q) Suppose ∆4 ≤ 0, ∆5 ≤ 0, ∆7 < 0 < ∆8 and ∆9 ≤ 0. Hence,

(q1) if G1 > 0 and H1 > 0, then TRC(T∗) = min{TRC4(T0), TRC5(T5), TRC1(T1)}.
(q2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC4(T0), TRC5(T5), TRC1(T1)}.
(q3) if G1 ≤ 0 and H1 > 0, then TRC(T∗) = min{TRC5(T5), TRC1(T1)}.
(q4) if G1 ≤ 0 and H1 ≤ 0, then TRC(T∗) = min{TRC5(T5), TRC1(T1)}.

(R) Suppose ∆4 ≤ 0, ∆5 ≤ 0, ∆8 ≤ 0 and ∆9 ≤ 0. Hence,

(r1) if G1 > 0 and H1 > 0, hence,

(i) if TRC5(TW) ≥ min{TRC4(T0), TRC1(T1)},
then TRC(T∗) = min{TRC4(T0), TRC1(T1)}

(ii) if TRC5(TW) < min{TRC4(T0), TRC1(T1)}, then T∗ does not exist.

(r2) if G1 > 0 and H1 ≤ 0, then TRC(T∗) = min{TRC4(T0), TRC1(T1)}.
(r3) if G1 ≤ 0 and H1 > 0, hence,

(i) if TRC5(TW) ≥ TRC1(T1), then TRC(T∗) = TRC1(T1).
(ii) if TRC5(TW) < TRC1(T1), then T∗ does not exist.

(r4) if G1 ≤ 0 and H1 ≤ 0, then TRC(T∗) = TRC1(T1).
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Proof. The detailed proof of Theorem 4 has been proved in Appendix A.6. �

To our best knowledge, the object function (that is, the total cost function) of this paper
was a piecewise continuous function; therefore, the standard approach is to use calculus to
explore functional behaviors (such as continuous, increasing, decreasing, convex, concave,
etc.) of that object function and reveal it is increasing or decreasing in its own domain.
After that, we discussed the continuity of the objective function specially at its extreme
point(s). Consequently, the main purpose of this paper was to provide accurate and
reliable mathematical analytic solution procedures for different scenarios that overcome
the shortcomings of Ouyang et al.

5. Numerical Examples

Example 1. Given A = USD11.25/order, D = 1000 units/year, M = 0.12 years, h = USD5/unit/year,
Ik = USD0.1/USD/year, Ie = USD0.07/USD/year, p = USD50/unit, c = USD10/unit, W = 50 units,
θ = 0.05 and α = 0.2, we then have TW = 0.049937603, T0 = 0.736279462, T0 > M > TW ,
∆1 = 53.708884 > 0, ∆2 = −38.76674266 < 0 and ∆3 = 0.035573674 > 0. Following Step 2(3) of
the algorithm described in Ouyang et al. [23], we obtained:

TRC(T∗) = min{TRC2(T2), TRC3(T3)}. (64)

However, if we followed Theorem 2(C) in this paper, we had:

TRC(T∗) = TRC2(T2). (65)

Applying the Intermediate Value Theorem (Varberg et al. [41]) to F2(T) and F3(T), we
obtained T2 = 0.0499766, T3 = 0.049870522 and TRC2(T2) = 30.11469284 < 98.35926525 =
TRC3(T3). Therefore, T∗ = T2. Theorem 2(C) in this paper simplified Step 2(3) of the algorithm
described in Ouyang et al. [1].

Example 2. Given A = USD150/order, D = 1000 units/year, M = 0.12 years, h = USD5/unit/year,
Ik = USD0.1/USD/year, Ie = USD0.07/USD/year, p = USD50/unit, c = USD20/unit, W = 150 units,
θ = 0.05 and α = 0.5, we then have TW = 0.149440296, T0 = 0.591176044, T0 > M > TW and
∆6 =−48.81286509 < 0. Following Step 3(1) of the algorithm described in Ouyang et al. [23], we obtained:

TRC(T∗) = min{TRC1(T1), TRC3(M)}. (66)

However, if we followed Theorem 3(A) in this paper, we had:

TRC(T∗) = TRC1(T1). (67)

Applying the Intermediate Value Theorem (Varberg et al. [41]) to F1(T), we obtained
T1 = 0.18609161 and TRC1(T1) = 1254.146557 < 1488.595181 = TRC3(M). Therefore, T∗ = T1.
Theorem 3(A) in this paper simplified Step 3(1) of the algorithm described in Ouyang et al. [23].

Example 3. Given A = USD50/order, D = 1000 units/year, M = 0.12 years, h = USD5/unit/year,
Ik = USD0.1/USD/year, Ie = USD0.07/USD/year, p = USD50/unit, c = USD30/unit, W = 250 units,
θ = 0.05 and α = 0.1, we then have T0 = 0.220996723, TW = 0.2484504, TW > T0 > M,
TRC4(T0) = 1029.265035, TRC5(T0) = 1112.049231, TRC1(TW) = 1010.464592, TRC5(TW)
= 1197.715922,

G1 = TRC5(T0)− TRC4(T0) = 82.784196 > 0 (68)

H1 = TRC1(TW)− TRC5(TW) = −187.25133 < 0 (69)
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∆4 = 248.729873, ∆5 = 25.4570077, ∆7 = 154.7950047, ∆8 = 209.1780964 and ∆9 = 198.1043919.
Following Steps 4–2(6) of the algorithm described in Ouyang et al. [23], then:

TRC(T∗) = min{TRC1(TW), TRC3(T3), TRC5(T0)}. (70)

However, Equation (18b) revealed TRC(T0) 6= TRC5(T0) and TRC(T0) = TRC4(T0).
Therefore, Equation (70) can be modified as:

TRC(T∗) = min{TRC1(TW), TRC3(T3), TRC4(T0)}. (71)

On the other hand, by Theorem 4(A-a2), we obtained:

TRC(T∗) = min{TRC1(TW), TRC3(T3)}. (72)

Applying the Intermediate Value Theorem (Varberg et al. [41]) to F3(T), we obtained:
T3 = 0.097774218 and TRC3(T3) = 829.3667074 < TRC1(TW) < TRC4(T0) < TRC5(T0).

Therefore, T∗ = T3. Theorem 4(A-a2) in this paper simplified Step 4.2(6) of the algorithm described
in Ouyang et al. [23].

6. Conclusions

Ouyang et al. [23] developed two solution approaches to solve the problem. The first
approach was to use any standard nonlinear programming software to solve ten subcases
described in Ouyang et al. [23]. However, the second approach was to develop algorithms
by using the characteristics of Theorems 1–3 in Ouyang et al.’s [23].

(I) The nonlinear programming software approach: Referring to Equations (6c), (13b)
and (18b) in this paper, we found that the valid domains of TRC3(T) for Case 1,
TRC4(T) for Case 2 and TRC5(T) for Case 3 should have been (0, TW), [M, TW) and
(0, TW), respectively. Therefore, problems S–3 (Case 1), S–5 (Case 2) and S–8 (Case 3)
should be modified as follows:

S-3 (Case 1): minimize TRC3(T)
subject to 0 < T < TW .
S-5 (Case 2): minimize TRC4(T)
subject to M ≤ T < TW .
S-8 (Case 3): minimize TRC5(T)
subject to T0 < T < TW .

(A) About problem S-3: Lemma 2(C(ii)) implies that if ∆3 ≤ 0, then TRC3(T) is
decreasing on (T0, TW). Therefore, TRC3(T) will have no minimum point on
(0, TW). Therefore, if ∆3 ≤ 0, then, the minimum point of problem S-3 does
not exist.

(B) About problem S-5: Lemma 3(B(i)) implies that if ∆6 ≤ 0, then TRC4(T) is
decreasing on [M, TW). Therefore, TRC4(T) will have no minimum point on
[M, TW). Therefore, if ∆6 ≤ 0, then, the minimum point of problem S-5 does
not exist.

(C) About problem S-8: Lemma 4(B(iii)) implies that if ∆8 ≤ 0, then TRC5(T) is
decreasing on (0, TW). Therefore, TRC5(T) will have no minimum point on
(T0, TW). Therefore, if ∆8 ≤ 0, then, the minimum point of problem S-8 does
not exist.

Incorporating the above arguments, we concluded that the nonlinear programming
software approach may not be necessarily valid.

(II) The algorithm approach:

(A) About Step 2(3) in Ouyang et al.’s [23]: Following Theorem 2(C) in this paper,
Step 2(3) in Ouyang et al.’s [23] can be modified as follows:
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(3)′ If ∆1 > 0, ∆2 ≤ 0 and ∆3 > 0, then TRC(T∗) = TRC2(T2) and T∗ = T2.
Go to Step 5.

(B) About Step 3(1) in Ouyang et al.’s [23]: Following Theorem 3(A) in this paper,
Step 3(1) in Ouyang et al.’s [23] can be modified as follows:

(1)′ If ∆6 ≤ 0, then TRC(T∗) = TRC1(T1) and T∗ = T1. Go to Step 5.

(C) About Step 3(2) in Ouyang et al.’s [23]: Following Theorem 3(B) in this paper,
Step 3(2) in Ouyang et al.’s [23] can be modified as follows:

(2)′ If ∆4 ≤ 0, ∆5 ≤ 0 and ∆6 > 0, then TRC(T∗) = TRC1(T1) and T∗ = T1.
Go to Step 5.

(D) About Step 4 in Ouyang et al.’s [1]: Example 3 reveals TRC(T0) 6= TRC5(T0)
and TRC1(TW) 6= TRC5(TW). Equation (18a–d) implies that TRC(T) is not
continuous at T = T0 and TW , in general. Furthermore, Ouyang et al. [1] do
not demonstrate whether both ∆9 ≥ ∆7 and ∆7 ≥ ∆5 hold. Therefore, this
paper divided the discussion into four parts:

(1) If G1 > 0 and H1 > 0,
(2) If G1 > 0 and H1 ≤ 0,
(3) If G1 ≤ 0 and H1 > 0,
(4) If G1 ≤ 0 and H1 ≤ 0.

In order to obtain the thorough solution procedures to obtain the optimal solution of
TRC(T) for Case 3, Ouyang et al. [23] ignore the discontinuity of TRC(T) for Case 3. It may
be such that Theorem 3 in Ouyang et al.’s [23] may not be complete. For TW > T0 > M, if
∆4 ≤ 0, ∆5 > 0, ∆7 < 0 < ∆8 and ∆9 > 0, then Theorem 4(K) in this paper implies:

TRC(T∗) = min{TRC1(T1), TRC3(T3), TRC5(T5)} (73)

However, under this case, Theorem 3 in Ouyang et al.’s [23] cannot provide the
optimal solution of TRC(T) for Case 3 since Ouyang et al. [23] always treated ∆7 ≥ ∆5.
Therefore, Step 4 of the algorithm described in Ouyang et al. [23] may not necessarily be
valid as well.

In general, facing an optimal problem of an objective function, the standard approach is
to use calculus to explore functional behaviors (such as continuous, increasing, decreasing,
convex, concave, etc.) of that objective function. Ouyang et al. [23] adopted the first-order
necessary condition and the second derivative test (such as equations (A4) and (B4) in
Ouyang et al.’s [23] to conclude that Ti is the minimum point of TRCi(T)(i = 1− 5). How-
ever, many examples revealed that Theorem B (Second Derivative Test) (Varberg et al. [41],
page 164) cannot draw a conclusion about the maxima or minima without more infor-
mation in general. Therefore, the processes of proofs of Lemmas 1–8 and Theorems 1–3
in Ouyang et al.’s [23] have shortcomings. Lemmas 2–4 in this paper adopted calculus
to explore functional behaviors of TRCi(T) (i = 1, 2, 3, 4, 5) to present the correct proofs
for Theorems 2–4 in this paper to overcome shortcomings occurring in Lemmas 1–8 and
Theorems 1–3 of Ouyang et al.’s [23]. Incorporating the above arguments, we conclude that
this paper improves Ouyang et al.’s [23].
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Notation

D the annual demand
A the ordering cost per order
W the quantity at which the fully delay payment permitted per order
c the purchasing cost per unit
h the unit holding cost per year excluding interest charge
p the selling price per unit
Ie the interest earned per dollar per year
Ik the interest charged per dollar in stocks per year
M the period of permissible delay in settling accounts
α the fraction of the delay payments permitted by the supplier per order, 0 ≤ α ≤ 1, 1− IkαM > 0
θ the deterioration rate, 0 ≤ θ < 1
T the replenishment cycle time in years
Q the order quantity
TRC(T) the annual total relevant cos t, which is a function of T
T∗ the optimal replenishment cycle time of TRC(T)

Appendix A.

Appendix A.1. Proof of Lemma 1

Proof.
(A) and (B): Let:

f1(T) = θTeθT − eθT + 1 (A1)

Equation (A1) yields:
f ′1(T) = θ2eθT > 0 if T > 0

Therefore, we have:

(i) f1(T) is increasing on T > 0.
(ii) f1(T) > f1(0) = 0 if T > 0.

Both (i) and (ii) conclude that (A) and (B) hold.
(C) and (D): Let:

f2(T) = θ2T2eθT − 2θTeθT + 2eθT − 2 (A2)

Equation (A2) yields:

f ′2(T) = θ3T2eθT > 0 if T > 0 (A3)

Therefore, we have:

(iii) f2(T) is increasing on T > 0.
(iv) f2(T) > f2(0) = 0 if T > 0.

Both (iii) and (iv) conclude that (C) and (D) hold.
(E) and (F): Let:

f3(T) = 4θ2T2e2θT − 2θ2T2eθT − 2(eθT − 1)(2θTeθT − eθT + 1). (A4)

Therefore, we have:

f ′3(T) = 2θ3T2eθT(4eθT − 1) > 0 if T > 0. (A5)

Furthermore, Equation (A5) implies:

(v) f3(T) is increasing on T > 0.
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(vi) f3(T) > f3(0) = 0.

Both (v) and (vi) conclude that (E) and (F) hold.
(G) and (H): Let:

f4(T) = θTeθ(T−M) − eθ(T−M) − θM + 1 if T > 0 (A6)

Equation (A6) yields:

f ′4(T) = θ2Teθ(T−M) > 0 if T > 0 (A7)

Furthermore, Equation (A7) implies:

(vii) f4(T) is increasing on T > 0.
(viii) f4(T) > f4(M) = 0 if T > M.

Both (vii) and (viii) conclude that (G) and (H) hold.
(I) and (J): Let:

f5(T) = θ2T2eθ(T−M) − 2θTeθ(T−M) + 2eθ(T−M) + 2θM− 2 (A8)

Then, Equation (A8) yields:

f ′5(T) = θ3T2eθ(T−M) > 0 if T > 0. (A9)

Furthermore, Equation (A9) implies:

(ix) f5(T) is increasing on T > 0.
(x) f5(M) = θ2M2 > 0

Both (ix) and (x) conclude that (I) and (J) hold.
Incorporating the above arguments, we completed the proof of Lemma 1. �

Appendix A.2. Proof of Lemma 2

Proof.
(A) Let:

F1(T) = −A + D(cθ+h)
θ2 (θTeθT − eθT + 1) + cIk D

θ2 (θTeθ(T−M) − eθ(T−M) − θM + 1)

+ pIeDM2

2 .
(A10)

Then:

TRC′1(T) =
F1(T)

T2 . (A11)

Equation (A10) yields:

F′1(T) = DT[(cθ + h)eθT + cIkeθ(T−M)] > 0. (A12)

Therefore, F1(T) is increasing on T > 0. Equations (31) and (A10) imply:

F1(M) = ∆1, (A13)

and
lim

T→∞
F1(T) = ∞. (A14)

(i) If ∆1 > 0, then:
F1(T) > F1(M) > 0 if T > M. (A15)

Equation (A11) reveals TRC′1(T) > 0 if T ≥ M. Therefore, TRC1(T) is increasing
on [M, ∞).



Mathematics 2021, 9, 2311 21 of 28

(ii) If ∆1 ≤ 0, the Intermediate Value Theorem (Varberg et al. [41]) implies that there
exists a unique point T1 ∈ [M, ∞) such that F1(T1) = 0. Therefore, we have:

F1(T)


< 0 i f 0 < T < T1, (A16a)
= 0 i f T = T1, (A16b)
> 0 i f T > T1. (A16c)

Equation (A11) shows:

TRC′1(T)


< 0 i f 0 < T < T1, (A17a)
= 0 i f T = T1, (A17b)
> 0 i f T > T1. (A17c)

Equations (A17a–c) demonstrates that TRC1(T) is decreasing on (0, T1] and increasing
on [T1, ∞). Therefore, T = T1. Combining (i) and (ii), we completed the proof of (A).

(B) Let:

F2(T) = −A +
D(cθ + h)(θTeθT − eθT + 1)

θ2 +
pIeDT2

2
. (A18)

Then:

TRC′2(T) =
F2(T)

T2 . (A19)

Equation (A18) yields:

F′1(T) = D(cθ + h)TeθT + pIeDT > 0. (A20)

Therefore, F2(T) is increasing on T ≥ 0. Equations (31), (32) and (A18) imply:

F2(M) = ∆1, (A21)

F2(TW) = ∆2, (A22)

and
lim

T→∞
F2(T) = ∞. (A23)

(i) If ∆2 > 0, then:
F2(T) > F2(TW) if T > TW . (A24)

Equation (A19) reveals TRC′2(T) > 0 if T ≥ TW . Therefore, TRC2(T) is increasing
on [TW , ∞).

(ii) If ∆2 ≤ 0 < ∆1, the Intermediate Value Theorem (Varberg et al. [41]) implies that
there exists a unique point T2 ∈ [TW , M) such that F2(T2) = 0. Therefore, we have:

F2(T)


< 0 i f 0 < T < T2, (A25a)
= 0 i f T = T2, (A25b)
> 0 i f T > T2. (A25c)

Equation (A19) shows:

TRC′2(T)


< 0 i f 0 < T < T2, (A26a)
= 0 i f T = T2, (A26b)
> 0 i f T > T2. (A26c)

Equation (A26a–c) demonstrates that TRC2(T) is decreasing on (0, T2] and increasing
on [T2, ∞). Therefore, T2 = T2. Of course, TRC2(T) is decreasing on [TW , T2] and increasing
on [T2, M].
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(iii) If ∆1 ≤ 0, then:
0 ≥ ∆1 = F2(M) > F2(T) if 0 < T < M.

Equation (A19) reveals TRC′2(T) < 0 if TW < T < M. Of course, TRC2(T) is decreas-
ing on [TW , M].

Combining (i)-(iii), we completed the proof of (B).
(C) Let:

F3(T) = −A + D[(cθ+h)+θ Iec(1−α)M]
θ2 (θTeθT − eθT + 1)

+
( c2

p )(Ik−Ie)(1−α)2D
2θ2 (eθT − 1)(2θTeθT − eθT + 1) + pIeDT2

2

(A27)

Then:

TRC′3(T) =
F3(T)

T2 . (A28)

Equation (A27) and Lemma 1(B) yield:

F′3(T) = D[(cθ + h) + θ Iec(1− α)M](TeθT) +
( c2

p )(Ik−Ie)(1−α)2D
2θ2

×[θeθT(2θTeθT − eθT + 1) + (eθT − 1)(2θ2TeθT + θeθT)] + pIeDT

> 0 if T > 0.

(A29)

Therefore, F3(T) is increasing on T ≥ 0. Equations (33) and (A27) imply:

F3(TW) = ∆3, (A30)

and
F3(0) = −A < 0 (A31)

(i) If ∆3 > 0, the Intermediate Value Theorem (Varberg et al. [41]) concludes that there
exists a unique point T3 ∈ (0, TW) such that F3(T3) = 0. Therefore, we have:

F3(T)


< 0 i f 0 < T < T3, (A32a)
= 0 i f T = T3, (A32b)
> 0 i f T > T3. (A32c)

Equation (A28) shows:

TRC′3(T)


< 0 i f 0 < T < T3, (A33a)
= 0 i f T = T3, (A33b)
> 0 i f T > T3. (A33c)

Equation (A33a–c) demonstrates that TRC(T3) is decreasing on (0, T3] and increasing
on [T3, ∞). Therefore, T3 = T3. Of course, TRC(T3) is decreasing on (0, T3] and
increasing on [T3, TW

)
.

(i) If ∆3 ≤ 0, then:
0 ≥ F3(TW) > F3(T) if 0 < T < TW . (A34)

Equation (A28) reveals TRC′3(T) < 0 if 0 < T < TW . Therefore, TRC(T3) is decreasing
on (0, TW).

Incorporating the above arguments, we completed the proof of Lemma 2. �
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Appendix A.3. Proof of Lemma 3

Proof.

(A) Since F1(TW) = ∆4, following the same arguments as those of Lemma 1 (A(i),(ii)),
Lemma 2 (A(i),(ii)) holds.

(B) Let:

F4(T) = −A + D(cθ+h)
θ2 (θTeθT − eθT + 1) + cIk D

θ2 (θTeθ(T−M) − eθ(T−M) − θM + 1)

+
( c2

p )(Ik−Ie)(1−α)2D
2θ2 (eθT − 1)(2θTeθT − eθT + 1) + pIe DM2

2

+ Ie D(1−α)cM
θ (θTeθT − eθT + 1).

(A35)

Then:

TRC′4(T) =
F4(T)

T2 (A36)

Equation (A35) and Lemma 1(B) yield:

F′4(T) = D(cθ + h)(TeθT) + cIkD(Teθ(T−M)) + ( c2

p )(Ik − Ie)(1− α)2DTeθT(2eθT − 1)

+IeDc(1− α)M(θTeθT)

> 0

(A37)

Therefore, F4(T) is increasing on T ≥ 0. Equations (45) and (A35) imply:

F4(M) = ∆5, (A38)

F4(TW) = ∆6, (A39)

and
lim

T→∞
F4(T) = ∞. (A40)

(i) If ∆6 ≤ 0, then:
0 ≥ F4(TW) > F4(T) if M ≤ T < TW . (A41)

Equation (A37) reveals TRC′4(T) < 0 if M < T < TW . Therefore, TRC4(T) is
decreasing on [M, TW).

(ii) If ∆5 ≤ 0 < ∆6, the Intermediate Value Theorem (Varberg et al. [41]) implies
that there exists a unique point T4 ∈ [M, TW) such that F4(T4) = 0. Therefore,
we have:

F4(T)


< 0 i f 0 < T < T4, (A42a)
= 0 i f T = T4, (A42b)
> 0 i f T > T4. (A42c)

Equation (A31) shows:

TRC′4(T)


< 0 i f 0 < T < T4, (A43a)
= 0 i f T = T4, (A43b)
> 0 i f T > T4. (A43c)

Equation (A43a–c) demonstrates that TRC4(T) is decreasing on (0, T4] and
increasing on [T4, ∞). Therefore, T = T4. Of course, Lemma 2 B(ii) holds.

(iii) If ∆5 > 0, then:
F4(T) > F4(M)> 0 if T > M. (A44)

Equation (40) reveals TRC′4(T) > 0 if T > M. Therefore, TRC4(T) is increasing
on [M, ∞).

(C) The proof is the same as that of Lemma 2(C).
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Incorporating the above arguments, we completed the proof of Lemma 3. �

Appendix A.4. Proof of Lemma 4

Proof.

(A) The proofs of (A)(i,ii) are the same as those of Lemma 3A(i,ii).
(B) Let:

F5(T) = −A + [Dcθ(1−IkαM)+Dh]
θ2 (θTeθT − eθT − 1)

+
( c2

p )Ik D
2θ2 (eθT − 1)(2θTeθT − eθT + 1).

(A45)

Then:

TRC′5(T) =
F5(T)

T2 (A46)

Since 1− IkαM > 0 in general, Equation (A38) yields:

F′5(T) = [Dcθ(1− IkαM) + Dh]TeθT + (
c2

p
)IkDTeθT(2eθT − 1) > 0. (A47)

According to Equation (A47), F5(T) is increasing on T > 0. Equations (53) and (54) imply:

F5(TW) = ∆8, (A48)

F5(T0) = ∆7, (A49)

and
lim

T→∞
F5(T) = ∞. (A50)

(i) If ∆7 ≥ 0, then:
F5(T) > F5(T0) = ∆7 ≥ 0 if T > T0. (A51)

Equation (A46) reveals TRC′5(T) > 0 if T > T0. Therefore, TRC5(T) is increas-
ing on [T0, ∞).

(ii) If ∆7 < 0 < ∆8, the Intermediate Value Theorem (Varberg et al. [41]) implies
that there exists a unique point T5 ∈ (T0, TW) such that F5(T5) = 0. Therefore,
we have:

F5(T)


< 0 i f 0 < T < T5, (A52a)
= 0 i f T = T5, (A52b)
> 0 i f T > T5. (A52c)

Equation (A46) shows:

TRC′5(T)


< 0 i f 0 < T < T5, (A53a)
= 0 i f T = T5, (A53b)
> 0 i f T > T5. (A53c)

Equation (A53a–c) demonstrates that TRC5(T) is decreasing on (0, T5] and
increasing on [T5, ∞). Therefore, T5 = T5. Of course, Lemma 4 B(ii) holds.

(iii) If ∆8 ≤ 0, then:

0 ≥ ∆8 = F5(TW) > F5(T) if 0 < T < TW . (A54)

Equation (A46) reveals TRC5(T) < 0 if 0 < T < TW . Of course, TRC5(T) is
decreasing on (T0, TW).

(C) (i) The proof is the same as that of Lemma 3 B(iii).
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(ii) Equations (43), (A35) and (55) imply:

F4(M) = ∆5, (A55)

F4(T0) = ∆9, (A56)

and
lim

T→∞
F4(T) = ∞. (A57)

If ∆5 ≤ 0 < ∆9, the Intermediate Value Theorem (Varberg et al. [41]) implies
that there exists a unique point T̃4 ∈ [M, T0] such that F4(T̃4) = 0. Therefore,
we have

F4(T)


< 0 i f 0 < T < T̃4, (A58a)
= 0 i f T = T̃4, (A58b)
> 0 i f T > T̃4. (A58c)

Equation (A36) shows:

TRC′4(T)


< 0 i f 0 < T < T̃4, (A59a)
= 0 i f T = T̃4, (A59b)
> 0 i f T > T̃4. (A59c)

According to Equation (A59a–c), we have that TRC4(T) is decreasing on
(0, T̃4] and increasing on [T̃4, ∞). Therefore, T4 = T̃4. Of course, TRC4(T) is
decreasing on [M, T4] and increasing on [T4, T0].

(i) If ∆9 ≤ 0, then:

0 = ∆9 = F4(T0) > F4(T) if 0 < T < T0. (A60)

Equation (A36) reveals TRC′4(T) < 0 if 0 < T < T0. Of course, TRC4(T) is
decreasing on [M, T0].

(D) The proof is the same as that of Lemma 2(C).
Incorporating the above arguments, we completed the proof of Lemma 4. �

Appendix A.5. Proof of Theorem 2

Proof.

(A) If ∆1 ≤ 0 and ∆3 ≤ 0, then ∆1 ≤ 0, ∆2 ≤ 0 and ∆3 ≤ 0. With Lemma 2 (A(ii), B(iii),
C(ii)), we have:

(a1) TRC3(T) is decreasing on (0, TW).
(a2) TRC2(T) is decreasing on [TW , M].
(a3) TRC1(T) is decreasing on [M, T1] and increasing on [T1, ∞).

Then, (a1)–(a3) and Equation (13a–c) imply T∗ = T1 and TRC(T∗) = TRC1(T1).
(B) If ∆1 ≤ 0 and ∆3 > 0, then ∆1 ≤ 0, ∆2 < 0 and ∆3 > 0. With Lemma 2(A(ii), B(iii),

C(i)), we have:

(b1) TRC3(T) is decreasing on (0, T3] and increasing on [T3, TW).
(b2) TRC2(T) is decreasing on [TW , M].
(b3) TRC1(T) is decreasing on [M, T1] and increasing on [T1, ∞).

Then, (b1)–(b3) and Equation (13a–c) imply TRC(T∗) = min{TRC1(T1), TRC3(T3)}
and T∗ = T1 or T3 associated with the least cost.

(C) If ∆1 > 0, ∆2 ≤ 0 and ∆3 > 0, with Lemma 2(A(i), B(ii), C(i)), we have:

(c1) TRC3(T) is decreasing on (0, T3] and increasing on [T3, TW).
(c2) TRC2(T) is decreasing on [TW , T2] and increasing on [T2, M].
(c3) TRC1(T) is increasing on [M, ∞).
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Then, (c1)–(c3) and Equation (13a–c) imply:

TRC(T∗) = min{TRC3(T3), TRC2(T2)} (A61)

Since 0 < T3 < T2 < M, Equation (11) implies:

TRC3(T3) > TRC2(T3) > TRC2(T2). (A62)

Equations (A61) and (A62) yield TRC(T∗) = TRC2(T2) and T∗ = T2.
(D) If ∆2 > 0, then ∆1 > 0, ∆2 > 0 and ∆3 > 0. With Lemma 2(A(i), B(i), C(i)), we have:

(d1) TRC3(T) is decreasing on (0, T3] and increasing on [T3, TW).
(d2) TRC2(T) is increasing on [TW , M].
(d3) TRC1(T) is increasing on [M, ∞).

Then, (d1)–(d3) and Equation (13a–c) imply TRC(T∗) = min{TRC2(TW), TRC3(T3)}
and T∗ = TW or T3 associated with the least cost.

(E) If ∆1 > 0 and ∆3 ≤ 0, then ∆1 > 0, ∆2 ≤ 0 and ∆3 ≤ 0. With Lemma 2(A(i), B(ii),
C(ii)), we have:

(e1) TRC3(T) is decreasing on (0, TW ].
(e2) TRC2(T) is decreasing on [TW , T2] and increasing on [T2, M].
(e3) TRC1(T) is increasing on [M, ∞).

Then, (e1)–(e3) and Equation (13a–c) imply TRC(T∗) = TRC2(T2) and T∗ = T2.

Incorporating (A)–(E), we completed the proof of Theorem 2. �

Appendix A.6. Proof of Theorem 4

Proof.
(A(a1)) If ∆4 > 0, ∆5 > 0 and ∆7 ≥ 0, then Equations (56) and (57) imply ∆4 > 0,

∆5 > 0, ∆7 ≥ 0, ∆8 > 0 and ∆9 > 0 With Lemma 49A(i), B(i), C(i), D(i)), we have:
(a11) TRC3(T) is decreasing on (0, T3] and increasing on [T3, M].
(a12) TRC4(T) is increasing on [M, T0].
(a13) TRC5(T) is increasing on (T0, TW).
(a14) TRC1(T) is increasing on [TW , ∞).
(a11–a14), Equations (16), (60) and (61) reveal TRC(T∗) = TRC3(T3).
(A(a2)–A(a3)) Similar to the approach used in (A(a1)), it can be shown that (A(a2)-

A(a3)) hold.
(B(b1)) If ∆4 > 0, ∆5 > 0 and ∆7 < 0 < ∆8, then ∆4 > 0, ∆5 > 0, ∆7 < 0, ∆8 > 0 and

∆9 > 0. With Lemma 4(A(i), B(ii), C(i), D(i)), we have:
(b11) TRC3(T) is decreasing on (0, T3] and increasing on [T3, M].
(b12) TRC4(T) is increasing on [M, T0].
(b13) TRC5(T) is decreasing on (T0, T5] and increasing on (T5, TW).
(b14) TRC1(T) is increasing on [TW , ∞).
(b11)–(b14), Equations (16), (60) and (61) reveal TRC(T∗) = min{TRC3(T3), TRC5(T5)}.
(B(b2)–(b4)) Similar to the approach used in (B(b1)), it can be shown that (B(b2)–(b4)) hold.
(C(c1)) If ∆4 > 0, ∆5 > 0 and ∆8 ≤ 0, then ∆4 > 0, ∆5 > 0, ∆7 < 0, ∆8 ≤ 0 and ∆9 > 0.

With Lemma 4(A(i), B(iii), C(i), D(i)0, we have:
(c11) TRC3(T) is decreasing on (0, T3] and increasing on [T3, M].
(c12) TRC4(T) is increasing on [M, T0].
(c13) TRC5(T) is decreasing on (T0, TW).
(c14) TRC1(T) is increasing on [TW , ∞).
(c11)–(c14), Equations (16), (60) and (61) reveal that there are two cases to occur:

(i) If TRC5(TW) ≥ TRC3(T3), then TRC(T∗) = TRC3(T3).
(ii) If TRC5(TW) < TRC3(T3), then T∗ does not exist.

(C(c2)–(c4)) Similar to the approach used in (C(c1)), it can be shown that (C(c2)–(c4)) hold.
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(D(d1)–(d4)) Similar to the approach used in (A(a1)–(a4))), it can be shown that (D(d1)–
(d4)) hold.

(E(e1)–(e4)) Similar to the approach used in (B(b1)–(b4)), it can be shown that (E(e1)–
(e4)) hold.

(F(f1)–(f4)) Similar to the approach used in (C(c1)–(c4)), it can be shown that (F(f1)–(f4)) hold.
(G(g1)–(g4)) Similar to the approach used in (A(a1)–(a4)), it can be shown that (G(g1)–

(g4)) hold.
(H(h1)–(h4)) Similar to the approach used in (B(b1)–(b4)), it can be shown that (H(h1)–

(h4)) hold.
(I(i1)–(i4)) Similar to the approach used in (C(c1)–(c4)), it can be shown that (I(i1)–(i4)) hold.
(J(j1)–(j4)) Similar to the approach used in (B(b1)–(b4)), it can be shown that (J(j1)–(j4)) hold.
(K(k1)) If ∆4 ≤ 0, ∆5 > 0 and ∆7 < 0 < ∆8, then ∆4 ≤ 0, ∆5 > 0, ∆7 < 0 < ∆8 and

∆9 > 0. With Lemma 4(A(ii), B(ii), C(i), D(i)), we have:
(k11) TRC3(T) is decreasing on (0, T3] and increasing on [T3, M].
(k12) TRC4(T) is increasing on [M, T0].
(k13) TRC5(T) is decreasing on (T0, T5] and increasing on [T5, TW).
(k14) TRC1(T) is decreasing on [TW , T1] and increasing on [T1, ∞).
(k11)–(k14), Equations (16), (60) and (61) reveal TRC(T∗) = min{TRC3(T3), TRC5(T5), }

{TRC1(T1)}.
(K(k2)–(k4)) Similar to the approach used in (K(k1)), it can be shown that (K(k2)–(k4)) hold.
(L(l1)–(l4)) Similar to the approach used in (C(c1)–(c4)), it can be shown that (L(l1)–(l4)) hold.
(M(m1)–(m4)) Similar to the approach used in (B(b1)–(b4)), it can be shown that

(M(m1)–(m4)) hold.
(N(n1)–(n4)) Similar to the approach used in (K(k1)–(k4)), it can be shown that (N(n1)–

(n4)) hold.
(O(o1)–(o4)) Similar to the approach used in (C(c1)–(c4)), it can be shown that (O(o1)–

(o4)) hold.
(P(p1)–(p4)) Similar to the approach used in (B(b1)–(b4)), it can be shown that (P(p1)–

(p4)) hold.
(Q(q1)–(q4)) Similar to the approach used in (K(k1)–(k4)), it can be shown that (Q(q1)–

(q4)) hold.
(R(r1)–(r4)) Similar to the approach used in (C(c1)–(c4)), it can be shown that (R(r1)–

(r4)) hold.
Incorporating (A)–(R), we completed the proof of Theorem 4. �
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