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Abstract: Recently, the resources of renewable energy have been in intensive use due to their
environmental and technical merits. The identification of unknown parameters in photovoltaic (PV)
models is one of the main issues in simulation and modeling of renewable energy sources. Due to
the random behavior of weather, the change in output current from a PV model is nonlinear. In this
regard, a new optimization algorithm called Runge–Kutta optimizer (RUN) is applied for estimating
the parameters of three PV models. The RUN algorithm is applied for the R.T.C France solar cell, as
a case study. Moreover, the root mean square error (RMSE) between the calculated and measured
current is used as the objective function for identifying solar cell parameters. The proposed RUN
algorithm is superior compared with the Hunger Games Search (HGS) algorithm, the Chameleon
Swarm Algorithm (CSA), the Tunicate Swarm Algorithm (TSA), Harris Hawk’s Optimization (HHO),
the Sine–Cosine Algorithm (SCA) and the Grey Wolf Optimization (GWO) algorithm. Three solar
cell models—single diode, double diode and triple diode solar cell models (SDSCM, DDSCM and
TDSCM)—are applied to check the performance of the RUN algorithm to extract the parameters. the
best RMSE from the RUN algorithm is 0.00098624, 0.00098717 and 0.000989133 for SDSCM, DDSCM
and TDSCM, respectively.

Keywords: Runge–Kutta optimizer (RUN); photovoltaic (PV); three diode model; double diode
model; single diode model; solar energy

1. Introduction

Researchers are making developments in sources of renewable energy to combat
environmental pollution caused by use of fossil fuels. Solar, wind, nuclear and wave
energies are the most renewable sources used in our lifetime; hence, researchers all over
the world are focused on them [1–5]. Due to the cleanliness and availability of solar
energy, it has been recognized as a capable renewable energy source [6]. Generation of
electricity directly from solar energy is accomplished by photovoltaic (PV) systems [7]
and their behaviour is successfully simulated based on several PV models [8,9]. They
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have applications such as heating and cooling [10], fuel cells [11], cost-effective emission
dispatches [12] and water desalination [13].

There are different electronic circuits that simulate PV systems, such as the single
diode solar cell model (SDSCM), the double diode solar cell model (DDSCM) and the triple
diode solar cell model (TDSCM). Among them the most commonly used are the SDSCM
and the DDSCM [14]. In general the P-N junction is the internal construction of solar
cells that has three regions: Defect, space charge and quasi-neutral regions. The diffusion
and recombination of the charge transporter causes losses in these regions. The losses in
SDSCM can be identified by the losses of the quasi-neutral region. The losses in DDSCM
can be identified by the losses of the quasi-neutral and space charge regions. The losses
in TDSCM can be identified by the losses of the quasi-neutral, space charge and defect
regions [15,16].

The estimation of parameters in PV modules is one of the important items in the
development of solar energy. This occurs due to the nonlinear behaviour of the relationship
between current and voltage; such variables as outputs are crucial in solar cells [17,18].
The number of the computed parameters varies according to the model used; for SDSCM,
DDSCM and TDSCM the number of variables is five, seven and nine, respectively. They
are extracted with two passes: The first way is the traditional analytic method and the
second way is with the use of meta-heuristics algorithms. The traditional analytic methods
are considered a typical solution in estimating the solar cell variables, such as Lambert
W-functions [19], Gauss Seidel technique [20,21], the Newton–Raphson method [22], the
least square method [23] and the conductivity method (CM) [24].

With the development of computer and artificial intelligence, several meta-heuristics
methods have been applied in extensive fields, especially in complex and nonlinear op-
timization problems [25,26]. Due to the nonlinearity of the behaviour of photovoltaic
problems, metaheuristics techniques have been applied widespread in the problem of
parameter estimation of PV cells. Meta-heuristics techniques are introduced and classified
into four branches, i.e., sociology-based methods, physics-based methods, biology-based
methods and mathematics-based methods [27]. The algorithms of sociology used in the
identification of PV parameters are the Harmony search algorithm [28], Teaching learning-
based optimization and its improvement [29,30], the Imperialist competitive algorithm [31]
and the multiple learning backtracking search algorithm [32]. The physics-based meth-
ods used in the estimation of PV parameters are the Chaos optimization algorithm with
its improvements [33,34], the Simulated annealing algorithm [35], the Fireworks algo-
rithm [36], the Wind driven optimization algorithm [37], the Evaporation rate-based water
cycle algorithm [38] and the Lozi map-based chaotic optimization algorithm [39]. The
techniques that are biology based and employed for the estimation PV parameters are Par-
ticle swarm optimization and its variants [40–43], the Genetic algorithm [44], Differential
evolution [45], Artificial bee swarm optimization [46], Artificial bee colony (ABC) opti-
mization [47], the Whale optimization algorithm [48], the Improved ant lion optimizer [49],
Biogeography-based optimization [50], the Cuckoo search (CS) algorithm [51], the Bird
mating optimization (BMO) algorithm [52], the Flower pollination algorithm [53], the Grey
wolf optimizer (GWO) algorithm [54], the Bacterial foraging algorithm [55] and the Slap
swarm algorithm [56]. Other interesting meta-heuristics approaches for the extraction of
PV parameters are Pattern search [57], the Shuffled complex evolution (SCE) algorithm [58],
the Turbulent flow of water algorithm [59,60] and the JAYA algorithm [61,62].

This article introduces the use of a meta-heuristic algorithm called Runge–Kutta
optimizer (RUN), which is applied to extract the solar cell parameter. Here the objective
function of the estimation problem is the root mean square error between the experimental
recorded current data and the simulated current data based on the parameters extracted
from the algorithms. The solar cell models used in this article are the SDSCM, DDSCM and
SDSCM. The experiments conducted include comparisons between the RUN algorithm
and another six algorithms: the Hunger Games Search (HGS) algorithm [63], the Tunicate
Swarm Algorithm (TSA) [64], Harris Hawks Optimization (HHO) [65], the Sine–Cosine
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Algorithm (SCA) [66], the Chameleon Swarm Algorithm (CSA) [67] the and Grey Wolf
Optimizer (GWO) [68]; the dataset from the R.T.C France cell is used. The experiments
also include a statistical analysis to measure the performance evaluation of the proposed
RUN algorithm and all competitor algorithms. This analysis contains several points such
as the minimum, maximum, mean and standard deviation of the objective function over
30 independent runs. Finally a Friedman rank test is performed for the proposed RUN
algorithm and all competitor algorithms in all cases study. The experiments conducted
then validate the performance of the proposed approach based on the RUN algorithm to
search for the optimal configuration of the parameters.

The goals of this article are listed as follows:

• Introduce an alternative method to identify the parameters in solar cells using the
RUN algorithm in combination with the diode models.

• Test the RUN algorithm over a real multidimensional problem.
• Accurately identify the best parameters in solar cells by using a modern metaheuristic.

This paper is organized as follows: The mathematical formulation of three photovoltaic
diode models is described in Section 2. Section 3 discusses the objective function for the
estimation of the photovoltaic parameters. Section 4 presents the Runge–Kutta optimizer
(RUN). The experimental results are discussed in Section 5. The conclusions of the article
are presented in Section 6.

2. Mathematical Photovoltaic Models for Solar Cells

This section analyses the mathematical formulation for the three models of photo-
voltaics: the Single diode solar cell model (SDSCM), the double diode solar cell model
(DDSCM) and the triple diode solar cell model (TDSCM).

2.1. Single Diode Solar Cell Model

Figure 1 shows the equivalent circuit of the single diode solar cell model. Based on
this diagram the mathematical equation for SDSCM is defined as follows:

I = Ipv − ID1 − Ish (1)

I = Ipv − Ih1[e
q(V+IRs)

n1KTc ]− V + IRs

Rsh
(2)

The output current of SDSCM is I, Ipv is the generated photo-current, the current in
shunt resistor is Ish, ID1 is the current in the first diode, Rsh is the resistance shunted with
the diode terminal, Rs is the series resistance, n1 is the diode ideality factor, the Boltzmann
constant is K, the charge of electron is defined by q, Ih is the diode reverse saturation
current and the cell temperature is Tc.

Figure 1. Equivalent circuit of the SDSCM.
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2.2. Double Diode Solar Cell Model

Figure 2 presents the equivalent circuit of DDSCM. Considering the circuit the DDSCM
can be defined in the following equation:

I = Ipv − ID1 − ID2 − Ish (3)

I = Ipv − Ih1[e
q(V+IRs)

n1KTc − 1]− Ih2[e
q(V+IRs)

n2KTc − 1]− V + IRs

Rsh
(4)

where ID2 is the second diode current and n2 is the second diode ideality factor.

Figure 2. Equivalent circuit of the DDSCM.

2.3. Triple Diode Solar Cell Model

In Figure 3 is presented the circuit that defines the TDSCM. In Equation (5) the TDSCM
is mathematically defined

I = Ipv − ID1 − ID2 − ID3 − Ish (5)

I = Ipv − Ih1[e
q(V+IRs)

n1KTc − 1]− Ih2[e
q(V+IRs)

n2KTc − 1]− Ih3[e
q(V+IRs)

n3KTc − 1]− V + IRs

Rsh
(6)

where the current passes in the third diode are ID3 and n3 is the third diode ideality factor.

Figure 3. Equivalent circuit of the TDSCM.

3. Problem Definition

The two effective matters in any optimization problem are the objective function and
boundary limits of the search space. In this paper, the objective function of this problem
concerns the minimization of the root mean square error (RMSE) between the experimental
recorded current data and the current data extracted from the simulation. The mathematical
definition of the RMSE is presented in the following equation:

J(V, I, X) = Isim − Iexp (7)

RMSE =

√√√√ 1
N

N

∑
i=1

(J(V, I, X))2 (8)
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where Iexp, the experimental recorded current data, N is the number of reading data,
X is variable with the extracted parameters and Isim corresponds to the estimated cur-
rent obtained by one of the diode models. For the SDSCM the variables to be iden-
tified are X = (Rs, Ih1, n1, Rsh and Ipv). In the DDSCM the variables to be extracted are
X = (Rs, Ih1, n1, Rsh, Ipv, Ih2 and n2). Finally, for the TDSCM the elements to be identified
are X = (Rs, Ih1, n1, Rsh, Ipv, Ih2, n2, Ih3 and n3). The lower and upper boundaries of the
variables for all the models are reported in Table 1.

Table 1. The variables’ lower and upper boundaries.

Parameters Lower Bound Upper Bound

Ipv 0 1

Ih1, Ih2 and Ih3 (µA) 0 1

Rs 0 0.5

Rsh 0 100

n1, n2 and n3 1 2

4. The Runge–Kutta Optimizer

This section introduces a brief description of the Runge–Kutta optimizer (RUN) opti-
mization algorithm [69]. The RUN is based on the theory of the Runge–Kutta method that
is employed for solving ordinary differential equations in numerical methods. The RUN
has two stages; the first is the search procedure that uses the Runge–Kutta theory and the
second is called enhanced solution quality (ESQ). The following subsection will explain
the basics of the RUN.

4.1. Updating Solutions

The RUN algorithm uses a search mechanism (SM), see Appendix A, based on the
Runge–Kutta method to update the position of the current solution at each iteration, which
is defined Algorithm 1.

Algorithm 1 Search mechanism (SM) to update the position of current solution used in RUN

if rand < 0.5 then

(exploration phase)

Xn+1 = (Xc + r× SF× g× xc) + SF× SM + µ× (randn× (xm − xc))

else

(exploration phase)

Xn+1 = (Xm + r× SF× g× xm) + SF× SM + µ× (randn× (xr1 − xr2))

end if

From the previous explanation r is an integer number that takes the values of 1 or −1
and helps to improve the diversity. g is a random number in the range [0, 2]; also µ is a
random number too. The formula to compute SM is defined in Appendix A. Finally SF is
an adaptive factor that is computed as follows:

SF = 2.(0.5− rand)× f (9)

F = a× exp(−b× rand× (
i

Maxi
)) (10)
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where Maxi stands for the largest number of iterations. Besides, the values of xc and xm
are as follows:

xc = φ× xn + (1− φ)× xr1 (11)

xm = φ× xbest + (1− φ)× xlbest (12)

From Equations (11) and (12), φ is a random number in the range of (0,1). xbest is the
best-so-far solution. xlbest is the best position obtained at each iteration.

4.2. Enhanced Solution Quality

In the RUN algorithm, the enhanced solution quality (ESQ) is a step employed to
increase the quality of the solutions and avoid local optima in each iteration. The scheme
shown in Algorithm 2 is executed to create the solution (xnew2) by using the ESQ:

Algorithm 2 Scheme to create the solution (xnew2) by using the ESQ in RUN

if rand < 0.5 then

if w < 1 then

xnew2 = xnew1 + r.w.
∣∣(xnew1 − xavg) + randn

∣∣
else

xnew2 = (xnew1 − xavg) + r.w.
∣∣(u.xnew1 − xavg) + randn

∣∣
end if

end if

From the previous steps, the values of w, xavg and xnew are computed by using the
following equations:

w = rand(0, 2).exp(−c(
i

Maxi
)) (13)

xavg =
xr1 + xr2 + xr3

3
(14)

xnew1 = β× xavg + (1− β)× xbest (15)

where β is a random number defined in the range [0, 1]. c = 5× rand, where rand is a
random value. r is an integer number that could take the values 1, 0 or −1. xbest is the
best solution explored so far. The solution xnew2 does not always have a better fitness than
the current solutions. In this case, the RUN provides another opportunity to enhance the
fitness by using xnew3. This procedure is performed as shown in as Algorithm 3.

Algorithm 3 Enhancing the new solution xnew3

if rand < w then

xnew3 = (xnew2 − randxnew2) + SF.(rand.xRK + (v.xb − xnew2))

end if

where v is a random number with a value of 2rand. The pseudo-code of the standard RUN
is presented in Algorithm 4.
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Algorithm 4 The pseudo-code of RUN

Stage 1. Initialization

Initialize a, b

Generate the RUN population Xn (n = 1,2,. . . ,N)

Calculate the objective function of each member of population

Determine the solutions xw, xb, and xbest

Stage 2. RUN operators

for i = 1 : Maxi do

for n = 1 : N do

for l = 1 : D do

Updating solutions

Calculate position xn+1,l according to Section 4.1

end for

Enhance the solution quality

if rand <0.5 then

Calculate position xnew2 as in Section 4.2

if f(xn)<f(xnew2) then

if rand <w then

Calculate position xnew3 using the explanation provided in Section 4.2

end if

end if

end if

Update positions xw and xb

end for

Update positions xbest

i = i + 1

end for

Stage 3. return xbest
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5. Experimental Results

This section explains the identified parameters for the SDSCM, DDSCM and TDSCM
models using the RUN algorithm. The proposed implementation for the RUN algorithm is
compared with other meta-heuristic approaches such as the Hunger Games Search (HGS)
algorithm [63], the Tunicate Swarm Algorithm (TSA) [64], Harris Hawks Optimization
(HHO) [65], the Sine–Cosine Algorithm (SCA) [66], the Chameleon Swarm Algorithm
(CSA) [67] and the Grey Wolf Optimizer (GWO) algorithm [68]. The recorded R.T.C France
solar cell data at 1000 w/m2 solar radiation and 33 °C temperature is applied to evaluate
the algorithms’ accuracy and reliability and accuracy.

Each algorithm’s settings are described in Table 2 for clear comparison.

Table 2. Parameter setting for all the algorithms used in the comparative study.

Algorithms Parameter Setting

General Setting Population size: N = 30
Maximum iterations: tmax = 1000

RUN a = 20 and b = 12

HGS l = 0.08 and hunger threshold (LH) as 10, 100, 1000 and 1000

TSA Pmin = 1 and Pmax = 4

HHO beta = 1.5

SCA A = 2

CSA p1, p2, 0.25, 1.50, 1.0, c1, c21.75, 1.75

GWO Control Parameter (a) is [2, 0]

The next subsections will present and discuss the experimental results obtained by
the SDSCM, the DDSCM and the TDSCM. A statistical analysis is also conducted; the
outcomes are also discussed in a respective subsection.

5.1. Results of SDSCM

The results of the decision parameters for SDSCM estimated by implementing the
RUN algorithm and the comparison with the other method for finding the best RMSE
are illustrated in Table 3. The optimization method that achieves the best RMSE of value
0.000986242 is the RUN algorithm, this value is in a bold number in Table 3. The order of
algorithms based on the minimum value of the RMSE is RUN, GWO, HHO, TSA, CSA, SCA
and HGS. The I-V and P-V characteristics of the tested SDSCM are performed based on
the extracted results from the RUN algorithm in Table 3. Figure 4 shows the I-V curve and
the absolute error of current (AEI) for SDSCM based on the extracted data from the RUN
algorithm. Figure 5 introduces the P-V curve and the absolute error of power (AEP) for
SDSCM based on the extracted data from the RUN algorithm. Based on Figures 4 and 5 the
minimum value of the absolute current error is 0.0000764260676708872 and the minimum
value of absolute power error is 0.0000020451684640101. The error values presented before
can be interpreted with a high degree of accuracy due to the optimal configuration of
parameters obtained by using the RUN algorithm. Moreover, Figures 4 and 5 explain the
high closeness between the simulated and experimental recorded data so that the proposed
RUN algorithm achieves high performance and more accuracy in extracting the decision
variables of SDSCM. Both Figures 4 and 5 use the number of samples (Nu of samples) to
show the absolute error computed for each variable. Besides, for Figures 4 and 5 the data is
also taken from the manufacturer of the R.T.C France solar cell; this information is used for
the three diode models.



Mathematics 2021, 9, 2313 9 of 22

Table 3. The parameters estimated for SDSCM at the optimum RMSE.

Algorithm Ipv (A) Ih1 (A) n1 Rs (Ω) Rsh (Ω) RMSE

RUN 0.76076384 3.20 × 10−7 1.4802504 0.03641606 53.6707057 0.00098624

HGS 0.74385157 1.00 × 10−6 1.59848349 0.02112377 100 0.03531608

TSA 0.76156952 3.18 × 10−7 1.47990458 0.0370102 56.8748349 0.00203122

HHO 0.76061081 4.69 × 10−7 1.51967855 0.03494388 67.4858973 0.00122548

SCA 0.7604604 8.14 × 10−7 1.58164936 0.02603417 85.9162977 0.0115909

CSA 0.76297186 6.70 × 10−7 1.55923486 0.0326915 41.6278317 0.00257795

GWO 0.76136271 3.59 × 10−7 1.49183006 0.03607813 49.6793825 0.00117546

Figure 4. The I-V curve and current absolute error for SDSCM.

Figure 5. The P-V curve and power absolute error for SDSCM.
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5.2. Results of DDSCM

The results of the variables of DDSCM estimated using the RUN optimizer and its
comparison with the rest of the algorithms to obtain the optimal RMSE are illustrated in
Table 4. The algorithm that obtains the optimal RMSE is the RUN and the value achieved
is 0.000987168, this value is in a bold number in Table 4. The compared approaches can
be ranked according to the minimum value of RMSE obtained. The rank for the DDSCM
from the lower to the upper value is RUN, GWO, HHO, TSA, CSA, SCA and HGS. The I-V
and P-V characteristics of the tested DDSCM are performed based on the extracted results
from the RUN algorithm in Table 4. In Figure 6 are plotted the I-V curve and the absolute
error of current (AEI) for DDSCM based on the extracted data from the RUN algorithm.
Figure 6 explains the P-V curve and the absolute error of power (AEP) for DDSCM based
on the extracted data from the RUN algorithm. Based on Figures 6 and 7 the lower value
of absolute current error is 0.0000146823091732307 and the lower value of absolute power
error is 0.00000171970722786467. The error values presented before can be interpreted
with a high degree of accuracy due to the optimal configuration of parameters obtained by
using the RUN algorithm. Moreover, these figures explain the high closeness between the
simulated and experimental recorded data so that the proposed RUN algorithm achieves
high performance and more accuracy in extracting decision variables of DDSCM. Notice
that for Figures 6 and 7 Nu of samples refers to the number of samples used to compute
the absolute error of the variables.

Table 4. The parameters estimated for DDSCM at the optimum RMSE.

Algorithm Ipv (A) Ih1 (A) n1 Rs (Ω) Rsh (Ω) Ih2 (A) n2 RMSE

RUN 0.76080253 2.60 × 10−7 1.46347838 0.03644583 55.3832189 5.58 × 10−7 1.9996951 0.00098717

HGS 0.81823842 8.20 × 10−7 1.91014321 0.01747588 96.1240825 8.96 × 10−7 1.60014594 0.06355214

TSA 0.76107259 1.97 × 10−7 1.43559704 0.03812573 45.9993712 1.02 × 10−7 1.78946036 0.00173618

HHO 0.76067423 7.20 × 10−7 1.97316883 0.03603221 55.2632427 2.39 × 10−7 1.45717416 0.00120124

SCA 0.77891309 0.00 × 100 1 0.03447825 77.6623318 7.55 × 10−7 1.56931291 0.01419336

CSA 0.78200704 2.22 × 10−7 1.48090338 0.04035768 11.9328948 8.13 × 10−11 1.00028149 0.01193056

GWO 0.761576619 7.71 × 10−8 1.403358962 0.03649657 47.83932117 3.18 × 10−7 1.561920572 0.001149198

Figure 6. The I-V curve and current absolute error for DDSCM.
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Figure 7. The P-V curve and power absolute error for DDSCM.

5.3. Results of TDSCM

For the TDSCM the values estimated by all the optimizers in a comparative way
including the RMSE are presented in Table 5. The best RMSE value is 0.000989133 and it is
reached by the RUN algorithm, this value is in a bold number in Table 5. The rank of the
optimization methods based on its performance using the RMSE as objective function is
RUN, GWO, HHO, TSA, SCA, HGS and CSA, where they are sorted from the minimum to
the maximum value. The I-V and P-V characteristics of the tested TDSCM are computed
by using the parameters obtained by the RUN method and they are shown in Table 5.
Figure 8 explains the I-V curve and the absolute error of current (AEI) for TDSCM based
on the extracted data from the RUN algorithm. Figure 9 explains the P-V curve and
the absolute error of power (AEP) for TDSCM based on the extracted data from the
RUN algorithm. Based on Figures 8 and 9 the minimum value of the absolute current
error is 0.000144871336086205 and the minimum value of the absolute power error is
0.00000162546142774399. The error values presented before can be interpreted with a
high degree of accuracy due to the optimal configuration of parameters obtained by using
the RUN algorithm. Moreover, these figures explain the high closeness between the
simulated and experimental recorded data so that the proposed RUN algorithm achieves
high performance and more accuracy in extracting decision variables of TDSCM. Notice
that for Figures 6 and 7 Nu of samples refers to the number of samples used to compute
the absolute error of the variables.

Table 5. The parameters estimated for TDSCM at the optimum RMSE.

Algorithm RUN HGS TSA HHO SCA CSA GWO

Ipv (A) 0.760836723 0.676357 0.76062 0.760586261 0.752424353 1 0.760301041

Io1 (A) 3.30 × 10−12 0.00 × 10−0 3.36 × 10−7 4.73 × 10−7 0.00 × 10−0 0 1.13 × 10−7

h1 1.071707468 1.41 × 10−0 1.95 × 10−0 1.548414761 1.018265918 2 1.448610196

Rse (Ω) 0.036313464 0 0.035140703 0.033963588 0.033849004 0 0.036999781

Rpa (Ω) 53.61258389 42.80501301 70.67294667 80.40353241 44.21581797 1 51.96432007
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Table 5. Cont.

Algorithm RUN HGS TSA HHO SCA CSA GWO

Io2 (A) 2.65 × 10−7 5.00 × 10−7 9.69 × 10−7 5.96 × 10−8 0.00 × 10−0 0 2.85 × 10−7

h2 1.473397186 2 2 1.513719557 1 1 1.864822779

Io3 (A) 8.42 × 10−8 3.67 × 10−7 2.59 × 10−7 8.70 × 10−8 5.30 × 10−7 0 1.02 × 10−7

h3 1.572964526 1.520098844 1.468342094 1.59632106 1.535332708 1 1.442016383

RMSE 0.000989133 0.071278042 0.002362367 0.001625332 0.008624898 0.255247472 0.00115177

Figure 8. The I-V curve and current absolute error for TDSCM.

Figure 9. The P-V curve and power absolute error for TDSCM.
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5.4. SDSCM, DDSCM and TDSCM Statistical Analysis

The statistical analysis of all algorithms is performed in this section based on 30 in-
dependent runs for all the methods. This analysis is based on calculating the minimum,
mean, maximum and standard deviation of the objective function (in this case the RMSE).
The algorithm with high accuracy is determined according to the best value of RMSE. The
algorithm with more reliability is specified according to the standard deviation of the RMSE
value. Tables 6–8 present the statistical analysis of the RUN algorithm and other compara-
tive algorithms for the three models, SDSCM, DDSCM and TDSCM, respectively. Based on
these recorded results the proposed RUN algorithm achieves the minimum RMSE and the
best value of standard deviation for all SDSCM, SDSCM and TDSCM. Considering this fact,
the proposed RUN algorithm is the superior algorithm on all competitor algorithms due to
its better reliability and higher accuracy. The robustness and convergence curves of each
algorithm are very important items in the evaluation of the performance of algorithms.
The robustness curves are explained in Figures 10–12 for SDSCM, DDSCM and TDSCM,
respectively. These figures explain that the RUN algorithm achieves the best fitness at
each run compared with all used algorithms. Considering the above, the proposed RUN
algorithm realizes high robustness reliability for the best solution concerning all algorithms.
The convergence curves are explained in Figures 13–15 for SDSCM, DDSCM and TDSCM,
respectively. The convergence curves show how the algorithm behaves along the iterations
until reaching the global optimal value of the objective functions. Based on these figures,
the proposed RUN algorithm achieves faster convergence to the optimal solution than all
algorithms. The Friedman test is a non-parametric statistical test that is used to detect dif-
ferences in treatments across multiple test attempts. The Friedman rank test is performed
for the SDSCM, DDSCM and TDSCM results reported in Tables 6–8, respectively. The
extension of the Wilcoxon test is the Friedman test. The analysis of the simulated data
can be done by using this test. The extracted data of 30 runs for all algorithms is used in
measuring the Friedman test for all case studies. Figure 16 presents the Friedman rank for
SDSCM. It is observed that RUN obtained the best rank, i.e., rank 1 followed by TSA, GWO,
HHO, SCA, HGS and CSA. Figure 17 shows the Friedman rank for DDSCM. It is observed
that RUN obtained rank 1 followed by GWO, TSA, HHO, SCA, HGS and CSA. Figure 18
presents the Friedman rank for TDSCM. Here it is observed that RUN obtained the best
rank followed by GWO, TSA, SCA, HHO, HGS and CSA . Thus, it can be concluded that
RUN obtained the best rank for all the three cases.

Table 6. SDSCM statistical analysis.

Algorithm SD Max Mean Min

RUN 0.000430699 0.002444572 0.001479894 0.000986242

HGS 0.080450941 0.298406783 0.165531454 0.035316078

TSA 0.006220238 0.033758548 0.006700756 0.002031224

HHO 0.041764534 0.225255019 0.022095052 0.001225477

SCA 0.035145301 0.222879707 0.047425701 0.011590898

CSA 0.191294224 0.528798208 0.347959117 0.002577954

GWO 0.015342251 0.044396167 0.012231984 0.001175457
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Table 7. DDSCM statistical analysis.

Algorithm SD Max Mean Min

RUN 0.000514117 0.002947571 0.001481762 0.000987168

HGS 0.073396306 0.311140711 0.172464192 0.06355214

TSA 0.013606881 0.041039694 0.01017202 0.001736175

HHO 0.074681646 0.316600635 0.039488516 0.00120124

SCA 0.03461716 0.222882924 0.046732926 0.01419336

CSA 0.115944599 0.524084107 0.429519392 0.011930562

GWO 0.012659801 0.040747377 0.00909504 0.001149198

Table 8. TDSCM statistical analysis.

Algorithm SD Max Mean Min

RUN 0.001078762 0.006239595 0.001581238 0.000989133

HGS 0.084434623 0.366186646 0.206331896 0.071278042

TSA 0.010155122 0.041606709 0.008013563 0.002362367

HHO 0.088239476 0.308727929 0.053270844 0.001625332

SCA 0.011867222 0.078514615 0.042763328 0.008624898

CSA 0.082428752 0.524789361 0.430931111 0.255247472

GWO 0.007634026 0.034432925 0.006262906 0.00115177

Figure 10. Robustness curve for SDSCM.
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Figure 11. Robustness curve for DDSCM.

Figure 12. Robustness curve for TDSCM.
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Figure 13. Convergence curve for SDSCM.

Figure 14. Convergence curve for DDSCM.

Figure 15. Convergence curve for TDSCM.
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Figure 16. Friedman rank curve for SDSCM.

Figure 17. Friedman rank curve for DDSCM.

Figure 18. Friedman rank curve for TDSCM.

Based on the results analysis previously described, the RUN is an optimization mech-
anism that has been tested over a huge range of real-world problems. However, since
it has been recently proposed its performance needs to be proven in different areas of
application as energy systems. In this paper the RUN is used to estimate the parameters
of solar cells by using three different diode models. The accuracy of the results provided
by the RUN helps to verify its performance regarding the optimization. Moreover, the
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analysis of the results from the application point of view permits to understand that the
solar cells designed by the RUN are more efficient in terms of voltage and power. This
means that they can be used in real applications due to their capabilities to follow the input
design parameters. Besides, the robustness of the RUN is confirmed since the values are
stable along different experiments.

The following merits revealed the efficiency of RUN for solving various complex
optimization problems:

• In the RUN algorithm, the enhanced solution quality (ESQ) is employed to increase
the quality of the solutions and to avoid local optima at each iteration.

• The Scale factor (SF) has a randomized adaptation nature, which assists RUN in
further improving the exploration and exploitation steps.

• Using the average position of solutions can promote RUN’s exploration tendency in
the early iterations.

• RUN is based on the Runge–Kutta (RK) method; this permits a proper balance between
exploration and exploitation.

• The ESQ also helps to promote the quality of solutions and improve the convergence speed.

6. Conclusions and Future Work

In this work, a new optimization technique called Runge–Kutta optimizer (RUN) is
applied for the parameter estimation of PV diode models. Comparisons between the RUN
algorithm and the Hunger Games Search (HGS) algorithm, the Chameleon Swarm Algo-
rithm (CSA), the Tunicate Swarm Algorithm (TSA), Harris hawk’s optimization (HHO),
the Sine–Cosine Algorithm (SCA) and the Grey Wolf Optimization (GWO) algorithm are
conducted for the same dataset of R.T.C France solar cells. The performance of the RUN
algorithm is compared with all algorithms according to statistical analyses concerning
minimum, average, maximum, standard deviation and Friedman rank test of 30 indepen-
dent runs. The findings show that the closeness between the extracted I-V and P-V curves
achieved by the RUN algorithm compared with the measured data is very high. The best
RMSE for DDSCM is better than for SDSCM. The TDSCM achieves better RMSE than
SDSCM and DDSCM. The performance of robustness and convergence rates is superior
for the RUN algorithm for all tested models compared with all competitor algorithms.
In future studies, the RUN can be applied for several optimization problems in different
fields such as economic load dispatch problem, optimal power flow in power system and
estimation of fuel cell parameters.
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Appendix A

The formula of SM is defined as,

k1 =
1

2∆x
× (rand× xw − u× xb)

u = round(1 + rand)× (1− rand)
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k2 =
1

2∆x
(rand · (xw + rand1 · k1 · ∆x)− (u · xb + rand2 · k1 · ∆x))

k3 =
1

2∆x
(rand · (xw + rand1 · (

1
2

k2) · ∆x)− (u · xb + rand2 · (
1
2

k2) · ∆x))

k4 =
1

2∆x
(rand · (xw + rand1 · k3 · ∆x)− (u · xb + rand2 · k3 · ∆x))

SM =
1
6
(xRK)∆x

xRK = k1 + 2× k2 + 2× k3 + k4

where rand1 and rand2 are two random numbers in the range of [0, 1]. The formula of ∆x
is defined as,

∆x = 2× rand× |Stp|

Stp = rand× ((xb − rand× xavg) + Y)

Y = rand× (xn − rand× (u− l))× exp(−4× i
Max

)

In this study, xw and xb are determined by the following:

Algorithm A1 Updating solutions

if f (xn) < f (xbi) then

xb=xn

xw=xbi

else

xb=xbi

xw=xn

end if

References
1. Houssein, E.H. Machine Learning and Meta-heuristic Algorithms for Renewable Energy: A Systematic Review. In Advanced

Control and Optimization Paradigms for Wind Energy Systems; Springer: Berlin, Germany, 2019; pp. 165–187.
2. Ayala, H.V.H.; dos Santos Coelho, L.; Mariani, V.C.; Askarzadeh, A. An improved free search differential evolution algorithm:

A case study on parameters identification of one diode equivalent circuit of a solar cell module. Energy 2015, 93, 1515–1522.
[CrossRef]

3. Zainol Abidin, M.A.; Mahyuddin, M.N.; Mohd Zainuri, M.A.A. Solar Photovoltaic Architecture and Agronomic Management in
Agrivoltaic System: A Review. Sustainability 2021, 13, 7846. [CrossRef]

4. D’Adamo, I.; Gastaldi, M.; Morone, P. The post COVID-19 green recovery in practice: Assessing the profitability of a policy
proposal on residential photovoltaic plants. Energy Policy 2020, 147, 111910. [CrossRef]

5. Kim, W.s.; Eom, H.; Kwon, Y. Optimal Design of Photovoltaic Connected Energy Storage System Using Markov Chain Models.
Sustainability 2021, 13, 3837. [CrossRef]

6. Xu, S.; Wang, Y. Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm. Energy Convers.
Manag. 2017, 144, 53–68. [CrossRef]

7. Jordehi, A.R. Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of
photovoltaic (PV) cells and modules. Sol. Energy 2018, 159, 78–87. [CrossRef]

8. Houssein, E.H.; Mahdy, M.A.; Fathy, A.; Rezk, H. A modified Marine Predator Algorithm based on opposition based learning for
tracking the global MPP of shaded PV system. Expert Syst. Appl. 2021, 183, 115253. [CrossRef]

http://doi.org/10.1016/j.energy.2015.08.019
http://dx.doi.org/10.3390/su13147846
http://dx.doi.org/10.1016/j.enpol.2020.111910
http://dx.doi.org/10.3390/su13073837
http://dx.doi.org/10.1016/j.enconman.2017.04.042
http://dx.doi.org/10.1016/j.solener.2017.10.063
http://dx.doi.org/10.1016/j.eswa.2021.115253


Mathematics 2021, 9, 2313 20 of 22

9. Houssein, E.H.; Zaki, G.N.; Diab, A.A.Z.; Younis, E.M. An efficient Manta Ray Foraging Optimization algorithm for parameter
extraction of three-diode photovoltaic model. Comput. Electr. Eng. 2021, 94, 107304. [CrossRef]

10. Mahdavi, S.; Sarhaddi, F.; Hedayatizadeh, M. Energy/exergy based-evaluation of heating/cooling potential of PV/T and earth-air
heat exchanger integration into a solar greenhouse. Appl. Therm. Eng. 2019, 149, 996–1007. [CrossRef]

11. Houssein, E.H.; Helmy, B.E.d.; Rezk, H.; Nassef, A.M. An enhanced Archimedes optimization algorithm based on Local escaping
operator and Orthogonal learning for PEM fuel cell parameter identification. Eng. Appl. Artif. Intell. 2021, 103, 104309. [CrossRef]

12. Ismaeel, A.A.; Houssein, E.H.; Oliva, D.; Said, M. Gradient-based optimizer for parameter extraction in photovoltaic models.
IEEE Access 2021, 9, 13403–13416. [CrossRef]

13. Mostafa, M.; Abdullah, H.M.; Mohamed, M.A. Modeling and Experimental Investigation of Solar Stills for Enhancing Water
Desalination Process. IEEE Access 2020, 8, 219457–219472. [CrossRef]

14. Alam, D.; Yousri, D.; Eteiba, M. Flower pollination algorithm based solar PV parameter estimation. Energy Convers. Manag. 2015,
101, 410–422. [CrossRef]

15. Deb, D.; Brahmbhatt, N.L. Review of yield increase of solar panels through soiling prevention, and a proposed water-free
automated cleaning solution. Renew. Sustain. Energy Rev. 2018, 82, 3306–3313. [CrossRef]

16. Soliman, M.A.; Hasanien, H.M.; Alkuhayli, A. Marine Predators Algorithm for Parameters Identification of Triple-Diode
Photovoltaic Models. IEEE Access 2020, 8, 155832–155842. [CrossRef]

17. Qais, M.H.; Hasanien, H.M.; Alghuwainem, S. Parameters extraction of three-diode photovoltaic model using computation and
Harris Hawks optimization. Energy 2020, 195, 117040. [CrossRef]

18. Qais, M.H.; Hasanien, H.M.; Alghuwainem, S. Transient search optimization for electrical parameters estimation of photovoltaic
module based on datasheet values. Energy Convers. Manag. 2020, 214, 112904. [CrossRef]

19. Ortiz-Conde, A.; Sánchez, F.J.G.; Muci, J. New method to extract the model parameters of solar cells from the explicit analytic
solutions of their illuminated I–V characteristics. Sol. Energy Mater. Sol. Cells 2006, 90, 352–361. [CrossRef]

20. Cuce, E.; Cuce, P.M.; Karakas, I.H.; Bali, T. An accurate model for photovoltaic (PV) modules to determine electrical characteristics
and thermodynamic performance parameters. Energy Convers. Manag. 2017, 146, 205–216. [CrossRef]

21. El Achouby, H.; Zaimi, M.; Ibral, A.; Assaid, E. New analytical approach for modelling effects of temperature and irradiance on
physical parameters of photovoltaic solar module. Energy Convers. Manag. 2018, 177, 258–271. [CrossRef]

22. Easwarakhanthan, T.; Bottin, J.; Bouhouch, I.; Boutrit, C. Nonlinear minimization algorithm for determining the solar cell
parameters with microcomputers. Int. J. Sol. Energy 1986, 4, 1–12. [CrossRef]

23. Toledo, F.J.; Blanes, J.M.; Galiano, V. Two-step linear least-squares method for photovoltaic single-diode model parameters
extraction. IEEE Trans. Ind. Electron. 2018, 65, 6301–6308. [CrossRef]

24. Chegaar, M.; Ouennoughi, Z.; Hoffmann, A. A new method for evaluating illuminated solar cell parameters. Solid-State Electron.
2001, 45, 293–296. [CrossRef]

25. Pillai, D.S.; Rajasekar, N. Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application
to threshold setting for fault detection in PV systems. Renew. Sustain. Energy Rev. 2018, 82, 3503–3525. [CrossRef]

26. Nesmachnow, S. An overview of metaheuristics: Accurate and efficient methods for optimisation. Int. J. Metaheuristics 2014,
3, 320–347. [CrossRef]

27. Yang, B.; Wang, J.; Zhang, X.; Yu, T.; Yao, W.; Shu, H.; Zeng, F.; Sun, L. Comprehensive overview of meta-heuristic algorithm
applications on PV cell parameter identification. Energy Convers. Manag. 2020, 208, 112595. [CrossRef]

28. Yuan, X.; Zhao, J.; Yang, Y.; Wang, Y. Hybrid parallel chaos optimization algorithm with harmony search algorithm. Appl. Soft
Comput. 2014, 17, 12–22. [CrossRef]

29. Patel, S.J.; Panchal, A.K.; Kheraj, V. Extraction of solar cell parameters from a single current–voltage characteristic using teaching
learning based optimization algorithm. Appl. Energy 2014, 119, 384–393. [CrossRef]

30. Chen, X.; Yu, K.; Du, W.; Zhao, W.; Liu, G. Parameters identification of solar cell models using generalized oppositional teaching
learning based optimization. Energy 2016, 99, 170–180. [CrossRef]

31. Fathy, A.; Rezk, H. Parameter estimation of photovoltaic system using imperialist competitive algorithm. Renew. Energy 2017,
111, 307–320. [CrossRef]

32. Yu, K.; Liang, J.; Qu, B.; Cheng, Z.; Wang, H. Multiple learning backtracking search algorithm for estimating parameters of
photovoltaic models. Appl. Energy 2018, 226, 408–422. [CrossRef]

33. Yuan, X.; Yang, Y.; Wang, H. Improved parallel chaos optimization algorithm. Appl. Math. Comput. 2012, 219, 3590–3599.
[CrossRef]

34. Yuan, X.; Xiang, Y.; He, Y. Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm.
Sol. Energy 2014, 108, 238–251. [CrossRef]

35. El-Naggar, K.M.; AlRashidi, M.; AlHajri, M.; Al-Othman, A. Simulated annealing algorithm for photovoltaic parameters
identification. Sol. Energy 2012, 86, 266–274. [CrossRef]

36. Babu, T.S.; Ram, J.P.; Sangeetha, K.; Laudani, A.; Rajasekar, N. Parameter extraction of two diode solar PV model using Fireworks
algorithm. Sol. Energy 2016, 140, 265–276. [CrossRef]

37. Derick, M.; Rani, C.; Rajesh, M.; Farrag, M.; Wang, Y.; Busawon, K. An improved optimization technique for estimation of solar
photovoltaic parameters. Sol. Energy 2017, 157, 116–124. [CrossRef]

http://dx.doi.org/10.1016/j.compeleceng.2021.107304
http://dx.doi.org/10.1016/j.applthermaleng.2018.12.109
http://dx.doi.org/10.1016/j.engappai.2021.104309
http://dx.doi.org/10.1109/ACCESS.2021.3052153
http://dx.doi.org/10.1109/ACCESS.2020.3038934
http://dx.doi.org/10.1016/j.enconman.2015.05.074
http://dx.doi.org/10.1016/j.rser.2017.10.014
http://dx.doi.org/10.1109/ACCESS.2020.3019244
http://dx.doi.org/10.1016/j.energy.2020.117040
http://dx.doi.org/10.1016/j.enconman.2020.112904
http://dx.doi.org/10.1016/j.solmat.2005.04.023
http://dx.doi.org/10.1016/j.enconman.2017.05.022
http://dx.doi.org/10.1016/j.enconman.2018.09.054
http://dx.doi.org/10.1080/01425918608909835
http://dx.doi.org/10.1109/TIE.2018.2793216
http://dx.doi.org/10.1016/S0038-1101(00)00277-X
http://dx.doi.org/10.1016/j.rser.2017.10.107
http://dx.doi.org/10.1504/IJMHEUR.2014.068914
http://dx.doi.org/10.1016/j.enconman.2020.112595
http://dx.doi.org/10.1016/j.asoc.2013.12.016
http://dx.doi.org/10.1016/j.apenergy.2014.01.027
http://dx.doi.org/10.1016/j.energy.2016.01.052
http://dx.doi.org/10.1016/j.renene.2017.04.014
http://dx.doi.org/10.1016/j.apenergy.2018.06.010
http://dx.doi.org/10.1016/j.amc.2012.09.053
http://dx.doi.org/10.1016/j.solener.2014.07.013
http://dx.doi.org/10.1016/j.solener.2011.09.032
http://dx.doi.org/10.1016/j.solener.2016.10.044
http://dx.doi.org/10.1016/j.solener.2017.08.006


Mathematics 2021, 9, 2313 21 of 22

38. Sadollah, A.; Eskandar, H.; Bahreininejad, A.; Kim, J.H. Water cycle algorithm with evaporation rate for solving constrained and
unconstrained optimization problems. Appl. Soft Comput. 2015, 30, 58–71. [CrossRef]

39. Pourmousa, N.; Ebrahimi, S.M.; Malekzadeh, M.; Alizadeh, M. Parameter estimation of photovoltaic cells using improved Lozi
map based chaotic optimization Algorithm. Sol. Energy 2019, 180, 180–191. [CrossRef]

40. Elsheikh, A.; Abd Elaziz, M. Review on applications of particle swarm optimization in solar energy systems. Int. J. Environ. Sci.
Technol. 2019, 16, 1159–1170. [CrossRef]

41. Ebrahimi, S.M.; Salahshour, E.; Malekzadeh, M.; Gordillo, F. Parameters identification of PV solar cells and modules using flexible
particle swarm optimization algorithm. Energy 2019, 179, 358–372. [CrossRef]

42. Nunes, H.; Pombo, J.; Mariano, S.; Calado, M.; De Souza, J.F. A new high performance method for determining the parameters of
PV cells and modules based on guaranteed convergence particle swarm optimization. Appl. Energy 2018, 211, 774–791. [CrossRef]

43. Ma, J.; Man, K.L.; Guan, S.U.; Ting, T.; Wong, P.W. Parameter estimation of photovoltaic model via parallel particle swarm
optimization algorithm. Int. J. Energy Res. 2016, 40, 343–352. [CrossRef]

44. Dizqah, A.M.; Maheri, A.; Busawon, K. An accurate method for the PV model identification based on a genetic algorithm and the
interior-point method. Renew. Energy 2014, 72, 212–222. [CrossRef]

45. Jiang, L.L.; Maskell, D.L.; Patra, J.C. Parameter estimation of solar cells and modules using an improved adaptive differential
evolution algorithm. Appl. Energy 2013, 112, 185–193. [CrossRef]

46. Askarzadeh, A.; Rezazadeh, A. Artificial bee swarm optimization algorithm for parameters identification of solar cell models.
Appl. Energy 2013, 102, 943–949. [CrossRef]

47. Wang, R.; Zhan, Y.; Zhou, H. Application of artificial bee colony in model parameter identification of solar cells. Energies 2015,
8, 7563–7581. [CrossRef]

48. Elazab, O.S.; Hasanien, H.M.; Elgendy, M.A.; Abdeen, A.M. Parameters estimation of single-and multiple-diode photovoltaic
model using whale optimisation algorithm. IET Renew. Power Gener. 2018, 12, 1755–1761. [CrossRef]

49. Wu, Z.; Yu, D.; Kang, X. Parameter identification of photovoltaic cell model based on improved ant lion optimizer. Energy
Convers. Manag. 2017, 151, 107–115. [CrossRef]

50. Niu, Q.; Zhang, L.; Li, K. A biogeography-based optimization algorithm with mutation strategies for model parameter estimation
of solar and fuel cells. Energy Convers. Manag. 2014, 86, 1173–1185. [CrossRef]

51. Kang, T.; Yao, J.; Jin, M.; Yang, S.; Duong, T. A novel improved cuckoo search algorithm for parameter estimation of photovoltaic
(PV) models. Energies 2018, 11, 1060. [CrossRef]

52. Askarzadeh, A.; dos Santos Coelho, L. Determination of photovoltaic modules parameters at different operating conditions using
a novel bird mating optimizer approach. Energy Convers. Manag. 2015, 89, 608–614. [CrossRef]

53. Ram, J.P.; Babu, T.S.; Dragicevic, T.; Rajasekar, N. A new hybrid bee pollinator flower pollination algorithm for solar PV parameter
estimation. Energy Convers. Manag. 2017, 135, 463–476. [CrossRef]

54. Nayak, B.; Mohapatra, A.; Mohanty, K.B. Parameter estimation of single diode PV module based on GWO algorithm. Renew.
Energy Focus 2019, 30, 1–12. [CrossRef]

55. Awadallah, M.A. Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data.
Energy Convers. Manag. 2016, 113, 312–320. [CrossRef]

56. Abbassi, R.; Abbassi, A.; Heidari, A.A.; Mirjalili, S. An efficient salp swarm-inspired algorithm for parameters identification of
photovoltaic cell models. Energy Convers. Manag. 2019, 179, 362–372. [CrossRef]

57. Gao, X.; Cui, Y.; Hu, J.; Xu, G.; Wang, Z.; Qu, J.; Wang, H. Parameter extraction of solar cell models using improved shuffled
complex evolution algorithm. Energy Convers. Manag. 2018, 157, 460–479. [CrossRef]

58. Chen, Y.; Chen, Z.; Wu, L.; Long, C.; Lin, P.; Cheng, S. Parameter extraction of PV models using an enhanced shuffled complex
evolution algorithm improved by opposition-based learning. Energy Procedia 2019, 158, 991–997. [CrossRef]

59. Said, M.; Shaheen, A.M.; Ginidi, A.R.; El-Sehiemy, R.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M. Estimating Parameters of
Photovoltaic Models Using Accurate Turbulent Flow of Water Optimizer. Processes 2021, 9, 627. [CrossRef]

60. Abdelminaam, D.S.; Said, M.; Houssein, E.H. Turbulent Flow of Water-Based Optimization Using New Objective Function for
Parameter Extraction of Six Photovoltaic Models. IEEE Access 2021, 9, 35382–35398. [CrossRef]

61. Yu, K.; Liang, J.; Qu, B.; Chen, X.; Wang, H. Parameters identification of photovoltaic models using an improved JAYA
optimization algorithm. Energy Convers. Manag. 2017, 150, 742–753. [CrossRef]

62. Yu, K.; Qu, B.; Yue, C.; Ge, S.; Chen, X.; Liang, J. A performance-guided JAYA algorithm for parameters identification of
photovoltaic cell and module. Appl. Energy 2019, 237, 241–257. [CrossRef]

63. Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis,
perspectives and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [CrossRef]

64. Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G. Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for
global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [CrossRef]

65. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.
Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

66. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
67. Braik, M.S. Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. Expert Syst. Appl.

2021, 174, 114685. [CrossRef]

http://dx.doi.org/10.1016/j.asoc.2015.01.050
http://dx.doi.org/10.1016/j.solener.2019.01.026
http://dx.doi.org/10.1007/s13762-018-1970-x
http://dx.doi.org/10.1016/j.energy.2019.04.218
http://dx.doi.org/10.1016/j.apenergy.2017.11.078
http://dx.doi.org/10.1002/er.3359
http://dx.doi.org/10.1016/j.renene.2014.07.014
http://dx.doi.org/10.1016/j.apenergy.2013.06.004
http://dx.doi.org/10.1016/j.apenergy.2012.09.052
http://dx.doi.org/10.3390/en8087563
http://dx.doi.org/10.1049/iet-rpg.2018.5317
http://dx.doi.org/10.1016/j.enconman.2017.08.088
http://dx.doi.org/10.1016/j.enconman.2014.06.026
http://dx.doi.org/10.3390/en11051060
http://dx.doi.org/10.1016/j.enconman.2014.10.025
http://dx.doi.org/10.1016/j.enconman.2016.12.082
http://dx.doi.org/10.1016/j.ref.2019.04.003
http://dx.doi.org/10.1016/j.enconman.2016.01.071
http://dx.doi.org/10.1016/j.enconman.2018.10.069
http://dx.doi.org/10.1016/j.enconman.2017.12.033
http://dx.doi.org/10.1016/j.egypro.2019.01.242
http://dx.doi.org/10.3390/pr9040627
http://dx.doi.org/10.1109/ACCESS.2021.3061529
http://dx.doi.org/10.1016/j.enconman.2017.08.063
http://dx.doi.org/10.1016/j.apenergy.2019.01.008
http://dx.doi.org/10.1016/j.eswa.2021.114864
http://dx.doi.org/10.1016/j.engappai.2020.103541
http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.eswa.2021.114685


Mathematics 2021, 9, 2313 22 of 22

68. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
69. Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H. RUN Beyond the Metaphor: An Efficient Optimization

Algorithm Based on Runge–Kutta Method. Expert Syst. Appl. 2021, 181, 115079. [CrossRef]

http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.eswa.2021.115079

	Introduction
	Mathematical Photovoltaic Models for Solar Cells
	Single Diode Solar Cell Model
	Double Diode Solar Cell Model
	Triple Diode Solar Cell Model

	Problem Definition
	The Runge–Kutta Optimizer
	Updating Solutions
	Enhanced Solution Quality

	Experimental Results
	Results of SDSCM
	Results of DDSCM
	Results of TDSCM
	SDSCM, DDSCM and TDSCM Statistical Analysis

	Conclusions and Future Work
	
	References

