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Abstract: In this study, the large deformation problem of a functionally-graded thin circular plate
subjected to transversely uniformly-distributed load and with different moduli in tension and
compression (bimodular property) is theoretically analyzed, in which the small-rotation-angle as-
sumption, commonly used in the classical Föppl–von Kármán equations of large deflection problems,
is abandoned. First, based on the mechanical model on the neutral layer, the bimodular functionally-
graded property of materials is modeled as two different exponential functions in the tensile and
compressive zones. Thus, the governing equations of the large deformation problem are established
and improved, in which the equation of equilibrium is derived without the common small-rotation-
angle assumption. Taking the central deflection as a perturbation parameter, the perturbation method
is used to solve the governing equations, thus the perturbation solutions of deflection and stress are
obtained under different boundary constraints and the regression of the solution is satisfied. Results
indicate that the perturbation solutions presented in this study have higher computational accuracy in
comparison with the existing perturbation solutions with small-rotation-angle assumption. Specially,
the computational accuracies of external load and yield stress are improved by 17.22% and 28.79% at
most, respectively, by the numerical examples. In addition, the small-rotation-angle assumption has
a great influence on the yield stress at the center of the bimodular functionally-graded circular plate.

Keywords: bimodular functionally graded materials; thin circular plate; large deformation; small-
rotation-angle assumption; perturbation method

1. Introduction

The elastic large deformation problem of flexible thin plates has been a focus of
attention for scholars all over the world. Because of its strong geometrical nonlinearity, it
is generally difficult to establish the effective governing equations used for the solution
to the problem. For a long time, the classical Föppl–von Kármán equation has been used
to describe the large deflection behavior of thin plates; however, the influence caused by
small-rotation-angle assumption commonly used in the derivation of the equation has
always been ignored. In some real applications, the deflection magnitude is moderate,
while the rotation angle of the plate may achieve a relatively large value, which makes
investigation into small-rotation-angle assumption inevitable.

In addition to the geometrical nonlinearity caused by the elastic large deformation
problem, the materials that constitute flexible plates also present some nonlinear problems
that cannot be solved by the original methods used for elastic, isotropic, and homogeneous
materials, for example, functionally graded material (FGM) with different properties in
tension and compression. Therefore, the nonlinearity of materials, in combination with the
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geometrical nonlinearity from the large deformation problem, brings about many topics of
interest for the engineering and academic professions. In this study, we will theoretically
analyze the elastic large deformation problem of a bimodular functionally-graded thin
circular plate, and further use perturbation methods to obtain an asymptotic solution.
For this purpose, the review for existing works will begin with the bimodular problem,
followed by the functionally-graded material problems, the bimodular functionally-graded
material problems, and last, the large deformation problem, giving up the small-rotation-
angle assumption as well as the corresponding solving method.

The bimodular problem seems not to be well-known but, in reality, has a long history.
Many works have indicated that most materials, including graphite, plastics, steel concrete,
ceramics, powder metallurgy materials, polymeric materials, and some composites exhibit
different tensile and compressive strains when they bear the same stress applied in tension
or compression [1,2]. Therefore, these materials exhibit different moduli of elasticity in
tension and compression, and they are known as bimodular materials [3,4]. Basically, there
are two models used in the academic analysis in the field of engineering. Bert [5] proposed
the model based on the criterion of positive-negative signs in the longitudinal strain of
fibers, which is mainly applicable to orthotropic materials and, as a result, a large amount
of related works concerning laminated composites have emerged [6–10]. Bruno et al. [6]
investigated bimodular composite plates under compression. Using the higher-order finite
strip method, Tseng and Lee [7] analyzed the bending of bimodular laminates. Zinno and
Greco [8] investigated the damage evolution in bimodular laminated composite under
cyclic loading. Using higher-order shear deformation theory, Ganapathi et al. [9] analyzed
the static problem of bimodular laminated composite plates subjected to mechanical loads.
Khan and Patel [10] investigated the nonlinear periodic response of bimodular laminated
composite annular sector plates. Another model that is established on the criterion of
positive-negative signs of principal stress was proposed by Ambartsumyan [11], and this
model is mainly used for isotropic materials. In structural engineering, the stress state along
certain principal directions is a key issue during the stress analysis for some structural
elements such as beams and plates, because it is this factor that determines whether the
point is tensile or compressive. Due to the fact that this bimodular theory founds its
constitutive model on principal directions, generally, the principal stress is finally obtained
as a result but not as a known condition in advance, which incurs inevitable difficulties
from the description of the stress state of a point. At the same time, this model also lacks the
ability to describe the experimental data of elastic constants in the complex states of stress.
There are a few analytical solutions that concern beams and plates only [12–16]. Yao and
Ye [12] derived the analytical solution of a bending bimodular beam subject to lateral force.
Applying the equivalent section method, He et al. [13] solved the same problem. Zhao
and Ye [14] obtained the analytical elasticity solution of bimodular beams under combined
loads. Thereafter, He et al. [15] derived an analytical solution of bending thin plates with
bimodular effect, and then He et al. [16] derived the general perturbation solution of a
large-deflection circular plate with bimodular effect under various edge conditions. For
some complex problems, researchers had to resort to the finite element method (FEM),
based on an iterative technique [17–22]. Zhang and Wang [17] first proposed the FEM of the
elasticity problem with different moduli in tension and compression. Ye et al. [18] reviewed
the progresses in elasticity theory with bimodular effect and related FEM. Thereafter,
Sun et al. [19] reviewed the mechanical problems with bimodular effect and pointed
out that, due to the inherent complexity of the constitutive relation, an FEM based on
iterative strategy was required. Gao et al. [20] investigated the temperature stress of a
bimodular beam placed on a Winkler foundation, and Ma et al. [21] studied the nonlinear
large deflection buckling of compression rod with different moduli. In their numerical
simulations, the FEM iterative procedure was used. To overcome convergence difficulties
and other disadvantages of traditional iterative methods, Du et al. [22] established an
efficient computational framework for the solution of boundary value problems involving
bimodular materials.
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In recent decades, the issues related to FGM have become an important research topic
in many engineering and technical fields, such as aerospace [23], civil engineering [24],
acoustics [25], and micro-electro-mechanical systems [26]. FGMs are new types of compos-
ite material, which are composed of two or more materials, such as alloy and ceramic, and
the composition of these two (or more) materials presents continuous gradient changes [27].
There are many works on structural elements made of FGM, most of them dealing with
beams and plates, for example, Nguyen et al. [28]. Among the studies, few studies consider
the bimodular property of FGM. As indicated above, most materials will present bimodular
properties, which can be obvious or not; thus, FGM seems to be no exception.

More recently, the bimodular property of materials has been gradually introduced into
the analysis field of FGM and structures. There are also a few works concerning bimodular
FGM beam and plate problems [29–31]. Focusing on bimodular FGM plates, He et al. [30]
established the simplified theory based on a neutral layer under small-deflection; thereafter,
He et al. [31] derived the governing equations of the large-deflection problem of bimodular
FGM thin circular plate. However, consideration of geometrical nonlinearity seems to be
insufficient. As indicated above, for the large deformation problem of thin plates, not only
the deflection of the plate but also the rotation angle presents a relatively large value, and
the two factors cannot be ignored.

The definition of the small-rotation-angle assumption means the rotation, β, of the
deformed thin plate is so small that it satisfies the approximate relationship sinβ ≈ tanβ.
In fact, because sinβ is equal to 1/[1 + 1/tan2β]1/2 and is not equal to tanβ, no matter
how small the rotation is, the small-rotation-angle assumption would inevitably bring an
error to the solution of the large-deflection problem of thin plates. Moreover, with the
increase of the transversely uniformly-distributed load applied on the surface of the plate,
the rotation of the thin plate will increase, and the error caused by the small-rotation-angle
assumption increase accordingly. Therefore, in order to eliminate the influence of the
small-rotation-angle assumption on the computational accuracy of the solution of the large
deformation problem, we need to re-examine this mechanical problem by using the basic
relationship between sinβ and tanβ to replace the original approximate relationship. That
is to say, we will solve a large deformation problem based on large-deflection and give up
the small-rotation-angle assumption.

As for the solving method, the classical perturbation technique will be followed to
solve the established governing equations. Generally speaking, there are two advantages
for this technique: one advantage is that we can easily obtain the relationship of load vs.
central deflection if the central deflection is selected as a perturbation parameter; another
may be from the asymptotic characteristics that the perturbation method itself has. In
the past, there have been many successful examples of the application of perturbation in
the solving of flexible thin plate. Groundbreaking works may be found in Vincent [32]
and Chien [33], in which Vincent adopted the load, whereas Chien adopted the central
deflection as a perturbation parameter to successfully solve the large-deflection problem
of thin plates. Subsequent researchers focused mainly on the choice of perturbation
parameters, for example, a generalized displacement [34], a linear function of Poisson’s
ratio [35], and an average angular deflection [36]. Chen and Kuang [37] discussed the
differences among the possible perturbation parameters.

On the other hand, the magnitude of the perturbation parameter is an important
issue that we must face during the perturbation. According to the classical works by
Nayfeh [38], perturbation parameters are small parameters; however, this small parameter
does not mean the central deflection is also small. Generally speaking, in light of the
magnitude of the ratio of the central deflection to plate thickness, if the ratio is less than
1/5, the behavior of the plate may be regarded as rigid, in which the bending effect is
dominant and the small-deflection theory is appropriate. If the ratio is greater than 5, the
behavior of the plate may be regarded as an absolute flexible plate, or membrane, and the
corresponding membrane theory in which the tensile effect is dominant should be adopted
in this case. If the ratio falls into the range of 1/5 to 5, the behavior of the plate may be
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analyzed by the large-deflection theory, which was founded by Föppl–von Kármán. In
our study, the ratio is limited in the range of 1/5 to 4, which obviously belongs to the
large-deflection problems, although the parameter used for the perturbation attributes to a
small parameter. In our next perturbation, the perturbation parameter does not have to
be far less than 1, and in some cases it may be far greater than 1. This fact may also be
found in many previous studies, including Chien’s pioneer work [39] and, later, Shen’s
review [40], in which the perturbation parameter may be greater than 1 and reaches 4–5 in
the post-buckling problems of plates.

Besides the choice and magnitude of perturbation parameters mentioned above, there
have been many studies concerning the number and physical meaning of the parameter
selected. Given that the application of this method does not belong to our study emphasis,
we do not review them in detail.

In this study, the perturbation method is used to solve the large deformation problem
of a bimodular FGM thin circular plate, with the emphasis on the influence of a small-
rotation-angle assumption on the final results. This paper is arranged as follows. In
Section 2, the governing equation of the studied problem is established, in which the
equation of equilibrium is derived without small-rotation-angle assumption. In Section 3,
taking the central deflection as a perturbation parameter, the perturbation solutions of stress
and deflection are obtained, and the yield stress under large deformation is also analyzed.
In Section 4, the influences of the small-rotation-angle assumption on the relationship of
loads vs. central deflection and on the yield stress are discussed in detail. Section 5 is the
concluding remarks.

2. Governing Equations and Boundary Conditions
2.1. Establishment of Governing Equations

A bimodular FGM thin circular plate with thickness t and radius a is subjected to
a transversely uniformly-distributed load, q, as shown in Figure 1, where the dot-dash
line at the peripheral of the plate represents the location of the unknown neutral layer
of the plate; this location will be determined later. The polar coordinates plane (r, φ) of
the cylindrical coordinates system (r, φ, z) is established on the plane where the neutral
layer is located; r, φ, and z represent the radial, circumferential, and transverse coordinates,
respectively. Due to the axisymmetric characteristics, φ is not presented in Figure 1; t1
and t2 represent the height of the tensile and compressive zones, respectively, and the
corresponding modulus in the two zones is the tensile modulus, E+(z), and compressive
modulus, E−(z), respectively, as shown in Figure 1. In addition, the special constraint on
the plate is not provided initially, as we will solve the problem under multiple constraints.

Figure 1. The bimodular FGM thin circular plate under transversely uniformly-distributed load.

For the obtainment of an explicit solution of the problem, we need to define the
mathematical form of the bimodular FGM model first. Considering the convenience of
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differential and integral operations, we model E+(z) and E−(z) as the following exponent
type functions [30,31]

E+(z) = E0eα1z/t, E−(z) = E0eα2z/t, (1)

where α1 and α2 are the two graded indices in tensile and compressive zones, and E0
denotes the Young’s modulus of elasticity on the neutral layer. From Equation (1), it is easy
to see that E+(z) = E−(z) = E0 when α1 = α2 = 0 or z = 0. The bimodular property of FGM
is thus simulated mathematically. At the same time, because the influence of Poisson’s
ratio on the deformation and stress is much less than that of Young’s modulus of elasticity,
Poisson ratios may be assumed as two constants, υ+ and υ−, neglecting the change along
the z direction.

Let us take a differential element, ABCD, from the deformed circular plate to study the
static equilibrium problem of this element, as shown in Figure 2, where surfaces AD and
BC are located along the radial direction, while surfaces AB and DC are located along the
circumferential direction. In Figure 2, Nr and Nθ are the radial and circumferential forces,
respectively, Mr and Mθ are the radial and circumferential bending moments, respectively,
Qr is the transverse shear force acting on surfaces AB and DC, dθ denotes the angle between
the radial surfaces AD and BC, and β denotes the rotation of the radial force. Note that,
due to axisymmetric characteristics, there is no increment from surface AD to surface BC,
while the increment will take place from surface AB to surface DC due to the change of r.

Figure 2. The equilibrium of internal forces of differential element ABCD.

The usually so-called in-plane equilibrium equation is [41]

d
dr

(rNr)− Nθ = 0, (2)

where the body force of the plate is neglected. The equation of equilibrium along the
vertical direction perpendicular to the polar coordinates plane can be written as(

Nr +
dNr
dr dr

)
(r + dr)dθ

(
sin β + d sin β

dr dr
)
− Nrrdθ sin β

+
(

Qr +
dQr
dr dr

)
(r + dr)dθ −Qrrdθ −

q
[
(r+dr)2dθ−r2dθ

]
2 = 0

(3)

where the body force of the plate is also neglected. After ignoring the third order and
fourth order differential items of Equation (3), we have

r dNr
dr drdθ sin β + Nrdrdθ sin β + rNrdθ

d sin β
dr dr

+r dQr
dr drdθ + Qrdrdθ − qrdrdθ = 0.

(4)

Dividing Equation (4) by drdθ yields

d
dr

(rNr sin β) +
d
dr

(rQr)− qr = 0, (5)
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where

sin β = 1/
√

1 + 1/ tan2 β = −dw
dr

[
1 +

(
−dw

dr

)2
]−1/2

. (6)

The basic relationship of trigonometric functions is adopted in Equation (6) to replace
the original small-rotation-angle assumption that the rotation, β, of the deformed thin plate
is so small that sinβ ≈ tanβ holds true.

At the same time, the equation of equilibrium of the moment of the differential element
ABCD can be expressed as(

Mr +
dMr

dr
dr
)
(r + dr)dθ −Mrrdθ − 2Mθdr sin

dθ

2
+

(
Qr +

dQr

dr
dr
)
(r + dr)dθdr = 0. (7)

After ignoring the third order and fourth order differential items and dividing by
drdθ, Equation (7) can be simplified as

d
dr

(rMr)−Mθ + rQr = 0. (8)

Substituting rQr in Equation (8) into Equation (5) yields

d
dr

−rNr
dw
dr

[
1 +

(
−dw

dr

)2
]−1/2

− d2

dr2 (rMr) +
dMθ

dr
− qr = 0. (9)

Suppose that the displacements of the neutral layer along the r and z directions are u
and w, respectively, and the radii of the radial and circumferential curvatures of the neutral
layer are ρr and ρθ , respectively. The strain components of any point at the z axis in the
plate come from two different aspects, one is the tensile strain on the neutral layer and
another from the bending strain; that is [31]

ε = ε0 + zε1, (10)

where
ε = {εr, εθ}T , ε0 = {εr0, εθ0}T , ε1 = {εr1, εθ1}T , (11)

ε0 =

{
du
dr

+
1
2

(
dw
dr

)2
,

u
r

}T

, ε1 =

{
1
ρr

,
1
ρθ

}T
. (12)

We note that, in the small-deflection theory as well as the common large-deflection
theory of plate, the approximate expressions of the radial curvature and circumferential
curvatures is 1/ρr = −d2w/dr2 and 1/ρθ = −(dw/dr)/r, respectively. They are now
replaced with the following exact expressions [33]:

1
ρr

= −d2w
dr2

[
1 +

(
−dw

dr

)2
]−3/2

1
ρθ

= 1
r sin β = − 1

r
dw
dr

[
1 +

(
−dw

dr

)2
]−1/2 . (13)

Suppose that the radial and circumferential stresses in the tensile and compressive
zones is σ+/−

r and σ+/−
θ , respectively. The strain-stress relations give [30]

σ+/−
r = E+/−(z)

1−(ν+/−)2 (εr + νεθ)

σ+/−
θ = E+/−(z)

1−(ν+/−)2 (εθ + νεr)
. (14)
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Substituting Equations (10)–(12) into Equation (14), it is found that
σ+/−

r = E+/−(z)
1−(ν+/−)2

[
du
dr + 1

2

(
dw
dr

)2
+ ν+/− u

r + z
(

1
ρr
+ ν+/− 1

ρθ

)]
σ+/−

θ = E+/−(z)
1−(ν+/−)2

[
u
r + ν+/− du

dr + ν+/−
2

(
dw
dr

)2
+ z
(

1
ρθ

+ ν+/− 1
ρr

)] . (15)

The radial and circumferential bending moments, Mr and Mθ , may be expressed, in
terms of the radial stress and circumferential stress [31], as{

Mr =
∫ t1

0 σ+
r zdz +

∫ 0
−t2

σ−r zdz

Mθ =
∫ t1

0 σ+
θ zdz +

∫ 0
−t2

σ−θ zdz
. (16)

Substituting Equation (15) into Equation (16) yields

Mr = A+
1

[
du
dr + 1

2

(
dw
dr

)2
+ ν+ u

r

]
+ A+

2

(
1
ρr
+ ν+

ρθ

)
+A−1

[
du
dr + 1

2

(
dw
dr

)2
+ ν− u

r

]
+ A−2

(
1
ρr
+ ν−

ρθ

)
Mθ = A+

1

[
u
r + ν+ du

dr + ν+ 1
2

(
dw
dr

)2
]
+ A+

2

(
1
ρθ

+ ν+ 1
ρr

)
+A−1

[
u
r + ν+ du

dr + ν− 1
2

(
dw
dr

)2
]
+ A−2

(
1
ρθ

+ ν− 1
ρr

)
, (17)

where

A+
1 =

∫ t1
0 zE0eα1z/tdz

1−(ν+)2 = 1
1−(ν+)2

[
E0t2

α2
1
+

(
t1t
α1
− t2

α2
1

)
E0eα1t1/t

]
A−1 =

∫ 0
−t2

zE0eα2z/tdz

1−(ν−)2 = 1
1−(ν−)2

[
− E0t2

α2
2
+

(
t2t
α2

+ t2

α2
2

)
E0e−α2t2/t

]
A+

2 =
∫ t1

0 z2E0eα1z/tdz
1−(ν+)2 = 1

1−(ν+)2

[(
2t3

α3
1
+

t2
1t

α1
− 2t2t1

α2
1

)
E0eα1t1/t − 2E0t3

α3
1

]
A−2 =

∫ 0
−t2

z2E0eα2z/tdz

1−(ν−)2 = 1
1−(ν−)2

[
−
(

2t3

α3
2
+

t2
2t

α2
+ 2t2t2

α2
2

)
E0e−α2t2/t + 2E0t3

α3
2

]
. (18)

The integral of the items containing z in Equation (18) should be determined as zero,
i.e., A+

1 + A−1 = 0, because it is exactly the condition used for determining the position
of the unknown neutral layer in [31]. Thus, the expressions of Mr and Mθ can be further
rewritten as  Mr = A+

2

(
1
ρr
+ ν+

ρθ

)
+ A−2

(
1
ρr
+ ν−

ρθ

)
Mθ = A+

2

(
1
ρθ

+ ν+

ρr

)
+ A−2

(
1
ρθ

+ ν−
ρr

) . (19)

Substituting Equation (19) into Equation (9), we may obtain the governing equation of
the bimodular FGM thin circular plates without small-rotation-angle assumption, as follows

D∗ d2

dr2

{
r d2w

dr2

[
1 +

(
−dw

dr

)2
]−3/2

+ν+/− dw
dr

[
1 +

(
−dw

dr

)2
]−1/2

}

−D∗ d
dr

{
1
r

dw
dr

[
1 +

(
−dw

dr

)2
]−1/2

+ν+/− d2w
dr2

[
1 +

(
−dw

dr

)2
]−3/2

}

+ d
dr

{
−rNr

dw
dr

[
1 +

(
−dw

dr

)2
]−1/2

}
− qr = 0

(20)

where D* = A+
2 + A−2 . To differentiate Equation (20) from the common Föppl–von Kármán

equation, we name it the improved Föppl–von Kármán equation without small-rotation-
angle assumption.
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The radial force, Nr, and circumferential force, Nθ , are the sum of integrals in the
tensile zone and the compressive zone, such that [31]{

Nr =
∫ t1

0 σ+
r dz +

∫ 0
−t2

σ−r dz

Nθ =
∫ t1

0 σ+
θ dz +

∫ 0
−t2

σ−θ dz
. (21)

After substituting Equation (15) into Equation (21), Nr and Nθ are rewritten as
Nr = A3

[
du
dr + 1

2

(
dw
dr

)2
+ ν+ u

r

]
Nθ = A3

[
u
r + ν+ du

dr + ν+ 1
2

(
dw
dr

)2
] , (22)

where

A3 =

∫ t1
−t2

E+(z)dz

1− (ν+)2 =

∫ t1
−t2

E0eα1z/tdz

1− (ν+)2 =
1

1− (ν+)2
E0t
α1

(
eα1 − 1
eα1t2/t

)
. (23)

It should be mentioned that, in the large-deflection problem of plate, any point of
the plate is stretched along the radial and circumferential directions, so all integrals along
the thickness direction should be performed only on the tensile components. Besides,
the integrals of the items containing z are also equal to zero in Equation (21). From
Equations (2) and (22), we have

u
r
=

1
A3

(Nθ − ν+Nr) =
1

A3

[
d
dr

(rNr)− ν+Nr

]
. (24)

Substituting u in Equation (24) into the first formula of Equation (22), we have

r
d
dr

[
1
r

d
dr

(
r2Nr

)]
+

A3

2

(
dw
dr

)2
= 0. (25)

Equation (25) is the compatible equation of the large deformation problem of the bi-
modular FGM thin circular plate. Lastly, the improved equilibrium relation (Equation (20)),
in combination with the compatible relation (Equation (25)), constitute the governing
equations of the problem.

2.2. Verification of Regression and Simplification of Equations

Next, we will verify that Equation (20) can be regressed to the classical Föppl–von
Kármán equation. If the mechanical properties of different modulus and FGM effect are not
taken into account, the bending stiffness of the bimodular FGM thin plate D* is regressed
to the bending stiffness of the isotropic plate D. The limit of D* when α1, α2→0 is

lim
α1,α2→0

D∗ = lim
α1,α2→0

E0
1−(ν+)2

[(
2t3

α3
1
+

t2
1t

α1
− 2t2t1

α2
1

)
eα1t1/t − 2t3

α3
1

]
+ E0

1−(ν−)2

[
−
(

2t3

α3
2
+

t2
2t

α2
+ 2t2t2

α2
2

)
e−α2t2/t + 2t3

α3
2

]
=

E0t3
1

3
[
1−(ν+)2

] + E0t3
2

3
[
1−(ν−)2

] .
(26)

Because t1 = t2 = t/2 when α1 = α2 = 0 and υ+ = υ− = υ, the bending stiffness of
isotropic and homogeneous plate can be obtained

D = lim
α1, α2 → 0
ν+ = ν− = ν

D∗ =
E0t3

12(1− ν2)
. (27)
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Besides, when the term 1 + (−dw/dr)2 in Equation (20) is approximately equal to 1,
Equation (20) may be further simplified as

D

(
d4w
dr4 +

2
r

d3w
dr3 −

1
r2

d2w
dr2 +

1
r3

dw
dr

)
= q +

1
r

Nr
dw
dr

+ Nr
d2w
dr2 +

dNr

dr
dw
dr

, (28)

which is the classical Föppl–von Kármán equation in the case of large-deflection. The satis-
faction of regression indicates that the improved governing equation in large deformation
may regress to the classical Föppl–von Kármán equation in large-deflection.

Note that there are many nonlinear items concerning 1 + (−dw/dr)2 in Equation (20),
which further makes its solving complicated; therefore, moderate simplification is necessary.
For this purpose, the denominator terms in Equation (20) are expanded in the form of the
power series with respect to (−dw/dr)2, such that[

1 +
(
−dw

dr

)2
]−3/2

= 1− 3
2

(
−dw

dr

)2
+

15
8

(
−dw

dr

)4
− 35

16

(
−dw

dr

)6
+ . . . (29)

and [
1 +

(
−dw

dr

)2
]−1/2

= 1− 1
2

(
−dw

dr

)2
+

3
8

(
−dw

dr

)4
− 5

16

(
−dw

dr

)6
+ . . . . (30)

Substituting the first and second terms of Equations (29) and (30) into Equation (20),
we have

D∗ d2

dr2

{
r d2w

dr2

[
1− 3

2

(
−dw

dr

)2
]
+ν+/− dw

dr

[
1− 1

2

(
−dw

dr

)2
]}

−D∗ d
dr

{
1
r

dw
dr

[
1− 1

2

(
−dw

dr

)2
]
+ν+/− d2w

dr2

[
1− 3

2

(
−dw

dr

)2
]}

+ d
dr

{
−rNr

dw
dr

[
1− 1

2

(
−dw

dr

)2
]}
− qr = 0.

(31)

Integrating Equation (31) yields

D∗ d
dr

{
r d2w

dr2

[
1− 3

2

(
−dw

dr

)2
]
+ν+/− dw

dr

[
1− 1

2

(
−dw

dr

)2
]}

−D∗
{

1
r

dw
dr

[
1− 1

2

(
−dw

dr

)2
]
+ν+/− d2w

dr2

[
1− 3

2

(
−dw

dr

)2
]}

= 1
2 qr2 + rNr

dw
dr

[
1− 1

2

(
−dw

dr

)2
]
+ C.

(32)

It can be seen that C = 0 according to the boundary conditions dw/dr = 0 and Nr 6= 0
at r = 0. The items containing υ+/− are then all offset by calculating the first derivation in
Equation (32), and the simplified equilibrium equation is now

D∗
{

r d3w
dr3 + d2w

dr2 − 1
r

dw
dr − 3r

(
d2w
dr2

)2 dw
dr −

3
2 r d3w

dr3

(
dw
dr

)2
− 3

2
d2w
dr2

(
dw
dr

)2
+ 1

2r

(
dw
dr

)3
}

= 1
2 qr2 + rNr

dw
dr −

1
2 rNr

(
dw
dr

)3
.

(33)

While, at the same time, the counterpart in the classical Föppl–von Kármán equation
is [33]

D

(
r

d3w
dr3 +

d2w
dr2 −

1
r

dw
dr

)
− rNr

dw
dr

=
1
2

qr2. (34)
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2.3. Boundary Conditions

The following four edge constraints are considered, as shown in Figure 3, that is, for
Edge (1), rigidly clamped, we have

w = 0,
dw
dr

= 0, u = 0atr = a, (35a)

for Edge (2), movably clamped

w = 0,
dw
dr

= 0, Nr = 0atr = a, (35b)

for Edge (3), simply hinged

w = 0, Mr = 0, u = 0atr = a, (35c)

and for Edge (4), simply supported

w = 0, Mr = 0, Nr = 0atr = a. (35d)

Figure 3. The scheme of four boundary conditions.

From Equation (24), the radial displacement, u, of the middle plane can be expressed
in terms of the radial force Nr, i.e.,

r
dNr

dr
+ (1− ν+)Nr = 0. (36)

For the radial bending moment, Mr, in Equation (19), we introduce 1 + (−dw/dr)2 ≈ 1
into the expression of Mr, thus expressing the Mr = 0 only in terms of the deflection w, i.e.,

A+
2

(
d2w
dr2 +

ν+

r
dw
dr

)
+ A−2

(
d2w
dr2 +

ν−

r
dw
dr

)
= 0. (37)

3. Application of Perturbation Method
3.1. Perturbation Solution

The following dimensionless quantities are introduced

P =
qa4

E0t4 , η = 1− r2

a2 , W =
w
t

, T =
t
a

, S =
Nra2

E0t3 (38)

and

K =
D∗

E0t3 =
K+ + K−

E0t3 =
A+

2 + A−2
E0t3 , V =

[1− (ν+)
2
]A3

E0t
. (39)
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Thus, Equations (25) and (33) are transformed into

d2

dη2 [(1− η)S] +
V
2

(
dW
dη

)2
= 0 (40)

and

d2

dη2

[
(1− η)

dW
dη
− 2T2(1− η)2

(
dW
dη

)3
]
= − P

16K
+

S
4K

dW
dη
− T2S

2K

(
dW
dη

)3
. (41)

By means of Equations (22), (37)–(39), the boundary condition Equation (35c) may be
transformed into

W = 0, λ1
d2W
dη2 −

dW
dη

= 0, λ2
dS
dη
− S = 0atη = 0, (42)

where λ1 and λ2 are two parameters introduced, and they are [16]

λ1 =
2K

K+(1 + ν+) + K−(1 + ν−)
, λ2 =

2
1− ν+

. (43)

It is easy to see that the other three boundary conditions (35a,b,d) may be described
as, with λ1 and λ2, for rigidly clamped, λ1 = 0; for movably clamped, λ1 = λ2 = 0; and for
simply supported, λ2 = 0. Thus, all that is needed is to solve Equations (40) and (41) under
the general conditions (Equation (42)).

In addition, the axisymmetric conditions used for solving gives

dW
dη

= 0( 6= ∞)andS 6= ∞, atη = 0. (44)

The dimensionless deflection at the center is chosen as the perturbation parameter [33]

Wm = (W)η=1 =
(w

t

)
r=0

=
w0

t
, (45)

where w0 is the central deflection of the circular plate, i.e., the maximum deflection. The
dimensionless quantities of P, S, and W are represented by the perturbation parameter

P = P(Wm), W = W(Wm, η), S = S(Wm, η). (46)

Thus, P, S, and W are expressed in the form of the power series of Wm

P
16

= p1Wm + p2W2
m + p3W3

m + p4W4
m + p5W5

m + . . . , (47)

W = ω1(η)Wm + ω2(η)W2
m + ω3(η)W3

m + ω4(η)W4
m + ω5(η)W5

m + . . . , (48)

S = s1(η)Wm + s2(η)W2
m + s3(η)W3

m + s4(η)W4
m + s5(η)W5

m + . . . . (49)

where pi (i = 1,2,3 . . . ) are undetermined constants, and ωi(η) and si(η) (i = 1,2,3 . . . ) are
undetermined functions with respect to η. The introduction of 1/16 into the expansion of P
can make the numerical calculation easier.

Step 1: p1, ω1(η) and s1(η)

The differential equation used for the solution of s1(η) can be obtained from the
coefficient of Wm in Equation (40)

d2

dη2 [(1− η)s1] = 0, (50)
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which should satisfy the boundary conditions as{
λ2

ds1
dη − s1 = 0atη = 0

s1 6= ∞atη = 1
. (51)

The solution of Equation (50) under the boundary conditions of Equation (51) is
s1(η) = 0. In the same way, the differential equation used for the solution of ω1(η) and p1
can be obtained from the coefficient of Wm in Equation (41)

d2

dη2

[
(1− η)

dω1

dη

]
= − p1

K
. (52)

The boundary conditions are ω1 = 0, λ1
d2ω1
dη2 − dω1

dη = 0atη = 0

ω1 = 1, dω1
dη 6= ∞atη = 1

. (53)

Thus, p1 = 4K/(2λ1 + 1) and ω1(η) = (η2 + 2λ1η)/(2λ1 + 1) may be obtained. It is found
that ω1(η) and p1 is exactly the solution in the case of small-deflection.

Step 2: p2, ω2(η) and s2(η)

The differential equation used for the solution of s2(η) can be obtained from the
coefficient of W2

m in Equation (40), that is

d2

dη2 [(1− η)s2] +
V
2

(
dω1

dη

)2
= 0, (54)

which should satisfy the boundary conditions as{
λ2

ds2
dη − s2 = 0atη = 0

s2 6= ∞atη = 1
. (55)

Using ω1(η), obtained in the previous step, the solution of Equation (54) under the
boundary conditions of Equation (55) is

s2(η) =
V

6(1 + 2λ1)
2

[
η3 + (1 + 4λ1)η

2 +
(

1 + 4λ1 + 6λ2
1

)
η +

(
λ2 + 4λ1λ2 + 6λ2

1λ2

)]
. (56)

The differential equation used for the solutions of ω2(η) and p2 from the coefficient of
W2

m is {
λ2

ds2
dη − s2 = 0atη = 0

s2 6= ∞atη = 1
. (57)

The boundary conditions are ω2 = 0, λ1
d2ω2
dη2 − dω2

dη = 0atη = 0

ω2 = 0, dω2
dη 6= ∞atη = 1

. (58)

The results ω2(η) = 0 and p2 = 0 are easily obtained.

Step 3: p3, ω3(η) and s3(η)

The differential equation used for the solution of s3(η) can be obtained from the
coefficient of W3

m in Equation (40), that is

d2

dη2 [(1− η)s3] + V
dω1

dη

dω2

dη
= 0, (59)
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which should satisfy the boundary conditions as{
λ2

ds3
dη − s3 = 0atη = 0

s3 6= ∞atη = 1
. (60)

The result s3(η) = 0 is easily obtained. The differential equation used for the solution
of ω3(η) and p3 from the coefficient of W3

m is

d2

dη2

[
(1− η)

dω3

dη
− 2T2(1− η)2

(
dω1

dη

)3
]
=

s1

4K
dω2

dη
+

s2

4K
dω1

dη
− p3

K
. (61)

The boundary conditions are ω3 = 0, λ1
d2ω3
dη2 − dω3

dη = 0atη = 0

ω3 = 0, dω3
dη 6= ∞atη = 1

. (62)

Using the ω1(η) and s2(η) obtained in the previous steps, the solutions of Equation (61)
under the boundary conditions of Equation (62) are

p3 =
1

1080(2λ1 + 1)4

 V
(

1080λ1
4λ2 + 360λ1

4 + 1620λ1
3λ2 + 840λ1

3 + 1080λ1
2λ2

+825λ1
2 + 350λ1λ2 + 388λ1 + 50λ2 + 73

)
+KT2(69120λ1

4 − 172800λ1
3 − 34560λ1

2 − 17280λ1 − 3456
)

, (63)

ω3(η) =
1

4320K(2λ1 + 1)4



V



−(4λ1 + 2)η6 −
(

36λ1
2 + 30λ1 + 6

)
η5

−
(

150λ1
3 + 195λ1

2 + 90λ1 + 15
)

η4

−
(

240λ1
4 + 240λ1

3λ2 + 480λ1
3 + 280λ1

2λ2 + 380λ1
2

+120λ1λ2 + 140λ1 + 20λ2 + 20

)
η3

+

(
120λ1

3 + 120λ1
2λ2 + 255λ1

2 + 80λ1λ2 + 178λ1
+20λ2 + 43

)
η2

+

(
240λ1

4 + 240λ1
3λ2 + 510λ1

3 + 160λ1
2λ2 + 356λ1

2

+40λ2λ1 + 86λ1

)
η



+KT2



−(27648λ1 + 13824)η5

−
(

103680λ1
2 + 17280λ1 − 17280

)
η4

−
(

138240λ1
3 − 69120λ1

2 − 69120λ1

)
η3

+
(

69120λ1
2 − 17280λ1 − 3456

)
η2

+
(

138240λ1
3 − 34560λ1

2 − 6912λ1

)
η





. (64)

Step 4: p3, ω3(η) and s3(η)

The differential equation used for the solution of s4(η) from the coefficient of W4
m is

d2

dη
[(1− η)s4] +

V
2

(
dω2

dη

)2
+ V

dω1

dη

dω3

dη
= 0, (65)

which should satisfy the boundary conditions as{
λ2

ds4
dη − s4 = 0atη = 0

s4 6= ∞atη = 1
. (66)

Using the ω1(η) and ω3(η) obtained in the previous steps, the solution of Equation (65)
under the boundary conditions of Equation (66) is
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s4(η) =
V

90720K(2λ1 + 1)5



V



−(18λ1 + 9)η7

−
(

204λ1
2 + 180λ1 + 39

)
η6

−
(

1092λ1
3 + 1506λ1

2 + 726λ1 + 123
)

η5

−
(

2772λ1
4 + 1512λ1

3λ2 + 5754λ1
3 + 1764λ1

2λ2
+4656λ1

2 + 756λ1λ2 + 1734λ1 + 126λ2 + 249

)
η4

−

 2520λ1
5 + 2520λ1

4λ2 + 7812λ1
4 + 4452λ1

3λ2
+8904λ1

3 + 2184λ1
2λ2 + 4341λ1

2 + 406λ1λ2
+698λ1 − 14λ2 − 52

η3

−

 2520λ1
5 + 2520λ1

4λ2 + 4452λ1
4 + 1092λ1

3λ2
+1764λ1

3 − 56λ1
2λ2 − 643λ1

2 − 154λ1λ2
−506λ1 − 14λ2 − 52

η2

+

 2520λ1
5 + 2520λ1

4λ2 + 6258λ1
4 + 2268λ1

3λ2
+5712λ1

3 + 896λ1
2λ2 + 2449λ1

2 + 154λ1λ2
+506λ1 + 14λ2 + 52

η

+2520λ1
5λ2 + 2520λ1

4λ2
2 + 6258λ1

4λ2 + 2268λ1
3λ2

2

+5712λ1
3λ2 + 896λ1

2λ2
2 + 2449λ1

2λ2 + 154λ1λ2
2

+506λ1λ2 + 14λ2
2 + 52λ2



+K



−(138240λ1 + 69120)η6

−
(

774144λ1
2 +331776λ1 − 27648)η5

−
(

870912λ1
3 + 919296λ1

2 +186624λ1 − 27648)η4

−
(

870912λ1
3 + 435456λ1

2 + 307584λ1 − 3456
)

η3

+
(

1064448λ1
3 − 919296λ1

2 − 404352λ1 + 3456
)

η2

+

(
2903040λ1

4 + 338688λ1
3 − 1064448λ1

2

−404352λ1 + 3456

)
η

+2903040λ1
4λ2 + 338688λ1

3λ2 − 1064448λ1
2λ2

−404352λ1λ2 + 3456λ2





. (67)

The differential equation used for the solutions of ω4(η) and p4 from the coefficient of
W4

m is
d2

dη

[
(1− η)dω3

dη − 6T2(1− η)2
(

dω1
dη

)2 dω2
dη

]
= s1

4K
dω3
dη + s2

4K
dω2
dη + s3

4K
dω1
dη −

T2s1
2K

(
dω1
dη

)3
− p4

K .
(68)

The boundary conditions are ω4 = 0, λ1
d2ω4
dη2 − dω4

dη = 0atη = 0

ω4 = 0, dω4
dη 6= ∞atη = 1

. (69)

The results ω4(η) = 0 and p4 = 0 are easily obtained.
Thus, the unknown constants p1 and p3 and functions ω1(η), ω3(η), s2(η), and s4(η)

have been determined. The remaining solutions of pi, ωi(η), and si(η) (i = 5,6,7 . . . ) can
be obtained through similar calculations. The further calculations will not be described
in detail.

Lastly, we obtain the perturbation solution of S, P, and W with respect to Wm
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S = VW2
m

6(2λ1+1)2

[
η3 + (1 + 4λ1)η

2 +
(
1 + 4λ1 + 6λ2

1
)
η + λ2 + 4λ1λ2 + 6λ2

1λ2
]

+ VW4
m

90720K(2λ1+1)5



V



−(18λ1 + 9)η7 −
(

204λ1
2 + 180λ1 + 39

)
η6

−
(

1092λ1
3 + 1506λ1

2 +726λ1 + 123)η5

−
(

2772λ1
4 + 1512λ1

3λ2 + 5754λ1
3 + 1764λ1

2λ2
+4656λ1

2 + 756λ1λ2 + 1734λ1 + 126λ2 + 249

)
η4

−
(

2520λ1
5 + 2520λ1

4λ2 + 7812λ1
4 + 4452λ1

3λ2 + 8904λ1
3

+2184λ1
2λ2 + 4341λ1

2 + 406λ1λ2 + 698λ1 − 14λ2 − 52

)
η3

−
(

2520λ1
5 + 2520λ1

4λ2 + 4452λ1
4 + 1092λ1

3λ2 + 1764λ1
3

−56λ1
2λ2 − 643λ1

2 − 154λ1λ2 − 506λ1 − 14λ2 − 52

)
η2

+

(
2520λ1

5 + 2520λ1
4λ2 + 6258λ1

4 + 2268λ1
3λ2 + 5712λ1

3

+896λ1
2λ2 + 2449λ1

2 + 154λ1λ2 + 506λ1 + 14λ2 + 52

)
η

+2520λ1
5λ2 + 2520λ1

4λ2
2 + 6258λ1

4λ2 + 2268λ1
3λ2

2 + 5712λ1
3λ2

+896λ1
2λ2

2 + 2449λ1
2λ2 + 154λ1λ2

2 + 506λ1λ2 + 14λ2
2 + 52λ2



+KT2



−(138240λ1 + 69120)η6

−
(

774144λ1
2 +331776λ1 − 27648)η5

−
(

870912λ1
3 + 919296λ1

2 + 186624λ1 − 27648
)

η4

−
(

870912λ1
3 + 435456λ1

2 + 307584λ1 − 3456
)

η3

+
(

1064448λ1
3 − 919296λ1

2 − 404352λ1 + 3456
)

η2

+

(
2903040λ1

4 + 338688λ1
3 − 1064448λ1

2

−404352λ1 + 3456

)
η

+2903040λ1
4λ2 + 338688λ1

3λ2 − 1064448λ1
2λ2

−404352λ1λ2 + 3456λ2





, (70)

P
16 = 4KWm

2λ1+1

+ W3
m

1080(2λ1+1)4

 V
(

1080λ1
4λ2 + 360λ1

4 + 1620λ1
3λ2 + 840λ1

3 + 1080λ1
2λ2

+825λ1
2 + 350λ1λ2 + 388λ1 + 50λ2 + 73

)
+KT2(69120λ1

4 − 172800λ1
3 − 34560λ1

2 − 17280λ1 − 3456
)

 , (71)

W = Wm
2λ1+1

(
η2 + 2λ1η

)

+ W3
m

4320K(2λ1+1)4



V



−(4λ1 + 2)η6

−
(

36λ1
2 + 30λ1 + 6

)
η5

−
(

150λ1
3 + 195λ1

2 +90λ1 + 15)η4

−
(

240λ1
4 + 240λ1

3λ2 + 480λ1
3 + 280λ1

2λ2 + 380λ1
2

+120λ1λ2 + 140λ1 + 20λ2 + 20

)
η3

+
(

120λ1
3 + 120λ1

2λ2 + 255λ1
2 + 80λ1λ2 + 178λ1 + 20λ2 + 43

)
η2

+

(
240λ1

4 + 240λ1
3λ2 + 510λ1

3 + 160λ1
2λ2

+356λ1
2 + 40λ2λ1 + 86λ1

)
η



+KT2



−(27648λ1 + 13824)η5

−
(

103680λ1
2 + 17280λ1 − 17280

)
η4

−
(

138240λ1
3 − 69120λ1

2 − 69120λ1

)
η3

+
(

69120λ1
2 − 17280λ1 − 3456

)
η2

+
(

138240λ1
3 − 34560λ1

2 − 6912λ1

)
η





. (72)

3.2. Stress Analysis

For the purpose of studying the stress of each point on the plate, it is necessary to
derive the stretching stress from membrane force and the bending stress from bending
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moment. Let ∑′r(η) be the dimensionless stretching stress at the middle plane of the plate
σ′r, and let ∑′′ r(η) be the dimensionless bending stress on the convex surface σ′′ , i.e.,

′
∑r(η) =

σ′ra2

E0t2 (73)

′′

∑r(η) =
σ′′ ra2

E0t2 . (74)

Allowing ∑′r(η) ≈ s2(η)W2
m + s4(η)W4

m, the dimensionless stretching stress at the
edge of the plate is

∑′r(0) =
VW2

m
6(2λ1+1)2

(
λ2 + 4λ1λ2 + 6λ2

1λ2
)

+ VW4
m

90720K(2λ1+1)5

 V
(

2520λ1
5λ2 + 2520λ1

4λ2
2 + 6258λ1

4λ2 + 2268λ1
3λ2

2 + 5712λ1
3λ2

+896λ1
2λ2

2 + 2449λ1
2λ2 + 154λ1λ2

2 + 506λ1λ2 + 14λ2
2 + 52λ2

)
+KT2

(
2903040λ1

4λ2 + 338688λ1
3λ2 − 1064448λ1

2λ2
−404352λ1λ2 + 3456λ2

)
 (75)

and the stretching stress at the center of the plate is

∑′r(1) =
VW2

m
6(2λ1+1)2

(
3 + 8λ1 + 6λ2

1 + λ2 + 4λ1λ2 + 6λ2
1λ2
)

+ VW4
m

90720K(2λ1+1)5


V

 2520λ1
5λ2 − 2520λ1

5 + 2520λ1
4λ2

2 + 3738λ1
4λ2 − 8778λ1

4

+2268λ1
3λ2

2 + 924λ1
3λ2 − 11802λ1

3 + 896λ1
2λ2

2 − 547λ1
2λ2

−7615λ1
2 + 154λ1λ2

2 − 348λ1λ2 − 2344λ1 + 14λ2
2 − 32λ2 − 264


+KT2

 2903040λ1
4λ2 + 2903040λ1

4 + 338688λ1
3λ2 − 338688λ1

3

−1064448λ1
2λ2 − 4112640λ1

2 − 404352λ1λ2 − 1772928λ1
+3456λ2 − 3456




. (76)

The dimensionless bending stress on the convex surface is

σ′′ r =
12Mrt1

t3 , (77)

where t1 is the height of tensile section in the plate and, for convenience in the next
computation, we define its dimensionless form as T1 = t1/t; at the same time, T2 = t2/t.
Substituting Equations (19) and (77) into Equation (74) gives

′′

∑r(η) ≈
24[K+(1 + ν+) + K−(1 + ν−)]T1

T
dW
dη
− 48K(1− η)T1

T
d2W
dη2 . (78)

Substituting the expressions of W(η) ≈ ω1(η)Wm + ω3(η)W3
m into Equation (78), the

dimensionless bending stress at the edge of the plate is obtained, i.e.,

∑′′r(0) =
T1Wm
2λ1+1{96K− 48[K+(1 + ν+) + K−(1 + ν−)]λ1}

− T1W3
m

1080(2λ1+1)4



12[K+(1 + ν+) + K−(1 + ν−)]


V


120λ1

4 + 120λ1
3λ2

+255λ1
3 + 80λ1

2λ2
+178λ1

2 + 20λ1λ2
+43λ1


+KT2

(
69120λ1

3 − 17280λ1
2

−3456λ1

)


+V

(
120λ1

3 + 120λ1
2λ2 + 255λ1

2

+80λ1λ2 + 178λ1 + 20λ2 + 43

)
+ KT2

(
69120λ1

2 − 17280λ1
−3456

)



, (79)

and the dimensionless bending stress at the center of the plate is
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∑′′r(1) =
T1Wm
2λ1+1{48(λ1 + 1)[K+(1 + ν+) + K−(1 + ν−)]}

− T1W3
m

1080K(2λ1+1)4

12[K+(1 + ν+) + K−(1 + ν−)]


V

 240λ1
4 + 240λ1

3λ2 + 645λ1
3

+220λ1
2λ2 + 347λ1

2

+80λ1λ2 + 256λ1 + 10λ2 + 38


+KT2

(
138240λ1

3 + 51840λ1
2

+20736λ1 + 3456

)



. (80)

Via the above stress expressions, we may analyze the yield problem of the bimodular
FGM plate in large deformation. Let three principal stresses be σ1, σ2, and σ3. The yield
condition gives

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 = 2σ2

y , (81)

where σy is the yield stress.
At the edge of the plate, due to u = r(Nθ − ν+Nr)/A3 = 0, it is found that

σ1 = σre, σ2 = σte = ν+σre, σ3 << σre, (82)

where σre and σte are the radial and circumferential stresses on the convex surface of the
plate edge, respectively. Supposing σ3 = 0, we can obtain

σre =
σy√

1− ν+ + (ν+)2
, σte =

ν+σy√
1− ν+ + (ν+)2

. (83)

Therefore, the dimensionless yield stress calculated with the radial stress is

σya2

E0t2 =

√
1− ν+ + (ν+)2

(
′

∑
r
(0) +

′′

∑
r
(0)

)
. (84)

Substituting Equations (75) and (79) into Equation (84), the dimensionless yield stress
at the edge is

σya2

E0t2 =

T1Wm
√

1−ν++(ν+)2

2λ1+1 {96K− 48[K+(1 + ν+) + K−(1 + ν−)]λ1}

+VW2
m

√
1−ν++(ν+)2

6(2λ1+1)2

(
λ2 + 4λ1λ2 + 6λ2

1λ2
)

− T1W3
m

√
1−ν++(ν+)2

1080(2λ1+1)4



12[K+(1 + ν+) + K−(1 + ν−)]


V


120λ1

4 + 120λ1
3λ2

+255λ1
3 + 80λ1

2λ2
+178λ1

2 + 20λ1λ2
+43λ1


+KT2

 69120λ1
3

−17280λ1
2

−3456λ1




+V

 120λ1
3 + 120λ1

2λ2
+255λ1

2 + 80λ1λ2
+178λ1 + 20λ2 + 43

+ KT2

 69120λ1
2

−17280λ1
−3456




+VW4

m

√
1−ν++(ν+)2

90720K(2λ1+1)5


V

 2520λ1
5λ2 + 2520λ1

4λ2
2 + 6258λ1

4λ2 + 2268λ1
3λ2

2

+5712λ1
3λ2 + 896λ1

2λ2
2 + 2449λ1

2λ2 + 154λ1λ2
2

+506λ1λ2 + 14λ2
2 + 52λ2


+KT2

(
2903040λ1

4λ2 + 338688λ1
3λ2 − 1064448λ1

2λ2
−404352λ1λ2 + 3456λ2

)




. (85)

Next, we will derive the yield stress at the center of the plate. The principal stresses
should be equal at the center, i.e.,

σ1 = σ2 = σrc, σ3 << σrc, (86)
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where σre is the radial stress on the convex surface of the plate center. Similarly, letting
σ3 = 0, we have

σrc = σy. (87)

The dimensionless yield stress calculated with the radial stress is

σya2

E0t2 =
′

∑
r
(1) +

′′

∑
r
(1). (88)

Substituting Equations (76) and (80) into Equation (88), the dimensionless yield stress
at the center is

σya2

E0t2 = T1Wm
2λ1+1{48(λ1 + 1)[K+(1 + ν+) + K−(1 + ν−)]}

+ VW2
m

6(2λ1+1)2

(
3 + 8λ1 + 6λ2

1 + λ2 + 4λ1λ2 + 6λ2
1λ2
)

− T1W3
m

1080K(2λ1+1)4


12[K+(1 + ν+) + K−(1 + ν−)]


V

 240λ1
4 + 240λ1

3λ2 + 645λ1
3

+220λ1
2λ2 + 347λ1

2 + 80λ1λ2
+256λ1 + 10λ2 + 38


+KT2

(
138240λ1

3 + 20736λ1
+51840λ1

2 + 3456

)




+ VW4
m

90720K(2λ1+1)5


V

 2520λ1
5λ2 − 2520λ1

5 + 2520λ1
4λ2

2 + 3738λ1
4λ2 − 8778λ1

4

+2268λ1
3λ2

2 + 924λ1
3λ2 − 11802λ1

3 + 896λ1
2λ2

2 − 547λ1
2λ2

−7615λ1
2 + 154λ1λ2

2 − 348λ1λ2 − 2344λ1 + 14λ2
2 − 32λ2 − 264


+KT2

 2903040λ1
4λ2 + 2903040λ1

4 + 338688λ1
3λ2 − 338688λ1

3

−1064448λ1
2λ2 − 4112640λ1

2 − 404352λ1λ2 − 1772928λ1
+3456λ2 − 3456





. (89)

In addition, under the Edges (1), (2), and (4), the dimensionless yield stresses at the
center and at the peripheral edge of the plate can be easily obtained by letting λ1 and λ2
equal the corresponding values.

4. Results and Discussions

The regression of the perturbation solutions of S, P, and W obtained in Section 3.1 need
to be discussed. Comparing Equations (70)–(72) in this paper with Equations (104)–(106)
in [31], it is found that, if T = 0 in Equations (70)–(72), the perturbation solutions of S, P, and
W will be the same as those presented in [31], which verifies, to some extent, the reliability
of the perturbation solutions obtained in this paper.

4.1. Determination of the Neutral Layer

The position of the unknown neutral layer should first be determined. Letting the
integral of the items of z in Equation (18) be equal to zero, i.e., A+

1 + A−1 = 0, one has
A+

1 + A−1
= 1

1−(ν+)2

[
E0t2

α2
1
+

(
t1t
α1
− t2

α2
1

)
E0eα1t1/t

]
+ 1

1−(ν−)2

[
− E0t2

α2
2
+

(
t2t
α2

+ t2

α2
2

)
E0e−α2t2/t

]
= 0

. (90)

Multiplying Equation (90) by α2
1α2

2[1−(ν+)2][1−(ν−)2]/(E0t2), it is found that

α2
2[1− (ν−)

2
]
[
1 + (α1T1 − 1)eα1T1

]
+ α2

1[1− (ν+)
2
]
[
−1 + (α2T2 + 1)e−α2T2

]
= 0. (91)

Expanding eα1T1 and e−α2T2 in Equation (91) into Taylor series of T1 and T2, respectively,
i.e., letting {

eα1T1 = 1 + α1T1 +
1
2 α2

1T2
1 + . . . + 1

n! (α1T1)
n + . . .

e−α2T2 = 1− α2T2 +
1
2 α2

2T2
2 + . . . + 1

n! (−α2T2)
n + . . .

(92)

and substituting the first two terms into Equation (91) yields

[1− (ν−)
2
]T2

1 − [1− (ν+)
2
]T2

2 = 0. (93)
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Additionally combining T1 + T2 = 1, the expressions of the tensile and compressive
heights are, respectively

T1 =
t1

t
=
−1 + (ν+)

2 ±
√
[1− (ν+)2][1− (ν−)2]

(ν+)2 − (ν−)2 (94)

T2 =
t2

t
=

1− (ν−)2 ±
√
[1− (ν+)2][1− (ν−)2]

(ν+)2 − (ν−)2 . (95)

It should be noted here that, from the above equation, it seems that the tensile and
compressive heights depend only on the Poisson ratio and are independent of the modulus
of elasticity. In fact, both two physical quantities participate in the determination of the
heights, in which the influences caused by E+(z) and E−(z) is embodied by α1 and α2,
which existed in the original Equation (84). However, after taking the first two items of
the expansion T1 and T2, the influences of the modulus of elasticity happens to disappear,
which is the reason why Equations (94) and (95) contains only the Poisson ratio. If we take
more items from Equation (92), a more complicated expression containing α1 and α2 will
be obtained, and the solution in this case cannot be explicitly expressed.

4.2. Effect of Small-Rotation-Angle Assumption on Loads vs. Central Deflection

There are four cases of the positive or negative signs of graded parameters α1 and α2
in Equation (1): case (a) α1 > 0, α2 > 0; case (b) α1 < 0, α2 < 0; case (c) α1 > 0, α2 < 0; and case
(d) α1 < 0, α2 > 0. If the positive or negative signs of α1 and α2 are determined, the relative
magnitude among the modulus of the neutral layer, E0, the tensile modulus, E+(z), and
compressive modulus, E−(z), will be accordingly defined, i.e., for case (a), we have E+(z) >
E0 > E−(z); for case (b), E+(z) < E0 < E−(z); for case (c), E+(z) > E0, E−(z) > E0; and for case
(d), E+(z) < E0, E−(z) < E0.

Some numerical examples were carried out to discuss the effect of the small-rotation-
angle assumption on the response of the bimodular FGM plate. The FGM we are familiar
with may be manufactured using powder metallurgy techniques from a mixture of ceramic
and metal. Generally, metals exhibit good tensile properties and can be considered as
materials in the tensile zone, whereas ceramics exhibit good compressive properties and
can be considered as materials in the compressive zone. The Poisson ratios of the tensile
and compressive zones is taken as ν+ = 0.35 (manganese bronze) and ν−= 0.25 (silica
ceramic), respectively. Moreover, in order to be able to describe the four cases of the
relative magnitude among E+(z), E0, and E−(z), we chose four groups of data: case (a),
α1 = 0.5, α2 = 0.1; case (b), α1 = −0.5, α2 = −0.1; case (c), α1 = 0.5, α2 = −0.1; and case
(d), α1 = −0.5, α2 = 0.1. From Equations (94) and (95), the dimensionless heights of the
tensile and compressive zones are T1 = 0.4821 and T2 = 0.5179, respectively. Thus, using
Equations (18), (39), and (43) and also based on the known ν+, ν−, α1, α2, T1, and T2, the
values of λ1, λ2, K, and V may be determined, and they are listed in Table 1. At the same
time, by substituting λ1, λ2, K, and V into Equations (71) and (72), the expressions of P and
W with respect to Wm are obtained, and they are listed in Table 2.

Generally speaking, the bending stiffness of the plate depends partly on the magnitude
of the modulus of elasticity of the materials; the bigger the modulus of elasticity, the
stronger the bending-resistant capacity. Obviously, among the four cases of the tensile
modulus, compressive modulus, and the neutral layer modulus, case (c) has the strongest
bending-resistant capacity because there exists the relations E+(z) > E0 and E−(z) > E0. On
the contrary, case (d) has the weakest capacity resisting deformation due to E+(z) < E0 and
E−(z) < E0. In addition, the deformation of the thin plate is greatly affected by the boundary
constraint. Next, a numerical example is given to illustrate the effect of the four boundary
constraints on the deformation of thin plates. The deflection curves of the bimodular FGM
thin plate under four edge constraint conditions when the central deflection of the thin
plate, Wm, reaches 2, are then plotted, as shown in Figure 4, where Case (a) represents
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E+(z) > E0 > E−(z); Case (b) represents E+(z) < E0 < E−(z); Case (c) represents E+(z) > E0,
E−(z) > E0; and Case (d) represents E+(z) < E0, E−(z) < E0. Note that a coordinate transform
is carried out, i.e., the coordinate variable (η = 1 − r2/a2) in the deflection expressions in
Table 2 should be transformed into the ratio of the radial coordinate to the radius of the
thin plate (r/a) to show the deflection curves.

Table 1. Values of K, V, λ1, and λ2 under Edges (1)–(4) and cases (a)–(d).

Conditions Case (a) Case (b) Case (c) Case (d)

Edge (1) K = 0.0986,V = 1.0015,
λ1 = 0,λ2 = 3.0769.

K = 0.0869,V = 1.0195,
λ1 = 0,λ2 = 3.0769.

K = 0.1024,V = 1.0015,
λ1 = 0,λ2 = 3.0769.

K = 0.0831,V = 1.0195,
λ1 = 0,λ2 = 3.0769.

Edge (2) K = 0.0986,V = 1.0015,
λ1 = λ2 = 0.

K = 0.0869,V = 1.0195,
λ1 = λ2 = 0.

K = 0.1024,V = 1.0015,
λ1 = λ2 = 0.

K = 0.0831,V = 1.0195,
λ1 = λ2 = 0.

Edge (3) K = 0.0986,V = 1.0015,
λ1 = 1.5363,λ2 = 3.0769.

K = 0.0869,V = 1.0195,
λ1 = 1.5493,λ2 = 3.0769.

K = 0.1024,V = 1.0015,
λ1 = 1.5386,λ2 = 3.0769.

K = 0.0831,V = 1.0195,
λ1 = 1.5470,λ2 = 3.0769.

Edge (4) K = 0.0986,V = 1.0015,
λ1 = 1.5363,λ2 = 0.

K = 0.0869,V = 1.0195,
λ1 = 1.5493,λ2 = 0.

K = 0.1024,V = 1.0015,
λ1 = 1.5386,λ2 = 0.

K = 0.0831,V = 1.0195,
λ1 = 1.5470,λ2 = 0.

Table 2. P and W with respect to Wm.

Cases Formulas

(1) Rigidly clamped

(a) P = (3.3656 − 5.0466T2)Wm
3 + 6.3082 Wm

W = [−0.0047η6 − (0.0141 + 3.2T2)η5 − (0.0353 − 4T2)η4 − 0.1918η3 + (0.2459 − 0.8T2)η2]Wm
3 + η2Wm

(b) P = (3.4263 − 4.4498T2)Wm
3 + 5.5623Wm

W = [−0.0054η6 − (0.0163 + 3.2T2)η5 − (0.0407 − 4T2)η4 − 0.2214η3 + (0.2839 − 0.8T2)η2]Wm
3 + η2Wm

(c) P = (3.3656 − 5.2430T2)Wm
3 + 6.5538Wm

W = [−0.0045η6 − (0.0136 + 3.2T2)η5 − (0.0339 − 4T2)η4 − 0.1846η3 + (0.2367 − 0.8T2)η2]Wm
3 + η2Wm

(d) P = (3.4263 − 4.2534T2)Wm
3 + 5.3167Wm

W = [−0.0057η6 − (0.0170 + 3.2T2)η5 − (0.0426 − 4T2)η4 − 0.2316η3 + (0.2970 − 0.8T2)η2]Wm
3 + η2Wm

(2) Movably clamped

(a) P = (1.0831 − 5.0466T2)Wm
3 + 6.3082Wm

W = [−0.0047η6 − (0.0141 + 3.2T2)η5 − (0.0353 − 4T2)η4 − 0.0470η3 + (0.1011 − 0.8T2)η2]Wm
3 + η2Wm

(b) P = (1.1026 − 4.4498T2)Wm
3 + 5.5623Wm

W = [−0.0054η6 − (0.0163 + 3.2T2)η5 − (0.0407 − 4T2)η4 − 0.054η3 + (0.1168 − 0.8T2)η2]Wm
3 + η2Wm

(c) P = (1.0831 − 5.2430T2)Wm
3 + 6.5538Wm

W = [−0.0045η6 − (0.0136 + 3.2T2)η5 − (0.0339 − 4T2)η4 − 0.0453η3 + (0.0973 − 0.8T2)η2]Wm
3 + η2Wm

(d) P = (1.1026 − 4.2534T2)Wm
3 + 5.3167Wm

W = [−0.0057η6 − (0.0170 + 3.2T2)η5 − (0.0426 − 4T2)η4 − 0.0568η3 + (0.1222 − 0.8T2)η2]Wm
3 + η2Wm

(3) Simply hinged

(a)
P = (2.9072 − 1.8742T2)Wm

3 + 1.5489Wm
W = [−0.000069η6 − (0.001172 + 0.047371T2)η5 − (0.009895 + 0.213703T2)η4 − (0.081639 + 0.195165T2)η3

+ (0.022780 + 0.112025T2)η2 + (0.069996 + 0.344215T2)η]Wm
3 + (0.245540η2 + 0.754460η)Wm

(b)
P = (2.9617 − 1.6315T2)Wm

3 + 1.3571Wm
W = [−0.000079η6 − (0.001337 + 0.046479T2)η5 − (0.011358 + 0.211935T2)η4 − (0.093963 + 0.197765T2)η3

+ (0.026042 + 0.111302T2)η2 + (0.080693 + 0.344876T2)η]Wm
3 + (0.243988η2 + 0.756011η)Wm

(c)
P = (2.9072 − 1.9428T2)Wm

3 + 1.6074Wm
W = [ − 0.000067η6 − (0.001125 + 0.047212T2)η5 − (0.009514 + 0.213389T2)η4 − (0.078537 + 0.195631T2)η3

+ (0.021888 + 0.111897T2)η2 + (0.067355 + 0.344334T2)η]Wm
3 + (0.245263η2 + 0.754737η)Wm

(d)
P = (2.9614 − 1.5630T2)Wm

3 + 1.2987Wm
W = [−0.000083η6 − (0.001401 + 0.046633T2)η5 − (0.011895 + 0.212243T2)η4 − (0.098356 + 0.197315T2)η3

+ (0.027292 + 0.111429T2)η2 + (0.084443 + 0.344763T2)η]Wm
3 + (0.244258η2 + 0.755741η)Wm
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Table 2. Cont.

Cases Formulas

(4) Simply supported

(a)
P = (0.4135 − 1.8742T2)Wm

3 + 1.5489Wm
W = [−0.000069η6 − (0.001172 + 0.047371T2)η5 − (0.009895 + 0.213703T2)η4 − (0.035988 + 0.195165T2)η3

+ (0.011571 + 0.112025T2)η2 + (0.035553 + 0.344215T2)η]Wm
3 + (0.245540η2 + 0.754460η)Wm

(b)
P = (0.4203 − 1.6315T2)Wm

3 + 1.3571Wm
W = [−0.000079η6 − (0.001337 + 0.046479T2)η5 − (0.011358 + 0.211935T2)η4 − (0.041540 + 0.197765T2)η3

+ (0.013252 + 0.111302T2)η2 + (0.041061 + 0.344876T2)η]Wm
3 + (0.243988η2 + 0.756011η)Wm

(c)
P = (0.4135 − 1.9428T2)Wm

3 + 1.6074Wm
W = [−0.000067η6 − (0.001125 + 0.047212T2)η5 − (0.009514 + 0.213389T2)η4 − (0.034638 + 0.195631T2)η3

+ (0.011121 + 0.111897T2)η2 + (0.034223 + 0.344334T2)η]Wm
3 + (0.245263η2 + 0.754737η)Wm

(d)
P = (0.4204 − 1.5630T2)Wm

3 + 1.2987Wm
W = [−0.000083η6 − (0.001401 + 0.046633T2)η5 − (0.011895 + 0.212243T2)η4 − (0.043460 + 0.197315T2)η3

+ (0.013883 + 0.111429T2)η2 + (0.042956 + 0.344763T2)η]Wm
3 + (0.244258η2+0.755741η)Wm

Figure 4. Variations of W with r/a: Case (a), α1 = 0.5, α2 = 0.1; Case (b), α1 = −0.5, α2 = −0.1; Case (c), α1 = 0.5, α2 = −0.1;
and Case (d), α1 = −0.5, α2 = 0.1.

By comparing the four deflection diagrams in Figure 4, it can be seen that the two
graded indices in the tensile and compressive zones, α1 and α2, do not change the real shape
of the deflection curves of the thin plate. In the Cases a, b, c, and d, the rotation angle of the
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deflection curve of Edge (2) at r/a = 0 is the largest among the four constraint conditions,
while the rotation angle of the deflection curve of Edge (3) at r/a = 0 is the smallest.
Moreover, for the same central deflection, when 0 < r/a < 1, the deformation degree of
the thin plate under the constraint of the Edge (2) is the smallest, and the deformation
of the thin plate under the constraint of the Edge (3) is the largest. In addition, when
0 < r/a < 0.4, the deflection curves of Edge (1) and Edge (4) are relatively close in all four
Cases (a, b, c, d).

In the following content, we will focus our discussion on just one case, i.e., Case (a)
E+(z) > E0 > E−(z), which corresponds to the parameters α1 = 0.5, α2 = 0.1, and consider
the bimodular FGM circular plate with the different dimensionless thicknesses, T = 0,
0.05 and 0.2, respectively, where T = 0 represents the perturbation solution from [31] with
the small-rotation-angle assumption. Figure 5 shows the variations of the dimensionless
external loads, P, with central deflection Wm under the constraints of Edges (1)–(4). The
concrete values of external loads and the errors between the conditions T 6= 0 and T = 0 (i.e.,
the errors caused by the small-rotation-angle assumption) are listed in Table 3, in which
the dimensionless central deflection take different values, i.e., Wm = 1, 2, 3, 4.

Figure 5. Variations of P with Wm.

Table 3. Computational values of P and errors for T 6= 0 and T = 0.

Edges Wm T = 0
T = 0.05 T = 0.2

Present Errors 1 Present Errors

(1)

1 9.6738 9.6612 0.13% 9.4719 2.13%
2 39.5411 39.4401 0.26% 37.9262 4.26%
3 109.7953 109.4547 0.31% 104.3450 5.22%
4 240.6300 239.8225 0.34% 227.7106 5.67%

(2)

1 7.3913 7.3786 0.17% 7.1894 2.81%
2 21.2809 21.1800 0.48% 19.6660 8.21%
3 48.1673 47.8266 0.71% 42.7170 12.76%
4 94.5486 93.7411 0.86% 81.6292 15.83%

(3)

1 4.4561 4.4514 0.11% 4.3811 1.71%
2 26.3552 26.3177 0.14% 25.7554 2.33%
3 83.1403 83.0137 0.15% 81.1161 2.50%
4 192.2544 191.9545 0.16% 187.4563 2.56%

(4)

1 1.9624 1.9577 0.24% 1.8875 3.97%
2 6.4060 6.3685 0.59% 5.8062 10.33%
3 15.8118 15.6850 0.81% 13.7876 14.68%
4 32.6609 32.3610 0.93% 27.8628 17.22%

1 Subtract the values at T = 0 from the values at T 6= 0 and then divide by the values at T = 0.

From Figure 5, it is easy to see that, under any of the four boundary constraints, for
the curves of external loads vs. central deflection, the curve T = 0.05 is very close to the
curve T = 0; however, there is an obvious distance between curve T = 0.2 and curve T = 0,
especially under the Edge (1) and Edge (2) constraints. Moreover, for the same central
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deflection, the external load acting on the thin plate is always the smallest under the
Edge (4) constraint, and it is always the largest under the Edge (1) constraint. Besides, from
Table 3, it may be readily seen that, for the same magnitude value of the central deflection,
the external loads calculated by the perturbation solutions presented here (for T 6= 0) are
uniformly smaller than those calculated by the perturbation solutions presented in [31]
(for T = 0). For example, under the Edge (4) constraint, when Wm = 4, the external load
calculated by the solution presented in [31] is 32.6609 (T = 0), while the external loads
calculated by the solution presented here are 32.3610 for T = 0.05 and 27.8628 for T = 0.2.
In this case, the relative error between the external load for T = 0 and that for T = 0.05 is
only 0.93%, which is less than the allowable error of 1% for precision instruments. The
relative error between the present solution and the existing solution is very small, which
can, to some extent, be taken as a criterion to judge the reliability of the perturbation
solutions presented here. Furthermore, under the Edge (4) constraint, when Wm = 4 and
T = 0.2, the relative error between the present solution and the existing solution has reached
17.22%, which is caused by the small-rotation-angle assumption and is even greater than
the allowable error in engineering (<15%). In other words, in this case, the error of external
load calculated by the perturbation solution with the small-rotation-angle assumption
in [31] is 17.22%; accordingly, the computational accuracy of the external load without the
small-rotation-angle assumption in this paper is improved by 17.22% in comparison with
the external load for [31].

On the other hand, no matter how small rotation angle β is, because sinβ 6= tanβ,
adopting the small-rotation-angle assumption (assuming that sinβ ≈ tanβ) will always
create the obtained perturbation solution with a certain error. It can also be found from
Table 3 that, as the central deflection, Wm, increases, the relative error between the external
loads calculated by the perturbation solution in this paper and in [31] also increases. With
the increase of the central deflection, Wm, the rotation angle, β, will also increase; therefore,
the error brought by the small-rotation-angle assumption will also increase accordingly.

At the same time, we also find that, for different boundary constraints, the effects of
the small-rotation-angle assumption on the response of plates are different. From Table 3,
it can be seen that, for the same central deflection, the errors of external load under the
Edges (1) and (3) constraints are less than those under the Edge (2) and (4) constraints;
for example, when Wm = 3 and T = 0.2, the errors of Edges (1), (3), (2), and (4) are 5.22%,
2.50%, 12.76%, and 14.68%, respectively. Because the small-rotation-angle assumption is
abandoned in this paper, the established governing equation exists with five terms related
to the rotation angle that are not available in the classic Föppl–von Kármán equation.
Besides, when the perturbation method is adopted to solve the governing equations, the
external load is expanded to the power series of the perturbation parameter (i.e., Wm). It
can be considered that the computational accuracy of the perturbation solution is not only
related to the perturbation parameter, but also to the rotation angle at the location of the
expansion point. From the four cases in Figure 4, it can be seen that, at the center part of the
plate, the rotation angles of the thin plate under the Edge (1) and (3) constraints are smaller
than those under the Edge (2) and (4) constraints; thus, the computational accuracies of
the perturbation solutions of the Edge (1) and (3) constraints are higher than those of
Edges (2) and (4). Therefore, it is necessary to abandon the small-rotation-angle assumption
in the large deformation problem of bimodular FGM thin circular plates when the central
deflection or the dimensionless thickness is large, especially for Edge (2), movably clamped,
and Edge (4), simply supported.

4.3. Effect of Small-Rotation-Angle Assumption on Yield Stress

Next, under a logarithmic coordinates system, we plot the curves of yield stress at
the edge of the plate under three edges constraints when T = 0 and T = 0.2, as shown
in Figure 6. Note that σy = 0 at the edge of the plate under Edge (4), simply supported,
constraint. The concrete values of the yield stress at the edge of the plate under Edges
(1), (2), and (3) and the errors between the conditions T 6= 0 and T = 0 (i.e., the errors
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induced by the small-rotation-angle assumption) are listed in Table 4. We also plot the
curves of yield stress at the center of the plate under the four edge constraints under a
logarithmic coordinates system, as shown in Figure 7, and the local magnification of center
yield stresses is clearly shown in Figure 8, in which the center deflection is equal to 1 to 10.

Figure 6. Variations of σya2/E0t2 with Wm at the edge.

Table 4. Computational values of edge yield stress under Edges (1), (2), and (3).

Wm
Edge (1) Edge (2) Edge (3)

T = 0 T = 0.2 Errors 1 T = 0 T = 0.2 Errors T = 0 T = 0.2 Errors

0.1 0.4065 0.4063 0.03% 0.4014 0.4012 0.03% 0.005819 0.005823 0.07%
0.5 2.2427 2.2269 0.70% 2.0555 2.0395 0.78% 0.1477 0.1486 0.61%
1.0 5.4757 5.3515 2.27% 4.4151 4.2868 2.91% 0.6230 0.6382 2.44%
1.5 10.5032 10.0911 3.92% 7.3830 6.9500 5.87% 1.5233 1.6003 5.05%
2.0 18.1728 17.2124 5.29% 11.2633 10.2368 9.11% 3.0104 3.2538 8.09%
2.5 29.3752 27.5316 6.28% 16.3600 14.3552 12.25% 5.3111 5.9052 11.19%
3.0 45.0445 41.9145 6.95% 22.9774 19.5131 15.08% 8.7169 9.9489 14.13%
4.0 93.7361 86.5809 7.63% 41.9906 33.7789 19.56% 20.3338 24.2275 19.15%
5.0 172.5850 159.1258 7.80% 70.7358 54.6973 22.67% 42.4889 50.9949 20.02%
6.0 290.6206 268.2546 7.70% 111.6461 83.9315 24.82% 79.8466 96.5583 20.93%
7.0 457.5646 423.4637 7.45% 167.1544 123.1447 26.33% 139.1077 168.626 21.22%
8.0 683.8308 635.0410 7.13% 239.6937 174.0000 27.41% 225.0096 276.3082 22.80%
9.0 980.5251 914.0653 6.78% 331.6971 238.1605 28.20% 349.3262 430.1164 23.13%

10.0 1359.4454 1272.4067 6.40% 445.5976 317.2895 28.79% 510.8678 641.9639 25.66%
1 Subtract the values at T = 0.2 from the values at T = 0 and then divide by the values at T = 0.

Figure 7. Variations of σya2/E0t2 with Wm at the center.
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Figure 8. Local variations of σya2/E0t2 with Wm at the center.

It is easy to see from Figure 6 that the yield stress at the edge of the plate increases
with the increase of the central deflection Wm. When 0.1 < Wm < 1, the yield stress at
the edge of the plate under the Edge (3) constraint is much smaller than that under the
Edge (1) and (2) constraints. The difference of yield stress curves at the edge of the plate
between T = 0 and T = 0.2 under the logarithmic coordinate systems is not obvious in
Figure 6. From Table 4, it can be seen that the errors caused by the small-rotation-angle
assumption under the Edge (1) and (3) constraints are less than 8%, but under the Edge (2)
constraint, the errors caused by the small-rotation-angle assumption are quite large, and
the maximum error has reached 28.8% (The allowable error for civil engineering is within
15%). For the Edge (2) constraint, substituting λ1 = λ2 = 0 into Equation (85), there is
only one item related to the parameter T, which is an important parameter that affects
the computational accuracy of the perturbation solution, but for the Edge (1) and (3)
constraints, after substituting their corresponding λ1 and λ2 into Equation (85), the positive
and negative signs of the terms related to parameter T are opposite and may be offset
during the calculation. Therefore, the yield stress at the edge of the plate under the Edge
(2) constraint has a huge difference between T = 0 and T 6= 0. This indicates that the effect
of the small-rotation-angle assumption on the yield stress at the edge of the plate under the
Edge (2) constraint is far greater than those under the Edge (1) and (3) constraints.

From Figures 7 and 8, it can be easily seen that, for the maximum deflection with
the same magnitude, the yield stresses at the center of plate under the Edge (1), (2), and
(4) constraints of T = 0.2 are obviously smaller than those of T = 0. Moreover, for the
same central deflection, the yield stresses at the center of the plate under the Edge (1) and
(2) constraints are greater than those under the Edge (3) and (4) constraints. Comparing
Figure 7 with Figure 6, it can be seen that the effect of the small-rotation-angle assumption
on the yield stress at the center is greater than that on the yield stress at the edge. The
above numerical examples are sufficient to prove that the computational accuracy of the
perturbation solution abandoning the small-rotation-angle assumption is improved.

5. Conclusions

In this study, the large deformation problem of a bimodular FGM thin circular plate
subjected to a transversely uniformly-distributed load is investigated, under the condition
of giving up the small-rotation-angle assumption. The effects of the small-rotation-angle
assumption on the responses of the bimodular FGM thin circular plate are discussed using
specific numerical examples. The following three conclusions can be drawn:

(i) The improved governing equations for the large deformation problem of the
bimodular functionally-graded thin circular plate without small-rotation-angle assumption
can be regressed to the classical Föppl–von Kármán equations, and the corresponding
perturbation solutions can also be regressed to the perturbation solutions with small-
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rotation-angle assumption. This verifies, to some extent, the reliability of the perturbation
solutions obtained in this paper.

(ii) The perturbation solutions presented in this paper have higher computational
accuracy in comparison with the existing perturbation solutions. For example, in the
numerical examples carried out in Section 4, the computational accuracies of external
load and yield stress are improved by 17.22% and 28.79% at most, respectively. For
the maximum deflection with the same magnitude, the external load calculated by the
perturbation solution presented in this paper would be less than the external load from the
previous solution, and the errors of the perturbation solutions caused by the small-rotation-
angle assumption under the movably clamped and simply supported constraints are larger
than those under the rigidly clamped and the simply hinged constraints.

(iii) The small-rotation-angle assumption has little influence on the yield stress at
the edge of plate, while it has great influence on the yield stress at the center of the plate,
especially for the constraint cases with edges rigidly clamped, movably clamped, and
simply supported.

The problem and method presented in this study can be used for further research work.
In particular, the problem concerning small-rotation-angle assumption may be extended
into the establishment of mathematical models with buckling and contact phenomena for
elastic plates [42], because the buckling problem of an elastic plate is usually accompanied
by its large deformation. In addition, the single-parameter perturbation method based on
the central deflection in this study may also be extended to the so-called multi-parameters
perturbation method [43] that has been successfully used for investigating functionally-
graded, thin, circular piezoelectric plates. The relative work is in progress.
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