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Abstract: To identify the impact of low-carbon policies on the location-routing problem (LRP) with
cargo splitting (LRPCS), this paper first constructs the bi-level programming model of LRPCS. On this
basis, the bi-level programming models of LRPCS under four low-carbon policies are constructed,
respectively. The upper-level model takes the engineering construction department as the decision-
maker to decide on the distribution center’s location. The lower-level model takes the logistics and
distribution department as the decision-maker to make decisions on the vehicle distribution route’s
scheme. Secondly, the hybrid algorithm of Ant Colony Optimization and Tabu Search (ACO-TS) is
designed, and an example is introduced to verify the model’s and algorithm’s effectiveness. Finally,
multiple sets of experiments are designed to explore the impact of various low-carbon policies on
the decision-making of the LRPCS. The experimental results show that the influence of the carbon
tax policy is the greatest, the carbon trading and carbon offset policy have a certain impact on the
decision-making of the LRPCS, and the influence of the emission cap policy is the least. Based on
this, we provide the relevant low-carbon policies advice and management implications.

Keywords: location-routing problem; low-carbon policies; bi-level programming model; cargo
splitting; hybrid algorithm

1. Introduction

With the world population increasing and the scale of trade expanding rapidly, global
warming and environmental pollution are becoming more and more serious, and extreme
weather often occurs. Previous studies have shown that greenhouse gas emissions will
seriously affect the ecological environment [1]. According to a report from the Washington
Post [2], global carbon emissions were basically flat from 2014 to 2016, but global carbon
emissions have steadily increased from 2017 to 2019. In 2020, global carbon dioxide
emissions ushered in the largest absolute decline in the world’s history, about 7% lower
than in 2019, or about 2.4 billion tons, equivalent to all of India’s carbon dioxide emissions
in a normal year. However, the sharp drop in carbon emissions in 2020 is not due to the
effectiveness of global emission reduction measures, but due to the COVID-19 pandemic,
which has severely restricted the lives of residents and the production and operation of
enterprises around the world. It can be seen that global carbon emissions have not been
well-controlled. China is the largest emitter in the world, accounting for about 26% of
global carbon emissions. However, as China is in a historical stage of rapid development
and improving people’s livelihoods, the road of peaking carbon dioxide emissions and
carbon neutrality has a long way to go. Globally, China’s road traffic carbon emissions
accounted for 25% of the world’s total road traffic carbon emissions in 2020; in China,
the transportation industry is the third-largest carbon emission department among all
industries, and because China’s transportation is still in the stage of rapid development, its
total emissions will continue to grow. The logistics industry has gradually become a major
energy consumer and carbon emitter due to its rapid development. Therefore, research
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on the logistics industry’s carbon emission control strategy is of great significance to the
realization of green logistics.

From the logistics operation system’s point of view, the distribution center’s daily
operations and the distribution processes generate the main sources of carbon emissions,
especially those generated by the distribution vehicles in the distribution process. Therefore,
it is necessary to study vehicle routing optimization from the perspective of reducing carbon
emissions. However, the distribution center’s location decision will have a restrictive
effect on vehicle routing optimization, so they should be studied as a whole, namely, the
location-routing problem (LRP). The LPR is not only a decision on the operation of logistics
enterprises but also a decision on the strategic and tactical level. First, the distribution
center’s location decision is a strategic and tactical decision, the location result will directly
affect the distribution route choice of distribution vehicles, and the distribution center’s
daily operations will produce corresponding carbon emissions. Secondly, among the
logistics industry’s energy-conservation and emission-reduction measures, distribution
vehicles, as the main source of carbon emissions, are the key areas of energy conservation
and emission reduction. In addition to the introduction of new energy technologies,
reasonable vehicle allocation and scheduling strategies are also crucial measures to reduce
carbon emissions in the distribution process. In the LRP’s common research results, only
one vehicle is generally allowed to provide services to customers; that is, cargo cannot
split distribution. The existing scientific research results show that reasonably splitting
customer demand for distribution can effectively reduce the no-load rate and distribution
cost of distribution vehicles and bring more profit space to enterprises [3–5]. The LRP
is a typical hierarchical decision-making problem, which requires the participation of
multi-level decision-making, and the bi-level programming model has the advantage of
collaborative optimization of different levels of problems. The location problem (LP) and
vehicle-routing problem (VRP) can be jointly optimized by using the bi-level programming
model, which reflects the logistics system’s hierarchy and integrity.

With the implementation of many energy-conservation and emission-reduction poli-
cies and the establishment of China’s carbon emissions trading market, low-carbon policies
are bound to bring about various levels of decision-making impacts on various industries.
The logistics industry will also face the challenges brought by the transition from a rela-
tively broad low-carbon background to a further specific low-carbon policies background.
Logistics enterprises’ distribution center locations, distribution vehicle routing, and other
decisions will inevitably need to change from the traditional, simple low-emission orienta-
tion to the specific low-carbon policies guidance.

Considering this, it is necessary to take specific low-carbon policies (such as emission
cap, carbon tax, carbon trading, and carbon offset, etc.) as the decision-making background,
from the perspective of the joint participation of multi-level decision-makers, and use the
bi-level programming model to study the LRP with cargo splitting (LRPCS).

The remainder of this paper is organized as follows. Section 2 reviews the related
research. A general description of the research problem is provided in Section 3. Section 4
describes an Ant Colony Optimization and Tabu Search (ACO-TS) algorithm to solve
the problem in this paper. Section 5 introduces an example to verify the effectiveness
of the model and algorithm proposed in this paper, and several groups of experiments
are designed to explore the impact of low-carbon policies on the LRPCS. Finally, the
conclusions are presented in Section 6.

2. Literature Review

To study the LRPCS under the background of low-carbon policies, the existing research
is reviewed from the following two aspects, which lays a good foundation for this paper:
(1) The core problem that this paper tries to solve is the LRP. The research status of the LRP
(both domestic and overseas) is investigated, and the commonly used models and solving
algorithms for the LRP are reviewed to sort out the LRP considering carbon emissions and
low-carbon policies. (2) The bi-level programming model has the advantage of hierarchical
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decision-making, which is suitable for solving the LRP. Therefore, the application status of
bi-level programming in the LRP is summarized.

2.1. LRP

The study of modern LP can be traced back to 1909 [6]. In 1964, Hakimi proposed the
landmark p-median problem and p-center problem on the network, which stimulated the
theoretical study of the LP, and the number of studies increased sharply [7]. At present,
there have been a large number of achievements in the research on LP of the logistics
centers in the area of transport. Macioszek [8] presented the issues of logistics centers in
terms of legal requirements for the functioning of logistics centers, rules, and methods of
locating such facilities in the area of the transport network, which were supplemented by an
analysis of the functioning of logistics centers in Poland in 2008–2018. Furthermore, some
scholars combine green logistics with the LP. Urzúa-Morales et al. [9] used the methodology
city logistics and last-mile to design the urban logistic system, and the physical location
selection of the Cross-Docking was performed through an optimization model of maximum
coverage. This design minimized the environmental impact of atmospheric pollution.
Xu et al. [10] studied the LP of a green logistics park and built a single-objective decision
model based on the comprehensive cost. Chang et al. [11] formulated a double objective
function optimization model of reverse logistics facility location considering the balance
between the functional objectives of the carbon emissions and the benefits, and proposed a
hybrid multi-objective optimization algorithm that combines a gravitation algorithm and a
particle swarm optimization algorithm.

In the 1970s, Cooper first proposed the LRP, combining LP with VRP, and many
scholars have researched the model and its solving algorithm. In researching the LRP
model, Li et al. [12–16] used a multi-objective model, Tokgoz et al. [17] established a mixed-
integer non-linear programming problem to research the manifold LRP and provided the
corresponding heuristic algorithm solution, and Tirkolaee et al. [18] established a new
mixed-integer linear programming model, which aims to reduce the total travel time and
minimize the risk of infection, and constructed a sustainable multi-travel time window
LRP for medical waste management during the COVID-19 pandemic.

In researching the LRP algorithms, Mousavi et al. [19–21] designed a two-stage algo-
rithm to solve the LRP, divided into LP and VRP, which cannot reflect the LRP’s integrity.
The efficiency and quality of the optimal solution improve when the LRP is solved as
a whole. Rybickova et al. [22] adopted a genetic algorithm to solve the continuous LRP.
Zhang et al. [23] adopted an improved particle swarm optimization algorithm to solve
the dynamic multi-objective LRP in the emergency response process of major oil spill
accidents at sea. Sun [24] solved the capacitated hub LRP at the same time based on an
endosymbiotic evolutionary algorithm. In addition, some scholars used hybrid algorithms
to solve LRPs, such as Yu et al. [25], who designed a hybrid genetic algorithm to solve LRP
with capacity constraints. Derbel et al. [26] used a hybrid algorithm including an iterative
local search and genetic algorithm to deal with an LRP with multiple capacitated depots
and one incapacitated vehicle per depot, making location and routing decisions efficient at
the same time.

Given the vigorously developing green and low-carbon economies, the future devel-
opment trend of the logistics industry with high energy consumption and large carbon
emissions is to develop green logistics. The LRP plays a decisive role in the whole logistics
system as a strategic logistics planning activity. A wealth of research has been achieved
concerning the LRP of carbon emissions (see Table 1).
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Table 1. Review of articles on LRP considering carbon emissions.

Author Characteristics of the Paper Algorithm

Leng et al. [27]
Selection strategy and

adaptive acceptance criterion
based on sharing mechanism

Hyper-heuristic algorithm

Zhang et al. [28] Uncertain
information/carbon emissions Hybrid intelligent algorithm

Chen et al. [29]
Full load problem in regional
many-to-many raw material

supply network
NSGA-II-TS

Koc [30] Time window/carbon
emissions

Adaptive large neighborhood
search meta-heuristic

algorithm

Shen et al. [31] Demand uncertainty/open
location-routing problem

Tabu Search algorithm
particle swarm optimization

Leng et al. [32] simultaneous delivery and
pick up/time window Hyper-heuristic method

Leng et al. [33] Multi-objective regional
low-carbon LRP

Multi-objective
hyper-heuristic method

Leng et al. [34]
Cold chain logistics
network/customer

satisfaction

Multi-objective evolutionary
algorithm

Araghi et al. [35]
Robust

optimization/algorithm
application innovation

Hybrid meta-heuristic
algorithm

Tavana et al. [36] Location priority/demand
uncertainty

Intelligent simulation
algorithm

Koç et al. [37] Time window/carbon
emission cost

Adaptive large neighborhood
search meta-heuristic

algorithm

Through the review of the above literature, it can be found that most of the literature
focuses on LRP research regarding how to reduce costs and carbon emissions. However,
the low-carbon policies will not only reduce emissions by controlling the carbon emis-
sions or generating carbon emission costs in the production and operation of logistics
enterprises, but will also impact the economic decision-making of logistics enterprises.
The location-routing decision of logistics enterprises changes accordingly under different
carbon emission control policies. Therefore, it is necessary to further explore the impact
of low-carbon policies on location-routing decision-making based on research on the LRP
of reducing carbon emissions. Wang et al. [38] established a green low-carbon location-
routing model of cold chain logistics, including carbon emission costs, and analyzed the
impact of a carbon tax policy on the cold chain logistics network. Micheli et al. [39] studied
the inventory routing problem under low-carbon policies, considering the uncertainty
of customer demand and heterogeneous fleet, and discussed the impact of different car-
bon policies on the economy and environment. Liao et al. [40] constructed the electric
vehicle routing model and traditional fuel vehicle routing model to explore the impact
of electric vehicles on the cost and environment of logistics enterprises under the carbon
trading policy. Zhou et al. [41] studied the robust optimization of multi-capacity LRP in
the distribution network design under the carbon trading strategy.

LRP research has been relatively rich, and many scholars have researched the LRP
considering carbon emissions, but there is a relative lack of research on the LRP in the
context of specific carbon policies. However, in similar decision-making issues, the study
of considering low-carbon policies has become very popular in recent years, including a
large number of tactical decision-making problems, which shows that the implementation
of low-carbon policies will have a substantial impact on corporate decision-making from
the macro- to the micro-levels.
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2.2. Application of Bi-Level Programming in the LRP

In the existing research on LRPs, most established multi-objective models and de-
signed algorithms to solve them without considering the participation of multi-agents in
decision-making. However, in the real world, the decision-making of each department is
influenced by its superior, and at the same time, it also affects the decision-making of the
subordinate department. The use of the single-level programming method will separate
the interrelated objects, and is unable to conduct comprehensive analyses and treatments.
Experts and scholars introduce bi-level programming into their studies of location and
routing optimization because bi-level programming allows the use of the hierarchical
decision-making planning method. The bi-level programming model embodies the idea
of collaborative optimization of problems at different levels. The lower model’s decision
must be made under the upper model’s decision, and the upper-level decision-maker must
also adjust the decision in time according to the lower model’s results, and finally find the
optimal solution that meets the upper and lower levels. The logistics system has a very
distinct hierarchy, so it is more appropriate to analyze it with a bi-level model.

Xu et al. [42] proposed a bi-level model for a 72 h post-earthquake emergency logistics
LRP under a random fuzzy environment. Nadizadeh et al. [43] used a bi-level programming
model to study the arc interdiction LRP and proposed an efficient memetic algorithm based
on a dynamic local search. Xu et al. [44] studied the multi-depot LRP considering a
no-load backhaul in a collaborative logistics network based on a bi-level programming
model. Parvasi et al. [45] established a bi-level model to study the efficient transportation
system considering the response of students and designed appropriate bus stops and bus
routes. Li et al. [46,47] used bi-level programming to study the location strategy of charging
infrastructure and designed a two-stage heuristic algorithm to solve the problem. To ensure
coordination and consider the interests of bus companies and passengers simultaneously,
Cheng et al. [48] adopted the bi-level programming approach to solve the problem of
optimal bus stop locations. Jiang et al. [49] used a bi-level programming model to study
the design of a regional multimodal logistics network considering demand uncertainty
and reducing carbon emissions and designed an adjustable robust optimization method
to solve the problem. Li et al. [50] used bi-level programming to study the post-disaster
road network repair scheduling and disaster relief logistics problems and designed a
genetic algorithm to solve the model. Iliopoulou et al. [51] studied the joint traffic network
design and toll infrastructure LP based on the bi-level programming model and designed a
multi-objective particle swarm optimization algorithm to solve the problem.

Some scholars have studied the LRP based on the bi-level programming model, but
the optimization goal of the research is generally to minimize the cost of the logistics system,
with less consideration of carbon emissions; in particular, with the gradual implementation
of low-carbon policies, decision-makers must consider the limitations of low-carbon policies
when formulating location-routing strategies.

3. Problem Description and Model Formulation
3.1. Problem Description

It is assumed that a logistics enterprise must provide cargo distribution services
for several customers in a certain area, in which the number, geographical location, and
demand of customers are known. In several existing candidate distribution centers, the
engineering construction department must select the appropriate distribution center among
the candidate distribution centers and make a distribution center location decision. Ac-
cording to the distribution center’s location results, the logistics distribution department
will decide on the route selection of distribution vehicles, arrange for distribution vehicles
to assemble cargo from the selected distribution center, and distribute the cargo to each
customer one-by-one according to the preset route. Different vehicles can access each
customer, which splits the cargo’s distribution. When all the cargo is distributed, the
distribution vehicle returns to the original distribution center.
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The upper decision-maker’s engineering construction department formulates the dis-
tribution center’s location strategy to minimize the distribution center’s construction and
operation costs and the distribution center’s carbon emissions related to the distribution
center’s capacity, whereas the logistics department of the lower decision-maker mainly
considers the dispatch costs, energy consumption costs, and carbon emissions in the distri-
bution process to formulate the distribution route scheme. On this basis, with reference
to [38–41], considering the background of specific carbon emission policies (emission cap,
carbon tax, carbon trading, and carbon offset), the upper-level decision-makers mainly
aim to minimize the distribution center’s construction, operation, and carbon emission
costs generated by the distribution center, whereas the lower-level decision-makers mainly
consider the dispatch, energy consumption, and carbon emissions costs generated in the
distribution process, trying to find the optimal location and distribution route schemes to
meet the cost and carbon emission requirements. A schematic diagram of the problem is
shown in Figure 1.

Figure 1. Problem description schematic.

The decision-making objectives of the two departments are inconsistent, and they
each control some decision variables. Further, the engineering construction department’s
location strategy will greatly affect the formulation of the logistics distribution department’s
vehicle routing scheme. On the other hand, the logistics distribution department’s vehicle
routing scheme will impact the distribution center’s selection strategy. The two decision-
making behaviors influence each other but they cannot control each other.

This paper makes the following assumptions:

• The locations of the candidate distribution centers and customers are known, and the
round-trip distance between the two points is the same.

• The customer demand is known, which is less than the distribution vehicle’s maximum
loading capacity, and there is no limit on the distribution time.

• The capacities of the candidate distribution centers are known.
• All customers are allowed to split distribution.
• All cargo can be split and mixed.
• The distribution center has a certain number of distribution vehicles, and each dis-

tribution vehicle belongs to only one distribution center. There is no case in which
multiple distribution centers dispatch the same vehicle at the same time.

• The distribution vehicles’ maximum driving distances are not considered.
• The carbon emissions generated by the distribution center are only related to capacity.
• The carbon emissions in the distribution process are only related to road conditions,

vehicle types, vehicle load, driving distance, and speed.
• The carbon emission caps of the low-carbon policies are aimed at the carbon emissions

generated in the whole LRP.



Mathematics 2021, 9, 2325 7 of 34

• The impact of low-carbon policies on location and vehicle routing schemes is propor-
tional to their respective carbon emissions.

Among the assumptions mentioned above, items 1–3, 6, and 7 are common general
assumptions in ordinary LRP research, whereas items 4 and 5 are unique to LRPCS.
Items 8–11 are necessary assumptions to study LRPCS under the background of specific
low-carbon policies.

The abbreviations, sets, parameters, and decision variables used in this paper are
summarized in Table 2.

3.1.1. Measurement and Mathematical Description of Carbon Emissions

The carbon emissions in the model come from the carbon emissions generated by the
distribution center’s operations and distribution vehicles during the distribution process.
The specific measurements and mathematical descriptions are as follows:

1. Carbon emissions from distribution centers

In the LRP, the carbon emissions generated by the distribution center are related to the
distribution center’s scale; then, the distribution center’s carbon emissions are as shown
in Equation (1):

Qcp = ∑
r∈R

PrQrWr. (1)

Table 2. Abbreviations, sets, parameters, and decision variables.

Type Notation Definitions

Abbreviations

LRP The location-routing problem
LRPCS The location-routing problem with cargo splitting
SDVRP The split delivery vehicle routing problem

ACO The Ant Colony Optimization
TS The Tabu Search

ACO-TS The hybrid algorithm of Ant Colony Optimization
and Tabu Search

LP The location problem
VRP The vehicle routing problem

EC
The bi-level programming model of the
location-routing problem with cargo splitting under
the emission cap policy

CS
The bi-level programming model of the
location-routing problem with cargo splitting under
the carbon tax policy

CT
The bi-level programming model of the
location-routing problem with cargo splitting under
the carbon trading policy

CO
The bi-level programming model of the
location-routing problem with cargo splitting under
the carbon offset policy

LC
The bi-level programming model of the
location-routing problem with cargo splitting under
the low-carbon policy

Sets
R The set of all candidate distribution centers,

r ={1, 2, · · · , R}
K The set of all distribution vehicles, k ={1, 2, · · · , K}
J The set of all customers, j ={1, 2, · · · , J}
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Table 2. Cont.

Type Notation Definitions

Parameters

Cr
The construction and operation cost of distribution
center r (USD)

Cc
The distribution center’s construction and operation
costs

Qr The capacity of distribution center r (ton)

Pr
The carbon emission coefficient per unit capacity of
distribution center r (kg/L)

Q The vehicle capacity (ton)
αij The road condition coefficient
βk The vehicle type correlation coefficient
γ The greenhouse gas emission coefficient (kg/L)

w0 The vehicle net weight (ton)
qi The customer demand of i (ton)

qijk The loading capacity of vehicle k from i to j (ton)
dij The distance from i to j (km)
Vijk The speed of vehicle k from i to j (km/h)
Lijk The oil consumption of vehicle k from i to j (L)
c f The fuel price (USD/L)

Wik The demand of customer i loaded by vehicle k (ton)

FCijk
The energy consumption costs of vehicle k from i to j
(USD)

PCijk The dispatch costs of vehicle k from i to j (USD)
Ck

p The dispatch cost per unit time of k vehicle (USD)

Uc
The carbon emission quota under emission cap
policy (kg)

Qp
The total carbon emissions generated in distribution
process (kg)

Qcp
The total carbon emissions from distribution centers
(kg)

Pt The carbon tax (USD/kg)
Ps The carbon trading price (USD/kg)

Us
The carbon emission quota under carbon trading
policy (kg)

Qs
The carbon emission quota purchased under the
carbon trading policy (kg)

P0 The carbon offset price (USD/kg)

U0
The carbon emission cap under the carbon offset
policy (kg)

Q0
The amount of carbon emission offset under the
carbon offset policy (kg)

λ
The parameter that measures whether traffic is
congested or not

Decision
variables

Wr

If location r is selected to build a distribution center,
this variable takes the value 1, and otherwise it takes
the value 0

Yir

If the customer i is served by distribution center r,
this variable takes the value 1, and otherwise it takes
the value 0

Xijk

If the vehicle k travels from node i to node j, this
variable takes the value 1, and otherwise it takes the
value 0

2. Carbon emissions of distribution vehicles

Fossil fuel-powered vehicles are bound to produce carbon emissions during operation.
In the LRP, the carbon emissions generated by the distribution process mainly come
from distribution vehicles, and the carbon emissions generated by distribution vehicles
are related to many factors, such as vehicle type, vehicle load, driving speed, driving
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distance, fuel type, road conditions, traffic conditions, and so on. This paper introduces
the measurement method of carbon emissions under land transportation to facilitate the
problem’s calculation [52]. In a certain distribution process, the distribution vehicle k drives
from the customer point i to the customer point j, and the distribution vehicle’s carbon
emission is Qp in the distance arc (i, j). This emission is related to the fuel consumption
Lijk and greenhouse gas emission coefficient γ generated by the distribution vehicle, and
has the following relationship:

Qp= γ ∑
i∈(J∪R)

∑
j∈(J∪R)

∑
k∈K

Lijk, (2)

among them, γ is the greenhouse gas emission coefficient, which represents the carbon
emission per unit of fuel. It is related to the vehicle type and fuel type used. It is generally
set as a constant in the given logistics and distribution process, with reference to the
European carbon emission calculation standard, γ = 2.32 kg/L.

The calculation of fuel consumption, Lijk, on the arc (i, j) is mostly related to distance
or load [52]. As a result, the calculation of the distribution vehicles’ fuel consumption does
not align with reality. Therefore, this paper will comprehensively consider the influence of
vehicle transportation distance, vehicle load, speed, vehicle type, and road condition on
vehicle fuel consumption, and adopt the following calculation equation [53]:

Lijk =
[
αij

(
w0 + qijk

)
+ βkV2

ijk

]
dij, (3)

among them, αij is the road condition coefficient of arc (i, j) (related to road slope, resistance, etc.),
and βk is the vehicle type coefficient (related to vehicle horsepower, windward area, etc.).
According to [53], generally, αij ∈ [0.09, 0.15], βk is related to the vehicle type and has a
wide range of changes, and this paper will only consider one type of vehicle, assuming
βk = 0.00007.

3.1.2. Cost Function Analysis and Mathematical Description

The cost function of the LRP’s bi-level programming model is mainly related to the
distribution center’s construction and operation costs, the distribution vehicle’s energy
consumption and dispatch costs in the distribution process, and the carbon emission costs
under the specific low-carbon policies. Among them, the carbon emissions cost is related
to the provisions of low-carbon policies, which will be described in the construction of
bi-level programming models under specific low-carbon policies. Specific measurements
and mathematical descriptions of other costs are as follows:

1. The distribution center’s construction and operation costs

Among the distribution center’s construction and operation costs, the construction
costs mainly include the cost of land requisition, the lease and purchase of site and equip-
ment, and so on. Operation costs mainly include employee wages, equipment maintenance
depreciation costs, water and electricity consumption costs, and so on.

The distribution center’s construction and operation costs, Cc, can be expressed as
follows, where Cr indicates the construction and operation costs of the r distribution center,
and we adjust the value of Reference [31] appropriately to set the value of Cr:

Cc = ∑
r∈R

CrWr. (4)

2. The distribution vehicles’ energy consumption costs

In the distribution process, the distribution vehicles’ energy consumption costs pos-
itively correlate with the distribution vehicles’ fuel consumption, Lijk. The distribution
vehicle k drives from the customer point i to the customer point j, and the energy con-
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sumption cost, FCijk, generated in this section of the distribution vehicle can be expressed
as follows:

FCijk = c f Lijk =
[
αij

(
w0 + qijk

)
+ βkV2

ijk

]
dijc f . (5)

3. The distribution vehicles’ dispatch costs

The distribution vehicles’ dispatch costs relate to each vehicle’s service time (such as
the driver’s salary, the vehicle’s purchase and maintenance costs, etc.). If the distribution
vehicle k drives from customer point i to customer point j, the distance from i to j is dij,
and the vehicle k’s speed from i to j is Vijk, then the vehicle dispatch cost, PCijk, can be
expressed by Equation (6), where Ck

p is the dispatch cost per unit time of vehicle k:

PCijk = Ck
p

dij

Vijk
. (6)

3.2. Model Formulation
3.2.1. Formulation of the Bi-Level Programming Model of LRPCS

Upper model:
minZ1 = ∑

r∈R
CrWr + ∑

r∈R
PrQrWr, (7)

s.t. 1 ≤ ∑
r∈R

Wr ≤ R, (8)

Yir ≤Wr, ∀i ∈ J, r ∈ R, (9)

Wr, Yir ∈ {0, 1}, (10)

among them, Equation (7) is the objective function of the upper model, which minimizes
the distribution center’s total construction and operation costs and carbon emissions,
constraint (8) represents the constraint of the number of locations of the distribution center,
constraint (9) indicates that only the selected distribution center can distribute cargo, and
constraint (10) is the upper-level decision variables.

Lower model:

minZ2 = ∑
i∈(J∪R)

∑
j∈(J∪R)

∑
k∈K

(
F Cijk+PCijk

)
XijkYir+γ ∑

i∈(J∪R)
∑

j∈(J∪R)
∑
k∈K

Lijk, (11)

s.t. ∑
r∈R

Yir= 1,∀i ∈ J, (12)

∑
i∈R

∑
j∈J

Xijk ≤ 1,∀k ∈ K, (13)

∑
i∈(J∪R)

∑
k∈K

Xijk ≥ 1,∀j ∈ (J ∪ R), (14)

∑
i∈(R∪J)

Xipk − ∑
j∈(R∪J)

Xpjk= 0,∀p ∈ J, (15)

∑
j∈J

Xrjk−∑
j∈J

Xjrk= 0,∀r ∈ R, k ∈ K, (16)

∑
k∈K

Wik = qi, ∀i ∈ J, (17)

∑
i∈J

Wik ≤ Q,∀k ∈ K, (18)

0 <qi ≤ Q,∀i ∈ J, (19)

Xijk= 0,∀i ∈ R, j ∈ R, k ∈ K, (20)
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∑
i∈J

qiYir ≤ QrWr, ∀r ∈ R, (21)

Xijk ∈ {0, 1}. (22)

Equation (11) is the objective function of the lower model, which indicates that the
energy consumption costs, dispatch costs, and carbon emissions generated by distribution
vehicles are minimized. Constraint (12) indicates that a customer can only be served by
one distribution center, constraint (13) indicates that each distribution vehicle can only be
deployed by one distribution center, and constraint (14) indicates that a customer can be
served by multiple vehicles; that is, cargo are allowed to be split. Constraint (15) indicates
that the distribution route of the distribution vehicle is continuous and closed, and the
vehicle entering the node must leave from the node, and the distribution vehicle will not
stop at a certain customer point. Constraint (16) means that each distribution vehicle will
return to the original distribution center after the completion of the service, constraint (17)
indicates that the customer’s demand must be met, constraint (18) indicates that the vehicle
load constraint, that is, the customer demand delivered by the vehicle on any route, must
not exceed the vehicle load limit, and constraint (19) indicates that the customer demand
scale does not exceed the vehicle load limit. Constraint (20) indicates that there is no
distribution route between each distribution center, constraint (21) indicates that the total
customer demand served by a distribution center should not exceed the capacity limit of
the distribution center, and constraint (22) is the lower-level decision variable.

The upper-level decision variables are Wr, Yir, which must make location decisions
and assign customers to each selected distribution center. The lower-level decision variable
is Xijk, which must design the appropriate vehicle route according to the location decision
and customer allocation. The lower-level decision variable depends on the upper-level
decision variables. Once the upper-level variables are determined, the corresponding
lower-level variable can be determined. Each upper-level solution {Wr, Yir} corresponds
to a lower-level solution

{
Xijk

}
. Only when the upper-level location decision and cus-

tomer assignments are completed can the lower level assign the distribution route of each
distribution center and serve each customer.

3.2.2. Formulation of the Bi-Level Programming Model of LRPCS under
Low-Carbon Policies

The bi-level programming model of LRPCS under different low-carbon policies must
put the carbon emissions generated in the location-routing process into specific low-carbon
policies’ frameworks based on the bi-level programming model of LRPCS. According
to the policies, the carbon emissions will be converted into the carbon emission cost of
the logistics system, or the emission cap of the carbon policies should be added to the
constraints. By combing the current research on carbon emission policies, the bi-level
programming models of LRPCS under the four low-carbon policies of emission cap, carbon
tax, carbon trading, and carbon offset are formulated respectively, and the corresponding
models are marked as models EC, CS, CT, and CO, which are described as follows.

1. Bi-level programming model of LRPCS under the emission cap policy

The carbon emissions of enterprises in the process of production and operation are
strictly limited under the emission cap policy, and the carbon emissions generated by their
production and operation must be strictly lower than the carbon emission caps set by
the government. If the emission cap is exceeded, the company will be ordered to stop
production and adjust until emissions meet the cap. Therefore, at this time, the LRP can
only choose the optimal location, quantity, and distribution routing scheme under the
constraints of carbon emissions. The location decision of the upper level determines the
total carbon emissions generated by the upper distribution center, the route decision of the
lower level determines the carbon emissions generated in the distribution process, and the
total carbon emissions generated by the upper and lower levels are strictly restricted. It
makes the carbon emissions’ distribution between the upper and lower decision-makers
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into a game. Introducing emission cap, Uc, as a constraint into the model, EC is built
as follows:

Upper model:
minZ1 = ∑

r∈R
CrWr, (23)

s.t. Qp + Qcp ≤ Uc. (24)

At the same time, constraints (8)–(10) hold.
Among them, Equation (23) is the upper model’s objective function, which means that

the distribution center’s construction and operation cost is minimized. Constraint (24) in-
dicates that the total carbon emissions generated by the distribution center and distribution
process must not exceed the prescribed emission cap.

Lower model:

minZ2 = ∑
i∈(J∪R)

∑
j∈(J∪R)

∑
k∈K

(
F Cijk+PCijk

)
XijkYir. (25)

At the same time, constraints (12)–(22) hold.
Equation (25) is the lower model’s objective function, which minimizes the distribution

vehicle’s total energy consumption and dispatch costs.

2. Bi-level programming model of LRPCS under carbon tax policy

The carbon tax is the tax levied per unit of carbon emission. The implementation
purpose of the policy is to guide enterprises to reduce carbon emissions in daily operation
by taxing carbon emissions to protect the environment and slow down global warming.
Different from the emission cap policy, which sets strict carbon emission caps for enterprises,
the carbon tax policy does not set strict emission caps, but only levies a carbon tax at a
specific tax rate on enterprises’ total carbon emissions. Therefore, the tax caused by the
carbon emissions generated from the enterprise’s daily operations will be included in
the system’s total cost. In this case, the enterprise must balance the carbon emission cost
generated by the upper distribution center and the carbon emission cost generated by the
lower distribution process according to different carbon tax rates to optimize the logistics
system’s total cost. The CS model is formulated as follows:

Upper model:
minZ1 = ∑

r∈R
CrWr + QcpPt. (26)

At the same time, constraints (8)–(10) hold.
Equation (26) is the upper model’s objective function, which minimizes the distribu-

tion center’s total construction and operating costs and the carbon tax levied on the carbon
emissions generated by the distribution center.

Lower model:

minZ2 = ∑
i∈(J∪R)

∑
j∈(J∪R)

∑
k∈K

(
F Cijk+PCijk

)
XijkYir + QpPt. (27)

At the same time, constraints (12)–(22) hold.
Equation (27) is the lower model’s objective function, which minimizes the distribution

vehicles’ total energy consumption and dispatch costs, and the cost of carbon emissions
generated in the process of distribution.

3. Bi-level programming model of LRPCS under carbon trading policy

Carbon trading policy is a market-oriented low-carbon policy, which takes the emis-
sion rights of carbon emissions as a commodity and trades on the carbon trading market
platform. It promotes enterprises to take reasonable and effective emission-reduction mea-
sures through the costs or benefits brought about by the exchange of carbon emission rights.
Under the carbon trading policy, enterprises have a certain emission cap, and when carbon
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emissions exceed the cap, enterprises must purchase the emission balance; otherwise, their
production and operation will be restricted. However, if the carbon emissions do not
exceed the given cap, the enterprise can sell the saved emissions. Under the given cap, the
upper and lower decision-makers control their respective carbon emissions to effectively
coordinate the interests between the upper and lower levels to optimize the total cost,
including carbon trading costs or benefits. The corresponding model CT is built as follows:

Upper model:

minZ1 = ∑
r∈R

CrWr + PsQs
Qcp

Qcp + Qp
, (28)

s.t. Qs + Us = Qp + Qcp, Qs ∈ R. (29)

At the same time, constraints (8)–(10) hold.
Among them, Equation (28) is the upper model’s objective function, which minimizes

the distribution center’s total construction and operation costs and the carbon emission
costs generated under the carbon trading policy. Constraint (29) indicates that the car-
bon trading volume is the difference between the actual total carbon emissions and the
emission quota.

Lower model:

minZ2 = ∑
i∈(J∪R)

∑
j∈(J∪R)

∑
k∈K

(
F Cijk+PCijk

)
XijkYir + PsQs

Qp

Qcp + Qp
. (30)

At the same time, constraints (12)–(22) hold.
Equation (30) is the lower model’s objective function, which indicates that the dis-

tribution vehicles’ energy consumption and dispatch costs and the total carbon emission
costs generated in the distribution process under the carbon trading policy are minimized.

4. Bi-level programming model of LRPCS under carbon offset policy

Carbon offset means enterprises purchase or invest in products or services that can
reduce carbon dioxide to meet the carbon emission cap requirements, generally by paying
third-party organizations to plant trees or developing green projects to absorb excess carbon
dioxide. The principle of the carbon offset policy is similar to that of the carbon trading
policy, but under the carbon offset policy, if an enterprise’s carbon emissions exceed the
cap, it must be offset for the balance in emissions; otherwise, its production and operation
will be restricted. If it is lower than the emission cap, an excess emission balance is not
allowed to be sold. Under the given cap, the upper and lower levels of decision-makers
coordinate their interests and allocate the carbon emission quotas of the upper and lower
levels to optimize the total cost, including the carbon offset cost. Therefore, the CO model
under the carbon offset policy is formulated as follows:

Upper model:

minZ1 = ∑
r∈R

CrWr + P0Q0
Qcp

Qcp + Qp
, (31)

s.t. Q0 =

{
Qp + Qcp −U0, U0 ≤ Qp + Qcp
0,U0 > Qp + Qcp

. (32)

At the same time, constraints (8)–(10) hold.
Equation (31) is the upper model’s objective function, which minimizes the total

construction and operation costs of the distribution center and the carbon emission cost
generated by the distribution center under the carbon offset policy. Constraint (32) indicates
that the amount of carbon offset is non-negative.

Lower model:

minZ2 = ∑
i∈(J∪R)

∑
j∈(J∪R)

∑
k∈K

(
F Cijk+PCijk

)
XijkYir + P0Q0

Qp

Qcp + Qp
. (33)
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At the same time, constraints (12)–(22) hold.
Equation (33) indicates that the total energy consumption, dispatch, and carbon

emission costs generated in the distribution process under the carbon offset policy are
minimized.

3.2.3. Summary of LRPCS Models under Different Low-Carbon Policies

By comparing the models EC, CS, CT, and CO, we can find that when the carbon
trading volume is limited to non-negative, the CT and CO models are formally equivalent,
when the carbon emission quota, U0, under the carbon offset policy is 0, the CO and the
CS models are formally equivalent, and the EC model under the emission cap policy can
be regarded as the CT model when Us is 0 and Ps is infinity. To sum up, the bi-level
programming model of LRPCS under the four low-carbon policies of emission cap, carbon
tax, carbon trading, and carbon offset can be summed up as the bi-level programming
model of LRPCS under the low-carbon policy (marked as LC model), as follows:

Upper model:

minZ1 = ∑
r∈R

CrWr+PQ
Qcp

Qcp + Qp
, (34)

s.t.Q ∈
{

max
{

0, (Qcp + Qp −Uc
)}

, (Qcp + Qp), (Qcp + Qp −Us), max
{

0, (Qcp + Qp −U0
)}}

. (35)

At the same time, constraints (8)–(10) hold.
Lower model:

minZ2 = ∑
i∈(J∪R)

∑
j∈(J∪R)

∑
k∈K

(
F Cijk+PCijk

)
XijkYir+PQ

Qp

Qcp + Qp
. (36)

At the same time, constraints (12)–(22) hold.
Equation (34) is the upper model’s objective function, which represents the distribution

center’s total construction, operation, and carbon emission costs under various low-carbon
policies. P in the equation represents the generalized unit cost of carbon emissions and
Q represents the distribution center’s carbon emissions that generate costs. Equation (36)
is the lower level’s objective function, which minimizes the total cost generated in the
distribution process under various low-carbon policies. Constraint (35) defines the range
of the carbon emissions that generate the cost. When Q =Uc and P = +∞, the LC model
degenerates to the EC model, when Q =Qp + Qcp and P =Pt, the LC model degenerates to
the CS model, when Q =Qp + Qcp −Us and P =Ps, the LC model degenerates to the CT
model, and when Q = max

{
0, (Qp + Qcp −U0

)}
and P = +∞, the LC model degenerates

to the CO model.

4. Algorithm Design
4.1. Model Solution Idea

The bi-level programming model of LRPCS and bi-level programming model of LR-
PCS under the specific low-carbon policies are both from the point of view of two different
levels of decision-makers. The upper decision-maker is the engineering construction de-
partment, which determines the location scheme and assigns customers to each distribution
center. The lower decision-maker is the logistics distribution department, which makes
the route decision according to the decision made by the engineering construction depart-
ment. The bi-level programming model of LRPCS under the specific low-carbon policies is
extended based on the bi-level programming model of LRPCS, adding more constraints
related to the carbon policies, and the upper and lower decision-makers seek the relative
optimal solution under various constraints. In the process of solving, the goal of the upper
decision-maker is to optimize his objective function, and he has priority decision-making
power, but the optimization scheme includes the response of the lower decision-maker to
the upper-level decision-maker and adjusts its location scheme. The lower level once again
modifies its scheme according to the new decision made by the upper level. This process
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is repeated until the termination condition is met. Based on the relationship between the
above-mentioned upper- and lower-level models, the solution idea is provided as shown
in Figure 2.

Figure 2. Model solution method.

4.2. Hybrid Algorithm Design

The bi-level programming model formulated in this paper is very difficult to solve,
which belongs to a NP-hard problem, and there is no accurate algorithm [42–44]. ACO is
used to solve discrete and continuous optimization problems. The idea of the algorithm
is to imitate ant foraging behavior. In the process of walking, ants release a kind of
substance called a “pheromone,” the quantity of which depends on the quality and quantity
of the food source they find. When choosing a road, ants will smell pheromones and
tend to choose the route with a higher pheromone concentration, while every passing
ant will leave “pheromones” on the road, which forms a mechanism similar to positive
feedback [54]. ACO not only has positive feedback but also has the advantages of offering
strong robustness, the strong ability to find a better solution, distributed parallel computing,
and ease to combine with other methods, which is suitable for solving the problem in
this paper. However, when solving large-scale problems, the convergence speed of ACO
is slow, and it is easy to fall into stagnation, that is, local optimization [55]. The TS
algorithm can avoid falling into local optimum, and ultimately achieves the goal of global
optimization [56]. Therefore, according to the characteristics of bi-level programming and
the ideas of some excellent algorithms, a hybrid algorithm of ACO-TS was designed to
solve the problem under study.

4.2.1. Encoding and Decoding

Suppose there are R candidate distribution centers and J customer points. First, the
candidate distribution centers and customer points are coded by real number coding. The
vehicle route starts from the distribution center, passes through the customer points, and
finally returns to the distribution center. Secondly, the three-layer coding method is used



Mathematics 2021, 9, 2325 16 of 34

for ant coding. The first-layer code is the location selection’s priority code, the code length
is R, and the change interval is [0, 1]. The code is sorted in ascending order to obtain the
selection priority code S1 of the candidate distribution centers. The second-layer code is
the location number code, the length is 1, and the interval is [1, R + 0.999]. After rounding
down the code, the number of location’s code M is obtained. The third-layer code is the
service priority code of the customer point. A real number code with a code length of J
has a change interval of [0, 1]. The code is sorted in ascending order to obtain the service
priority code S2 of the customer point. For example, when R = 4 and J = 8, an ant code
randomly generated can be x = (0.3, 0.5, 0.2, 0.41, 2.3, 0.8, 0.3, 0.5, 0.6, 0.1, 0.2, 0.9, 0.66). The
encoding and decoding example diagram is shown in Figure 3.

Figure 3. Encoding and decoding example diagram.

4.2.2. Ant Colony Movement

The core idea of ACO is that the ant colony moves in the direction of the largest
pheromone. First, t other ants are randomly selected to find the ant with the largest
corresponding pheromone in the t ants, which represents the maximum direction of the
pheromone. Move the position of the current i ant according to the following equation:
xnew =(1− speed_aco)× xi + speed_aco × xmax, where xnew is the new position of the
ant, speed_aco is the moving speed of the ant, xi is the current position of the ant i, and
xmax is the ant’s position in the direction of the largest pheromone.

4.2.3. Pheromone Update

Ants will leave certain amounts of pheromones as they move forward, and at the
same time, all pheromones will volatilize at a certain rate. The ACO-TS algorithm designed
in this paper uses the equation τi(gen + 1) = (1 − ρ)τi(gen) + ∆τi(gen + 1) to describe
the pheromone update, where τi(gen + 1) is the pheromone corresponding to the ant i of
gen + 1 generation, ρ is the pheromone volatilization coefficient, τi(gen) is the pheromone
corresponding to the ant i of gen generation, ∆τi(gen + 1) = Q maxyj−yi

maxyj−minyj is the pheromone
increment of the ant i of the gen + 1 generation, Q is the pheromone enhancement factor,
maxyj is the maximum sum of the upper and lower objective function values corresponding
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to all ants after dimension elimination, minyj is the minimum sum of the upper and lower
objective function values corresponding to all ants after dimension elimination, and yi is
the sum of the upper and lower objective function values corresponding to the ant i after
dimension elimination.

4.2.4. Neighborhood Movement

The neighborhood moving method of the TS part is similar to the mutation operation
of the genetic algorithm, which randomly generates a natural number r, changes the r bit
of the coding of the current solution, rearranges the coding, and generates a neighbor of
the current solution. Then, check whether the current neighbor is in the tabu table.

4.2.5. Specific Steps

The specific steps of the ACO-TS algorithm are as follows:

Step 1: Initialize ACO-TS algorithm parameters, input basic data, set the maximum
iteration steps, and make the counter Nc= 1.

Step 2: Initialize ants’ coding and pheromones, decode and calculate the initialized objec-
tive function, and generate the tabu table.

Step 3: The ant colony moves in the direction of the largest pheromone. Decode to
obtain the selected distribution center and divide the customer points for each
distribution center according to the distance and capacity of the distribution
center.

Step 4: Divide the routes for each distribution center, take the current distribution center
as the starting point, and begin to accumulate customer demand according to the
divided customer points. When the cumulative customer demand is less than the
vehicle capacity, add all the visited customer points to the current vehicle route.
When the cumulative customer demand is exactly equal to the vehicle capacity,
save the route and assign new vehicles. Starting from the distribution center, start
accumulating customer demand again. When the cumulative customer demand
is greater than the vehicle capacity, the currently visited customer point is divided
into two customer points so that the cumulative demand is equal to the vehicle
capacity. Save the route, allocate new vehicles, and start accumulating customer
demand again. Save the routes until the demand of all nodes is met.

Step 5: Calculate constraints and objective function values and update pheromones con-
sidering the upper- and lower-objective function values.

Step 6: The feasible solution obtained by the above ACO is re-optimized as the initial
solution of the TS.

Step 7: The neighborhood movement generates the candidate solution set. Decode and
calculate the objective function values of the candidate solution set.

Step 8: Take the objective function as the evaluation function, evaluate the advantages
and disadvantages of the feasible candidate solution, and update the solution.
First, compare the value of the upper-objective function, replace the solution
when the feasible solution is superior to the current solution, and then compare
the lower-objective function value when the upper-objective function values are
the same, and replace the solution when the feasible solution is superior to the
current solution.

Step 9: Record the results of this generation, update the tabu table, randomly select one
of the feasible solutions to add to the tabu table, and remove the tabu of the first
solution in the tabu table.

Step 10: Let the number of iterations Nc = Nc+1, if Nc ≤ Ncmax, then turn to step 3;
otherwise, go to step 11
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Step 11: When the termination condition is met, the algorithm’s iteration is complete
and the global optimal location-routing scheme and upper- and lower-objective
function values are output.

The algorithm flow chart of ACO-TS is shown in Figure 4.

Figure 4. Hybrid algorithm flow chart of ACO-TS.

5. Numerical Analysis
5.1. Introduction of a Numerical Example

Through the above analysis, model formulation, and algorithm research on the LRPCS
and LRPCS under different low-carbon policies, this paper selects the case of Reference [57]
(which is the real customer node data of a company in Chongqing) to test an example
to verify the feasibility of the model proposed in this paper and the practicability of the
hybrid algorithm. Referring to the data of [38–41], this paper designs the comparative
experiment of carbon emission quotas and unit carbon emission costs under different
low-carbon policies and discusses the impact of each low-carbon policy on the LRPCS. The
data information of the candidate distribution center is shown in Table 3, the customer
data information is shown in Table 4, and the main parameters designed in the example are
shown in Table 5. In addition, some other parameters involved in the example, such as the
road condition coefficient in different road sections, the speed of distribution vehicles, and
so on, are related to the road sections and vehicles and are provided by random generation.
The main parameters of the algorithm are shown in Table 6. The model and algorithm
designed in this paper are solved by MATLAB version R2017a (MathWorks Inc., Natick,
MA, USA) on a computer with an Intel(R) Core (TM) i7-10510U processor at 1.80 GHz with
16 GB RAM.

Table 3. Candidate distribution center data.

Distribution
Center

X
(km)

Y
(km)

Construction
and Operation

Cost (USD)
Capacity (ton)

1 651.49 3262.69 30,000 16
2 674.4 3283.02 27,000 18
3 627.1 3285.06 27,000 15
4 634.39 3248.97 18,000 12



Mathematics 2021, 9, 2325 19 of 34

Table 4. The customer data.

Customer X (km) Y (km) Demand (ton)

1 638.94 3273.85 0.45
2 638.2 3301.79 0.5
3 618.34 3275.17 0.4
4 658.53 3272.59 0.25
5 659.19 3290.56 1.2
6 679.63 3274.57 0.6
7 682.03 3261.41 0.9
8 654.87 3255.63 0.75
9 647.72 3274.21 0.8
10 626.83 3248 0.55
11 656.49 3269.95 0.4
12 644.44 3264.24 1.35
13 643.89 3255.11 5.5
14 644.88 3277.62 0.15
15 660.84 3279.95 0.7
16 690.82 3299.04 0.45
17 637.24 3287.77 0.8
18 690.95 3292.71 0.25
19 699.47 3284.12 5.6
20 692.99 3245.47 0.55
21 601.68 3302.16 0.4
22 601.54 3280.18 1.2
23 611.33 3255.55 0.5
24 598.54 3252.48 0.9
25 628.88 3251.58 6
26 621.29 3239.48 0.8
27 664.91 3252.67 0.6
28 641.11 3277.38 0.3
29 655.45 3279.86 0.8
30 670.12 3271.63 0.7

Table 5. The example parameters.

Parameter Symbol Numerical Value

Carbon emission coefficient
per unit capacity of
distribution center

Pr 29.3 kg/L

Vehicle capacity Q 5 ton
Vehicle net weight ω0 2 ton

Fuel price c f 1.2 USD/L
Vehicle dispatch fee per unit

time Ck
p 16 USD/h

Table 6. Algorithm parameters.

Parameter Numerical Value

Maximum number of iterations 250
Ant population 150

Pheromone volatilization coefficient 0.1
Pheromone enhancement factor 1

Ant crawling speed 0.05
Tabu table length 40

5.2. Solution and Analysis
5.2.1. Comparative Analysis of LRP with and without Cargo Splitting

The algorithm proposed in this paper was used to solve the bi-level programming
model of the LRPCS with the optimization goal of reducing carbon emissions and costs,
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compared with the results of the bi-level programming model of the LRP without con-
sidering cargo splitting, to verify the effectiveness of the model and prove that allowing
cargo-splitting distribution is beneficial to reduce the total cost and carbon emissions of
the logistics system. The schematic diagram of the location-routing result is shown in
Figures 5 and 6. The comparison of upper and lower carbon emissions, energy consump-
tion cost, dispatch cost, location scheme, and the handling capacity of each distribution
center corresponding to the best location scheme and distribution route scheme is shown
in Table 7.

Figure 5. Location-routing scheme that does not consider cargo splitting.

Figure 6. Location-routing scheme that considers cargo splitting.

Table 7. The result of location-routing scheme with and without cargo splitting.

Scenario
Construction

Cost
(USD)

DC
Carbon

Emission
(kg)

Dispatch
Cost

(USD)

Energy
Consump-
tion Cost

(USD)

Distribution
Carbon

Emissions
(kg)

Location
Decision

DC Handling
Capacity

(ton)

Cargo
without
splitting

75,000 1347.8 255.98 534.26 1032.91 1/2/4 12.15/11.45/10.75

Cargo with
splitting 75,000 1347.8 228.32 523.44 1011.99 1/2/4 12.15/11.45/10.75

Saving rate 0.00% 0.00% 10.81% 2.03% 2.03% / /
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It can be seen from Figures 5 and 6 that the location scheme under the two models is
the same, the number of locations are both three, and the candidate distribution centers
No. 1, No. 2, and No. 4 are selected as the distribution center location scheme. Table 7
shows that in the case of using the same hybrid algorithm to solve the problem, if cargo
splitting is allowed, the vehicle dispatch cost, energy consumption cost of the distribution
vehicle, and carbon emissions generated in the distribution process can be reduced to a
certain extent. This is because when planning the distribution route scheme, if the demand
of a certain customer is added, and the cumulative customer demand is greater than
the vehicle load capacity, the customer point will not be considered without considering
cargo splitting, and the customer point is divided into another distribution vehicle to
generate a new route. However, in the scenario of considering cargo splitting, the demand
of the customer point will be split to complete the part of the distribution service of the
customer point. The above split operation can make full use of the distribution vehicle’s
capacity and improve the vehicle’s utilization rate, thus reducing the vehicle dispatch
and energy consumption costs generated by serving all customer points. As the carbon
emissions generated in the distribution process are related to fuel consumption, with the
reduction of energy consumption cost, carbon emissions in the distribution process are also
reduced accordingly.

At present, there have been a large number of research results on the split delivery
vehicle routing problem (SDVRP). It has been shown that the cost savings that can be
realized by allowing split deliveries are at most 50% [58]. Of course, some scholars have
pointed out the limitations of SDVRP, such as customer distribution determines perfor-
mance in split distribution, relative to vehicle capacity, the demand is too small to make
split delivery have a significant impact on the solution [59–61], etc. The model with cargo
splitting developed in this paper also has limitations. In the case of split distribution of
cargo studied in this paper, the customer demand is small, and the vehicle capacity is also
small. The results show that for these customers, the split distribution of cargo is effective.

Another limitation of the developed model in this paper is that the transit time was
not considered, and trans-shipment delays and heavy traffic can cause congestion and
increase carbon emissions [62]. Therefore, with the introduction of the traffic congestion
parameter λ, this paper briefly discussed the changes in carbon emissions after considering
traffic congestion in the case of cargo splitting, as well as the changes of carbon emissions
caused by cargo with splitting and cargo without splitting after considering traffic conges-
tion. Suppose that a certain road section is randomly congested, the average congestion
time is 0.1 h, and the carbon emission caused by traffic congestion is 0.8 kg/h. The results
are shown in Tables 8 and 9.

Table 8. Comparison of carbon emissions considering traffic congestion or not in the case of
cargo splitting.

Scenario
Construction

Cost
(USD)

DC Carbon
Emission

(kg)

Dispatch
Cost

(USD)

Energy Con-
sumption

Cost
(USD)

Distribution
Carbon

Emissions
(kg)

Yes 75,000 1347.8 257.43 550.29 1063.90
No 75,000 1347.8 228.32 523.44 1011.99

Table 9. Comparison of carbon emissions with and without cargo splitting considering traffic
congestion.

Scenario
Construction

Cost
(USD)

DC Carbon
Emission

(kg)

Dispatch
Cost

(USD)

Energy Con-
sumption

Cost
(USD)

Distribution
Carbon

Emissions
(kg)

Yes 75,000 1347.8 257.43 550.29 1063.90
No 75,000 1347.8 232.25 532.94 1030.36
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As can be seen from Tables 8 and 9, traffic congestion does have an impact on car-
bon emissions. The upper location selection and carbon emissions have not changed,
while the lower carbon emissions generated by distribution have significantly changed.
Under the case of considering cargo splitting, traffic congestion leads to an increase in
distribution of carbon emissions. Under the case of considering traffic congestion, split
distribution may not necessarily be the best option. Due to random congestion on road
sections, trans-shipment may pass through more congested road sections, resulting in more
carbon emissions.

5.2.2. Comparative Analysis of Solving Efficiency between ACO-TS and ACO

To verify the effectiveness of the ACO-TS algorithm designed in this paper, the ACO
without the TS algorithm is used to solve the bi-level programming model of LRPCS, and
the results are compared with the ACO-TS algorithm designed in this paper.

From the iterative convergence comparison diagram of the two algorithms (see Figure 7),
although the ACO-TS algorithm designed in this paper and ACO both iterated to about
210 times before the objective function value tends to be stable, the convergence trend of
ACO-TS is more obvious, and the objective function value is much smaller than the optimal
objective function value obtained by ACO. It shows that the hybrid algorithm designed in
this paper is obviously better than the ACO in the speed and efficiency of obtaining the
optimal solution.

Figure 7. Iterative convergence comparison graph of ACO-TS and ACO.

By outputting the results corresponding to the optimal objective function under the
above two algorithms, the location-routing scheme considering cargo splitting is shown
in Figures 8 and 9.

The specific results of the two algorithms for solving the LRPCS model are shown in
Table 10.

Figure 8. Location-routing scheme solved by ACO.
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Figure 9. Location-routing scheme solved by ACO-TS.

Table 10. Comparison of solution efficiency between ACO-TS and ACO.

Algorithm
Construction

Cost
(USD)

DC Carbon
Emission

(kg)

Dispatch
Cost

(USD)

Energy Con-
sumption

Cost
(USD)

Distribution
Carbon

Emissions
(kg)

ACO 75,000 1347.8 252.81 583.53 1128.15
ACO-TS 75,000 1347.8 228.32 523.44 1011.99

Saving rate 0 0 9.69% 10.3% 10.3%

As can be seen from Table 10, when using the ACO-TS algorithm designed in this
paper to solve the bi-level programming model of LRPCS, all aspects have been significantly
improved compared with the ACO. Among them, the optimized proportion of energy
consumption cost reached 10.3%, and the carbon emissions of the distribution process,
which is proportional to energy consumption, were reduced by 10.3%. The above reduction
in cost and carbon emissions is due to the fact that the distribution routing solution solved
by the ACO-TS algorithm is better.

To sum up, using the ACO-TS algorithm designed in this paper to solve the bi-level
programming model of LRPCS, the convergence speed and optimization ability of the
optimal solution are better than the ACO without the TS algorithm.

5.2.3. Emission Cap

Under different carbon emission caps, the impact of the emission cap policy on the
LRPCS is shown in Table 11.

Table 11. Location-routing results under different carbon emissions caps.

Cap
(kg)

Upper Total
Cost

(USD)

Lower Total
Cost

(USD)

Construction
Cost

(USD)

DC Carbon
Emission

(kg)

Dispatch
Cost

(USD)

Energy Con-
sumption

Cost
(USD)

Distribution
Carbon

Emissions
(kg)

0–2372.85 / / / / / / /

2372.86–6000 75,000 758.17 75,000 1347.8 227.99 530.2 1025.05

As can be seen from Table 11, changes in carbon emission caps generally do not lead
to changes in location and route decisions. (1) When the carbon emission cap is lower
than a specific value, no matter how the upper and lower decision-makers make decisions,
the problem is always unsolvable. The upper decision-makers give priority to maximize
their own interests when making decisions because the construction and operation costs of
different distribution centers vary greatly. They always choose the minimum cost location
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scheme to meet the distribution demand capacity when making location decisions, but
the reaction of lower-level decision-makers will also be considered. When the number of
selected locations is too small, increasing the route length will lead to an increase in carbon
emissions in the distribution process, and there may be no solution within a given carbon
emission cap. When the number of locations increases, the length of the vehicle route may
decrease, and the carbon emissions in the distribution process may reduce accordingly,
but the carbon emissions related to capacity in the upper level will increase, and the
construction cost of the upper level will increase greatly. Even if the upper decision-makers
sacrifice their own interests for the normal production and operation of the enterprise, the
total emissions of the logistics system still exceed the given cap, and the problem remains
unsolved. (2) When the carbon emission cap is higher than a specific value, the carbon
emission cap set at this time far exceeds the total carbon emission of the logistics system.
No matter how the carbon emission cap changes, it will not affect the location and route
decisions. Under the emission cap policy, enterprise activities should be carried out in
strict accordance with the government’s carbon emission restrictions, without additional
carbon emissions-related costs. In the context of loose carbon emission caps, when only
considering the changes of carbon emission caps, we can always find the same solution
that satisfies the upper and lower decision-makers at the same time and minimizes the cost
of the whole logistics system. The location decision of the upper level does not change,
and the minimum cost location scheme is always chosen to meet the distribution demand
capacity. At this time, because the carbon emission cap is relatively loose, the lower level
can always find the same route with the lowest carbon emissions.

Since the LRPCS under the emission cap policy studied in this paper only considers
the upper location cost, lower distribution cost, and carbon emission constraint, and does
not consider the carbon emission cost and other influencing factors, the emission cap policy
has little impact on the location-routing decision considering cargo splitting.

5.2.4. Carbon Tax

To study the influence of carbon tax policy on the LRPCS, the ACO-TS algorithm
designed in this paper was used to solve the CS model. Figure 10 shows the relationship
between the total carbon emissions of the logistics system and the carbon tax prices. As
can be seen from the figure, with the increased carbon tax price, the total carbon emissions
show a downward trend as a whole. This is because the higher the carbon tax price,
the greater the cost of emitting the same unit of carbon dioxide, which will promote the
choice of location-routing options with low carbon emissions to minimize the total cost.
However, there are volatility points in the diagram, and the fluctuation is due to the game
between the upper and lower decision-makers. The upper decision-makers consider the
interests of the lower decision-makers when optimizing their goals; however, when the
location changes, the increase of the lower carbon tax has less impact on the cost increase
of the whole logistics system than the increase of the upper construction cost, so the
upper decision-makers will not sacrifice their own interests and choose the decision that
minimizes the carbon emissions of the lower level. Instead, the decision is made with
the lowest cost at the upper level. When the price of the carbon tax is 1.5 USD/kg, the
carbon emission is obviously larger than that when the price is 1 USD/kg. This is because
the goal of optimization is to minimize the total cost. Although the carbon emissions and
corresponding energy consumption cost have increased due to the change of the routing
scheme, the dispatch cost has reduced; in fact, the total cost has been minimized. When
the price of the carbon tax is more than 4 USD/kg, carbon emissions decrease significantly,
whereas the price of the carbon tax at this time is significantly higher than the proposed
tax rates both domestically and globally (for example, the proposed carbon tariff in the
American Clean Energy and Security Act passed in 2009 is only 10~70 USD/ton). Therefore,
it can be considered that under a reasonable level of the carbon tax, the carbon tax policy
can effectively affect the location-routing decision considering cargo splitting.
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Figure 10. The relationship between total carbon emissions and carbon tax prices.

Figure 11 shows the relationship between the total cost of the upper and lower levels
and the price of the carbon tax. As can be seen from the figure, with the increased carbon
tax, the total cost of the upper and lower levels has increased because the cost of carbon
emissions per unit of carbon emission has increased, and the proportion of carbon emis-
sion costs to the total cost has increased. However, it is not proportional to the increase
because the total cost of the upper and lower levels is affected by location, dispatch, energy
consumption, and carbon emission costs. When the carbon tax rate increases, the unit
carbon emission cost will increase, but the location-routing scheme will change, and other
costs will fall, thus minimizing the total cost. From the increasing trend of the total cost
of the upper and lower levels, generally speaking, the impact of the carbon tax policy on
the total cost of the lower level is greater than that of the upper level. The construction
and operation cost of the upper distribution center is high, and the carbon emission cost
accounts for a low proportion of the total cost, whereas the lower distribution process has
a relatively small cost base and the carbon emission cost accounts for a relatively high
proportion. With the increased carbon tax price, the cost of carbon emissions accounts for a
larger and larger proportion, which has a greater and greater impact on the route choice
of the lower level. To minimize the total cost, the lower carbon emissions will relatively
decrease with the increased carbon tax, so the increasing trend of the lower total cost will
slow down with the increased carbon tax.

Figure 11. The relationship between the total cost of the upper and lower levels and carbon tax prices.

Figure 12 shows the percentage of the construction and operation cost of the distri-
bution center, carbon tax of the distribution center, dispatch cost, energy consumption
cost, and carbon tax generated by the distribution process in the total cost of the logistics
system under different carbon tax prices. After analysis, the following conclusions can be
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drawn: (1) The high construction and operation cost of the distribution center accounts for
the largest proportion of the total cost of the logistics system, which plays a decisive role
in the location decision of the distribution center. (2) With the increased carbon tax, the
proportion of the carbon emission cost caused by upper and lower carbon tax increases,
and the carbon tax has more and more influence on the LRP decision-making.

Figure 12. The proportion of each cost to the total cost under different carbon tax prices.

When the increased carbon tax reaches a certain critical value, logistics enterprises
will focus on reducing carbon emissions and adjust the location-routing scheme so that
the total cost of the logistics system will be reduced. A reasonable carbon tax policy will
prompt logistics enterprises to seek a balance between daily operating costs and carbon tax
costs to achieve emission reductions. Therefore, under the reasonable level of the carbon
tax, the carbon tax policy can effectively affect the location-routing decision considering
cargo splitting.

5.2.5. Carbon Trading

To explore the impact of carbon trading policy on the LRPCS, considering the impact
of different carbon trading prices and carbon emission caps on the LRP, the ACO-TS
algorithm designed in this paper was used to solve the CT model.

Figure 13 shows the relationship between the total cost of the logistics system and
carbon trading price and emission cap. As can be seen from the figure, the impact of carbon
trading price on the total cost is very obvious, and the higher the carbon trading price, the
greater the impact on the total cost. When the carbon emission cap is less than a specific
value (the intersection of all lines in Figure 13), that is, less than the carbon emissions
corresponding to the optimal location-routing scheme, the carbon trading price increases,
and the total cost quickly increases. When the carbon emission cap is greater than the above
specific value, the carbon trading price increases and the total cost will quickly decline. In
addition, when the carbon trading price is low, the carbon emission cap has little impact on
the total cost. With the increased carbon trading price, the impact of the carbon emission
cap on the total cost increases.
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Figure 13. The relationship between total logistics cost and carbon trading price and carbon emission
caps in the logistics system.

The above conclusions are explained in combination with Figures 14 and 15. When
the carbon emission cap is 1000 kg, the percentage of each cost to the total logistics cost
is shown in Figure 14. As can be seen from the figure, when the carbon trading price
is low, the trading cost or benefit brought by the carbon exchange is smaller relative to
the total cost, so it has little influence on the location-routing decision-making. However,
when the carbon trading price continues to increase, the cost or benefit brought by the
carbon exchange accounts for an increasing proportion of the total cost, so the total cost
will change dramatically with the trading price. For example, when the carbon trading
price is 0.05 USD/kg, the carbon trading cost only accounts for 0.09% of the total cost,
however when the carbon trading price rises to 7 USD/kg, the carbon trading cost accounts
for 11.21% of the total cost. Therefore, with the increased carbon trading price, the total
cost increases more and more sharply. When the carbon trading price is 5 USD/kg, the
percentage of each cost to the total logistics cost is shown in Figure 15. As can be seen from
the figure, with the increased carbon emission cap, the cost of carbon emissions continues
to decrease (the benefits continue to increase). When the carbon trading price is low, the
change is small, and when the carbon trading price increases, the change becomes larger.

Figure 14. The relation between the proportion of each cost and carbon trading price when the carbon
emission cap is 1000 kg.
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Figure 15. The relationship between the proportion of each cost and the carbon emission caps when
the carbon trading price is 5 USD/kg.

Figure 16 shows the relationship between total carbon emissions and carbon trading
prices and caps. Combined with Table 12, we can see that under different caps and different
carbon trading prices, the total carbon emissions change irregularly, but the total cost of
the whole logistics system decreases. This is because there is not only a game of carbon
emissions between upper-level decision-makers and lower-level decision-makers but also
a common goal of optimizing the total cost of the whole logistics system. Under the carbon
trading policy, enterprises have a certain emission cap, and when carbon emissions exceed
the cap, enterprises must purchase the emission balance, otherwise, their production and
operation will be restricted; however, if the carbon emissions do not exceed the given
cap, the enterprise can sell the saved emissions. Carbon trading costs or benefits must
be recorded in the total cost. Under the same carbon emission cap and carbon trading
price, the cost caused by the lower level exceeding the carbon emission cap or the benefit
generated by the lower level below the carbon emission cap has less influence on the total
cost of the whole logistics system compared with the increased upper-level construction
cost and consequent increased carbon emission cost. Therefore, to optimize the objectives of
upper- and lower-level decision-makers, the total carbon emissions under location-routing
decisions are not always the minimum. However, when the carbon emission cap is strictly
controlled (less than or slightly greater than the actual carbon emission), in most cases, the
higher the price of the carbon trading, the smaller the total carbon emissions generated
by the location-routing scheme as possible. When the carbon emission cap is much larger
than the actual carbon emission, the profit of lower carbon trading is greater than the lower
costs due to the increase of carbon trading price, so the carbon emission cap is less binding
on lower carbon emissions at this time.

Unlike the carbon tax, which is levied on all carbon emissions, the emission cost
generated under the carbon trading policy is only the part that exceeds the emission cap,
and if the emission is less than the cap, it can be sold to increase revenue. Therefore, the
emission-reduction intensity of the carbon trading policy within the reasonable carbon
price is less than the carbon tax policy; that is, it has a certain impact on the location-routing
decision considering cargo splitting.
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Figure 16. The relationship between total carbon emission and carbon trading price and carbon
emission caps.

5.2.6. Carbon Offset

To explore the impact of the carbon offset policy on the LRPCS, considering the impact
of different carbon offset prices and carbon emission quotas on the LRP, the ACO-TS
algorithm designed in this paper was used to solve the CO model.

Figure 17 shows the relationship between the total cost of the logistics system and
carbon offset price and quota under the carbon offset policy. When the emission cap is less
than the minimum carbon emission (the intersection of the lines in the figure), the change
rule of the total cost is similar to that under the carbon trading policy. When the actual
carbon emission is less than the carbon emission quota, the CT model is equivalent to the
CO model. When the carbon emission quota is greater than the actual carbon emissions,
there is no cost of carbon emissions under the background of the carbon offset policy. No
matter how the carbon offset price changes, it no longer has an impact on the decision-
making of the LRP. At this time, all location-routing schemes are the same, so the total cost
is the same.

The relationship between the total carbon emissions of the logistics system under
the carbon offset policy and the carbon offset price and cap is shown in Figure 18. When
the emission cap is less than the minimum carbon emission (the carbon emission cap
corresponding to the red dotted line in the figure), the change rule of total carbon emission
is similar to that under the carbon trading policy, and the reason is the same as the change
of total cost trend. When the carbon emission cap is slightly larger than the optimal route
of carbon emissions, the carbon emission price and quota no longer have a regular impact
on the location-routing decision because the enterprise cannot sell the excess emissions.
When the carbon emission cap is much larger than the minimum carbon emission (that is,
there is no cost due to carbon emissions), the carbon offset price and cap do not affect the
location-routing decision. Currently, the location-routing scheme under different carbon
offset prices is the same, so the carbon emissions are the same.



Mathematics 2021, 9, 2325 30 of 34

Table 12. The relationship between total cost and total carbon emission and carbon trading.

Carbon Trading
Price (USD/kg)

Cap
(kg)

Total Carbon
Emission

(kg)

Total Cost
(USD)

0.05

0 2416.39 75,918.92
1000 2356.50 75,824.46
2000 2326.02 75,740.59
3000 2360.53 75,733.60
4000 2334.36 75,665.24
5000 2369.62 75,634.13
6000 2361.82 75,589.02

0.5

0 2396.07 76,974.76
1000 2370.39 76,452.01
2000 2401.51 75,983.69
3000 2341.69 75,421.51
4000 2363.90 74,944.65
5000 2402.83 74,492.75
6000 2377.38 73,945.56

1

0 2380.48 78,142.28
1000 2376.29 77,143.81
2000 2332.61 76,059.78
3000 2364.10 75,135.99
4000 2367.24 74,136.76
5000 2368.16 73,126.85
6000 2405.62 72,182.64

3

0 2384.26 82,929.94
1000 2343.59 79,787.37
2000 2354.24 76,828.14
3000 2350.49 73,811.49
4000 2387.215469 70,949.81
5000 2398.645212 67,970.69
6000 2471.73856 65,267.66

5

0 2348.56 87,497.40
1000 2389.33 82,723.63
2000 2347.29 77,492.14
3000 2326.02 72,354.39
4000 2365.14 67,583.22
5000 2402.31 62,800.40
6000 2534.36 58,535.47

7

0 2342.258 92,136.35
1000 2366.42 85,321.37
2000 2361.84 78,300.65
3000 2382.26 71,455.37
4000 2414.14 64,686.35
5000 2412.14 57,672.84
6000 2528.50 51,567.05

Unlike the carbon tax, which is levied on all carbon emissions, under the carbon offset
policy, only the part of carbon emissions that exceed the emission cap will result in the
cost of carbon emissions, and the saved carbon emission cannot be sold. Therefore, in
the reasonable carbon offset price, the emission-reduction strength of the carbon offset
policy is weaker than the carbon tax policy and carbon trading policy, but it is stronger
than the emission cap policy; that is, it has a weak impact on the location-routing decision
considering cargo splitting.
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Figure 17. The relationship between total logistics cost and carbon offset price and carbon emission
caps in the logistics system.

Figure 18. The relationship between total carbon emission and carbon offset price and carbon
emission caps in the logistics system.

6. Conclusions

To achieve sustainable development, the policies formulated by the government will
have an impact on all aspects of enterprise decision-making [63–65]. This paper discussed
the influence of specific low-carbon policies on the LRPCS and provided suggestions and
references for the government to formulate relevant low-carbon policies. We drew the
following conclusions.

First, when only one influential factor of the carbon emission cap is considered, the
emission cap policy has little influence on the location-routing decision considering cargo
splitting. When it is lower than a specific value, no matter how the upper- and lower-level
decision-makers make decisions, the problem always remains unsolved. When it is higher
than a specific value, no matter how the carbon emission cap changes, it will not affect the
location and route decisions.

Second, under the policies of carbon tax, carbon trading, and carbon offset, if the tax
rate is smaller or the price of carbon trading (carbon offset) is lower, the cost of carbon
emissions accounts for a smaller proportion of the total cost. Therefore, the simple pursuit
of emission reduction will not reduce the emission cost too much but may lead to the
increase of other costs. Currently, the impact of these three policies on the location-routing
decision considering cargo splitting is not significant. If the carbon tax rate is raised to
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a higher level under the carbon tax policy, or the price of carbon trading (carbon offset)
is raised to a higher level while the carbon emission quota of enterprises is controlled at
an appropriate level under the carbon trading (carbon offset) policy, enterprises can take
positive measures to reasonably plan the location-routing scheme to reduce the total carbon
emissions and realize green logistics on the premise of minimizing the cost.

Lastly, for the government, when formulating low-carbon policies or measures related
to the logistics industry, we can consider the carbon tax policy as the main policy, while tak-
ing emission cap, carbon trading, carbon offset, and other auxiliary measures to effectively
guide the low-carbon development of the logistics industry. For logistics enterprises, when
formulating the location-routing strategy, it is necessary to fully consider cargo splitting
distribution and make rational use of vehicle resources according to the specific carbon
policy of the region to make an economical, reasonable, low-carbon, and environmentally
friendly location-routing decision.

This study explored the bi-level programming model of LRPCS under the low-carbon
policies, but only considered the carbon emissions related to the capacity of the distribution
center and carbon emissions caused by the fuel consumption of distribution vehicles. In the
actual logistics system, many factors produce carbon emissions, such as carbon emissions
from engineering construction and equipment operations, which should be considered
in the future. This paper selected four common carbon emission policies: emission cap,
carbon tax, carbon trading, and carbon offset, to analyze the impact of these low-carbon
policies on the LRPCS and provide some suggestions. However, as both domestic and
overseas policies are still in their trial or initial stages, the kinds of low-carbon policies the
transportation and logistics industries will adopt in the future or whether the government
will promulgate new policies and measures have not been determined. Therefore, the
kind of impact the new policies and measures will have on the industry is a realistic topic
worthy of follow-up studies.
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