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Abstract: This study was conducted to investigate the applicability of measuring internet traffic
as an input of short-term electricity demand forecasts. We believe our study makes a significant
contribution to the literature, especially in short-term load prediction techniques, as we found that
Internet traffic can be a useful variable in certain models and can increase prediction accuracy
when compared to models in which it is not a variable. In addition, we found that the prediction
error could be further reduced by applying a new multivariate model called VARX, which added
exogenous variables to the univariate model called VAR. The VAR model showed excellent forecasting
performance in the univariate model, rather than using the artificial neural network model, which
had high prediction accuracy in the previous study.

Keywords: electricity load; internet traffic; VARX

1. Introduction

As electricity demand grows globally, load demand forecasting has become an im-
portant factor in many aspects of energy production and delivery. The time horizons for
forecasting are classified as short-, medium-, or long-term. Short-term forecasting (STLF)
refers to hourly forecasts, medium-term forecasting (MTLF) for a week to a month, and
long-term forecasting (LTLF) for over a year [1]. STLF is mainly used in the operational
phase, while LTLF is used in the planning phase. Before information and communication
technologies (ICT) and smart grids were developed, forecasting was based primarily on
supply-side aggregated data, in top-down formats at large governmental levels. However,
owing to recent the development of smart-grid technology, it has become possible to con-
sider end-user demand through a bottom-up approach [2], which can now be applied to
STLF. Thus, these technologies have expanded their roles by undertaking the responsibility
of forecasting load demand from energy suppliers to consumers.

Summer and winter temperatures are becoming more extreme with rapid climate
change, and demand is increasing because of the operation of energy-intensive devices
such as air conditioners and heating appliances. In addition, load demand is increasing in
buildings and parking lots, because of the surge in electric vehicle (EV) sales [3]. Further-
more, Internet traffic is continuously increasing because of the growing global popularity of
smartphones and other Internet communication devices. The Internet makes it possible to
find information, send emails, share photos and videos, manage bank accounts, as well as
enable access to home network devices remotely. This high demand can also be attributed
to the process of traffic delivery and data storage [4].

From a supplier’s point of view, as renewable energy (RE) replaces energy produced
from nuclear power, it has become more important to control supply and demand ac-
curately [5]. However, the energy supply uncertainty has become an issue, because RE
increases energy supply variability according to factors such as season, temperature, pre-
cipitation, cloud cover, and wind speed. The changing pattern of supply and demand
has a direct impact on power production, as well as on relative energy prices, power rate
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settings and government policies. Accurate STLF is therefore an important foundation for
the economic, administrative and policy sectors.

Thus, the combination of technology developments, environmental issues, and energy
policies for EV, RE, and ICT have made STLF a critical issue in energy markets. Poor
STLF can cause energy loss when the demand is overestimated, and blackouts when
underestimated, which directly affects economic issues. Therefore, various STLF methods
have been studied in recent decades.

Forecasting methods are classified into statistical and non-statistical methods, accord-
ing to the underlying technique. Statistical methods generate mathematical equations
from existing historical data, to estimate model parameters and produce predictions.
These methods include autoregressive integrated moving average (ARIMA) models [6,7],
Reg-SARIMA-general autoregressive conditional heteroscedasticity (GARCH) models [8],
exponential smoothing methods [9], time series models for series exhibiting multiple
complex seasonality (TBATS) [10], regression models [11], support vector machine (SVM)
models [12,13], fuzzy models [14,15], and Kalman filters [16].

On the other hand, AI-based techniques are known to have high predictive power.
They are mainly suitable for nonlinear data because of their nonlinear and nonparametric
function characteristics. Many studies using neural network models have been pub-
lished [17,18]. The recent studies are briefly reviewed here.

For example, Elamin and Fukushige [19] described the SARIMA model with multiple
exogenous variables such as temperature, humidity, and monthly, weekly, and hourly
dummies. To explain the cross-effects between weather and seasonal factors, combinations
of the main effects are considered as interaction variables. Models with interaction terms
improved the accuracy of the forecasts.

Sadaei et al. [20] presented a combined method based on the fuzzy time series (FTS)
and convolutional neural networks (CNNs) for STLF. The multivariate time series of load
demands and temperatures were converted into multi-channel images, and the accuracy of
the FTS-CNN model was higher than others.

Al-Musaylh et al. [21] compared multiple data-driven models, such as multivariate
adaptive regression spline (MARS), support vector regression (SVR) and ARIMA models,
in STLF over forecast horizons. The MARS model showed greater accuracy for 0.5 h and
1.0 h forecasting. However, the SVR model performed better in 24 h forecasting.

Yang and Yang [22] suggested STLF methods for selecting optimal input features
(i.e., feature selection, FS) rather than establishing models. Given that the least squares
SVM (LSSVM) can solve complex nonlinear problems, a hybrid model combining the auto
correlation function FS model and LSSVM regression was applied in STLF.

Singh and Dwivedi [23] implemented a follow-the-leader scheme with a neural net-
work model for STLF, to overcome the problem of overfitting in traditional neural network
models. The proposed algorithm was found to outperform the artificial neural network
(ANN) and genetic algorithm (ANN-GA), ANN and Jaya algorithm (ANN-Jaya), ANN
and PSO algorithm (ANN-PSO), and back propagation neural network (BPNN) models.

Li et al. [24] presented a subsampling strategy for the SVR ensemble forecast method,
to improve the accuracy and efficiency in computation. Point estimations were computed,
along with confidence levels, to overcome the uncertainty of the forecasts.

Shah et al. [25] attempted to decompose the log demand into deterministic (trend,
multiple periodicities) and stochastic parts. To estimate each element from the components
of the log transformed data, the autoregressive (AR), non-parametric AR, autoregressive
moving average (ARMA), and vector AR (VAR) models were compared. The results
showed that the multivariate time series forecasting was superior in accuracy.

Kim et al. [26] comprehensively compared multiple time series (i.e. SARIMA, ARIMA-
GARCH and exponential smoothing) and AI-based (i.e.,ANN) methods for STLF over 1 h
to 1 day forecasting horizons. It was shown that the optimal model was the ANN model
with external variables for weather and holiday effects over the time horizons.
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Muzaffar and Afshari [27] studied long short-term memory (LSTM) networks, which
are a special type of recurrent neural network, and applied them in learning the long-term
dependencies in STLF. Global horizontal, direct normal, and diffused horizontal irradiance,
as well as temperature, humidity, and wind speed variables, were considered as potential
exogenous variables. Only temperature was applied as a dependent variable, in terms of
reducing computational costs. It was shown that LSTM outperforms other methods, such
as ARMA, SARIMA, and ARMA with exogenous variables.

Zhu et al. [28] proposed a new weather forecasting technique generated with the
dry-bulb temperature profile, relative humidity, and global solar radiation. Then, some of
the ranked influential factors were filtered. The final input variables were grouped and
applied in an ANN model with back-propagation.

Reddy [29] proposed a Bat algorithm-based back-propagation approach for STLF,
with weather factors such as temperature, humidity, and dew point; the best results were
obtained in a case study considering temperature and humidity.

J. Morley et al. [30] suggested that understanding Internet traffic usage patterns may
lead to simulating the electricity load demand area because Internet networks such as
mobile, ICT-related devices, and PCs consume electricity. This phenomenon has become
more important as network-based infrastructures grow.

Kim [31] proposed Internet traffic forecasting models using an AR-GARCH error
model with seasonal ARIMA models. This motivated our study to build various forecasting
models considering Internet traffic data.

As outlined above, some of the common external variables used in these studies
include weather and socio-economic variables. As smart grid technology quickly advances,
electronic device usage data, as well as non-electronic data, such as meteorological or
economic variables, can be easily accessed by region. Many attempts have been made
to keep up with the technologies; however, at the time of writing, no clear studies have
considered Internet traffic data to forecast load demand. In this study, we have adopted
Internet traffic data as an external variable in an ARIMA-based model, and as a dependent
variable in a vector AR with exogenous variables (VARX) model. Although the AI-based
models are widely used for producing accurate forecast results, it is difficult to discover
inference about the variables. Therefore, we demonstrate several representative statistical
forecasting methods, and adopt them in a smart grid environment.

The contributions of this paper are presented as follows.

• The existing STLF for load demand is limited to considering only predictor variables
such as weather, holidays, and weekends. Thus, we present the effectiveness of
considering Internet traffic data as a dependent variable in a multivariate time series
forecasting method, and also as an external variable in univariate methods.

• Moving-window prediction techniques were used in STLF to determine which models
are superior in the interval k unit from the basic 15 min to 2 h forecasting, and whether
the superior models exhibit robustness through these time horizons.

The remainder of this paper is organized as follows. Section 2 introduces the models
used in this study. Section 3 describes the data and analysis. Section 4 presents the
performance evaluations. Section 5 concludes the paper.

2. Time Series Model
2.1. Taylor’s Double Seasonal Exponential Smoothing Method

Taylor [32] introduced an extended version of the Holt–Winters double seasonal
method, to address multiplicative seasonality. This model also assumes that the process of
white noise is correlated.

Lt = α(yt − St−s1 − Dt−s2) + (1− α)(Lt−1 + Tt−1) (1)

Tt = β(Lt − Lt−1) + (1− β)Tt−1 (2)

St = γ(yt − Lt − Dt−s2) + (1− γ)St−s1 (3)
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Dt = δ(yt − Lt − St−s1) + (1− δ)Dt−s2 (4)

Ft+h = Lt + Tt × h + St+h−s1 + Dt+h−s2 (5)

where yt represents the actual value of demand, St represents the seasonal component
observed over time t (t = 1, 2, . . . , T), and s1 and s2 are double seasonal cycles. The
components Lt and Tt are the level and trend components of the series at time t, respectively.
The coefficients α, β, γ and δ are smoothing parameters. Ft+h is the predicting value of h
ahead from time t.

The initial values are calculated as follows:

Ls1 =
1
s1

s1

∑
t=1

yt , Ls2 =
1
s2

s2

∑
t=1

yt (6)

Ts1 =
1

s1
2

(
2s1

∑
t=s1+1

yt −
s1

∑
t=1

yt

)
(7)

Ts2 =
1

s22

(
2s2

∑
t=s2+1

yt −
s2

∑
t=1

yt

)
(8)

S1 = y1 − Ls1 , · · · , Ss1 = ys1 − Ls1 (9)

D1 = y1 − Ls2 , · · · , Ss2 = ys2 − Ls2 (10)

The Ft+h formula of the Taylor’s method is expressed as

Ft+h = Lt + Tt × h + St+h−s1 + Dt+h−s2 (11)

+ φh[yt − Lt−1 − Tt−1 − St−s1 − Dt−s2 ] (12)

where φ represents the adjusted first-order coefficient, and the smoothing parameters are
given by α, β, γ, δ, and φ.

2.2. Reg-ARIMA-GARCH Model

First, we introduce the basic ARIMA model. The ARIMA model has undergone
various developments and was once a benchmark model for time series analysis and
forecasting [33]. Once the stationary assumption of the data is confirmed, various time
series data are explained with different non-seasonal (p, q) orders and seasonal (P, Q) orders
of ARIMA. When series {yt|t = 1, 2, · · · , T} follows ARIMA(p, d, q)(P, D, Q) with a mean
of µ, the time series takes the form

φp(l)ΦP(ls)(1− l)d(1− ls)Dyt = θq(l)ΘQ(ls)εt (13)

where yt represents the actual value of demand (in kilowatts) observed at time t (t =
1, 2, . . . , T), and εt represents the random errors assumed to be white noise during t, with a
mean of zero and a constant variance of σ2; p, d and q are integers and orders of the model;
φp(l) = 1− φ1l− · · · − φplp, where p denotes the degree of the non-seasonal autoregressive
polynomial; θq(l) = 1− θ1l − · · · − θqlq, where q is the degree of the non-seasonal moving
average polynomial; for the seasonal operators, ΦP(ls) = 1−Φ1ls − · · · −ΦPlPs, where P
denotes the degree of the seasonal autoregressive polynomial; and ΘQ(ls) = 1−Θ1ls −
· · · − ΘQlQs, where Q denotes the degree of the seasonal moving average polynomial.
The terms (1− l)d and (1− ls)D are the non-seasonal and seasonal difference operators of
order d and D, respectively; s is a seasonal cycle.

Next, the external variables are considered to explain the many factors that affect
electricity load demand, including holidays, temperature, and socio-economic variables.
Typically, climate-related variables are regarded as important factors, imposing high de-
mand on electrical appliances such as heating systems in winter and air conditioning in
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summer. In this study, temperature, and weekend and holiday indices were included as an
explanatory variable in the model.

The Reg-ARIMA model is a regression ARIMA model with error terms [34]. When
the series {yt|t = 1, 2, · · · , T} follows the Reg-ARIMA model with k number of predictors,
the time series takes the form

φp(l)ΦP(ls)(1− l)d(1− ls)D

(
yt −

k

∑
i=1

βiχti

)
= θq(l)ΘQ(ls)εt (14)

where β is the coefficient of predictors χti.
The basic ARIMA models can be specifically used under the assumption of constant

variance. To adjust the fluctuations of the time series, Engle [35] proposed the autoregres-
sive conditional heteroscedasticity (ARCH) model. Bollerslev [36] extended it as the general
ARCH (GARCH) model, whose main feature is that it can handle data with heavier-tailed
error distributions. The error term of the ARIMA-GARCH model is defined as

εt = ztσt , zt ∼ iid with E(zt) = 0, Var(zt) = 1 (15)

σ2
t = a0 +

s

∑
i=1

aiσ
2
t−i +

r

∑
j=1

bjσ
2
t−j (16)

where r and s are the orders of the GARCH and ARCH processes, respectively; a0, ai
and bj are constants; εt is the error term; σ2

t is the conditional variance of εt; and zt is a
standardized error term.

2.3. VARX Model

Sims [37] introduced the VARX model, a method used to analyze the relationship
between multivariate influencing variables. The model is a combination of several AR
models, where these models form a vector between the variables affecting each other.
The VAR model is a quantitative forecasting approach usually applied to multivariate
time-series data.

The VARX(p) model is defined as

yt =
p

∑
i=1

Φiyt−i +
s

∑
i=0

Θ∗i xt−i + εt (17)

where yt = (y1t, y2t, . . . , ykt)
′ is a vector of multivariate time-series variables, and xt =

(x1t, x2t, . . . , xrt)
′ is a vector of exogenous variables; Φi and Θ∗i are matrix coefficients;

yt and xt are (k× 1) and (r × 1) column vectors, and Φi and Θ∗i are (k× k) and (k× r)
matrices, respectively; and εt = (ε1t, ε2t, . . . , εkt)

′ is a noise process vector that has a zero
mean and is independent during t.

3. Data Description and Analysis
3.1. Electricity Load Data

The electricity load data were obtained from Chung-ang University, Seoul, Korea.
They were collected at 15 min intervals during the period from 20 April to 21 June 2019.
There are a total of 6048 data points. The total floor area of the buildings is approximately
182,730 m2. The campus has 25 buildings comprising research facilities, administrative
offices, classrooms, cafeterias, and dormitories. Figure 1a shows a general time series
profile of the load data. The electricity load demand shows daily and weekly patterns. It is
clear that the Monday through Friday demand is higher than that of the weekend. There is
also a decline pattern for the day during national holidays. Figure 1b shows a time-series
plot of log-transformed data; it was used as a dependent variable instead of the original
series to make an assumption of homoscedasticity in the ARIMA-GARCH models and the
VAR model.
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Figure 1. Electricity load demand plot in (a) Original and (b) Log-transformation.

3.2. Internet Traffic Data

The Internet traffic data were obtained from the same campus buildings, over the same
period. However, they were collected at 5 min intervals. The data were aggregated into 15
min intervals to ensure comparability to those of the electricity load variable. Figure 2a
shows the time series plots of the Internet traffic data. It shows cyclic patterns for the days
and weeks, with clearer patterns revealed between weekdays and weekends, compared to
Figure 2a. The series was also log-transformed, as shown in Figure 2b. The data were used
as an exogenous variable in the Reg-ARIMA-GARCH models, and as a dependent variable
in the VAR model.
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3.3. Temperature Data

Weather variables have been widely studied as important variables that may have a
great impact on electricity load demand. A positive correlation relationship exists between
the temperature and the demand during summer, because of the increased use of air
conditioning. However, temperature is also correlated with high demand as temperatures
fall during winter, because of the use of heating appliances.

Thus, the relationship between temperature and demand is usually negative in winter,
compared to that in summer. Therefore, heating and cooling degree day indices are derived
over a half year, to explain such opposite directions of correlation. However, the data
used in this study cover April through June (spring in Korea). It was considered that the
original temperature data were appropriate for use as an exogenous variable. The data
were obtained from the Korea Meteorological Administration as predictor values in the
Reg-ARIMA-GARCH models and the VARX model.
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3.4. Special Days

To fit the different patterns in demand on weekends and holidays, dummy variables
for these days were created. These were applied in the Reg-ARIMA-GARCH models and
VARX model, as a predictor variable.

3.5. Data Analysis

The 6048 data observations (9 weeks) were divided into 7 weeks of training data, with
the rest for validation. In this study, moving window forecasting methods were considered,
and the optimal number of parameters, at each k step, was identified according to the
Akaike information criterion for the ARIMA-based models, and to the Schwarz criterion
(SC) for the VAR model. Thus, the models are recursively updated to forecast at each
training set. Tables 1–4 represent the examples of estimated parameters and the results for
assumptions in the training set.

Table 1. Parameter estimations of Taylor’s adjusted double seasonal exponential smoothing model.

Parameter Estimate

α (level) 0.4750
β (trend) 5.8731 × 10−8

γ (seasonal 1) 0.3831
δ (seasonal 2) 0.4049

φ 0.6458

Table 2. Parameter estimations of the ARIMA(3, 0, 1)(0, 1, 0)s=96 −GARCH(1, 1) model.

Parameter Estimate

c −0.0292
φ1 1.1161
φ2 −0.2506
φ3 −1.1474
θ1 0.3474
a0 0.0001
a1 0.1850
b1 0.6078

Table 3. Parameter estimations of the ARIMA(3, 0, 1)(0, 1, 0)s=96 −GARCH(1, 1) model with tem-
perature, weekend, and holiday variables.

Parameter Estimate

c −0.0321
φ1 0.6447
φ2 0.0673
φ3 0.0682
θ1 −0.6719

βtemperature 0.0017
βweekend −0.0070
βholiday −0.0010

a0 0.0001
a1 0.1842
b1 0.6042
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Table 4. Parameter estimations of the ARIMA(2, 0, 2)(0, 1, 0)s=96 −GARCH(1, 1) model with tem-
perature, weekend, holiday, and Internet traffic variables.

Parameter Estimate

c −0.0322
φ1 0.6445
φ2 0.0672
θ1 0.0683
θ2 −0.6716

βtemperature 0.0017
βweekend −0.0010
βholiday −0.0069
βinternet 0.0001

a0 0.0001
a1 0.1841
b1 0.6045

Table 1 indicates the estimated coefficients for Taylor’s double seasonal exponential
smoothing method. We took the double seasonal cycles to describe a day (s1 = 96) and a
week (s2 = 672).

The residuals from ARIMA-fitted values were checked to see if there was a het-
eroscedasticity in the case of basic ARIMA models: (1) without any predictor variables;
(2) with temperature and special-day variables and (3) with temperature, special-day, and
Internet traffic variables. Although the Ljung-Box Q-statistics show that the standardized
residuals were insignificant for the ARIMA models (1) p = 0.5735, (2) p = 0.5551, (3) p =
0.7010), it was shown that there is heteroscedasticity from the same results on the squared
standardized residuals (1) p < 0.0001, (2) p < 0.0001, (3) p < 0.0001). To ensure that there
are ARCH effects in the model, Engle’s Lagrange multiplier tests were additionally con-
ducted. The tests proved that the volatilities need to be fitted by the GARCH term in the
ARIMA-based models.

Tables 2–4 show the estimated coefficients from the ARIMA-GARCH model for the
same cases as the ARIMA models. Here we can interpret how much each exogenous
variable impacts the demand by coefficients. For example, Table 4 shows that more
demand was observed as temperature or Internet traffic increased. On the other hand, less
demand was observed on weekends and holidays.

Rather than considering the Internet traffic data as one of the input variables in the
models, we tried to forecast the electricity load demand and the Internet traffic demand
using the VAR model. Before fitting the model, the augmented Dickey–Fuller (ADF) test
was conducted to determine if the main dependent variables had a unit root. The log-
transformed series datasets were used for the test, setting trends and intercepts in both
series. The optimal lag length was automatically selected based on the SC. Given that
Table 5 indicates that those two series were stationary, there is no need to perform a further
Johansen’s cointegration test. To clarify the stationary assumption, the ADF test for the
series, with the option having intercepts without trends, was conducted. In addition, the
null hypothesis of non-stationarity was rejected in both series. Therefore, the VARX model
was deemed an appropriate method. Table 6 shows the estimated coefficients matrix from
the VAR model with temperature and special-day variables.

Table 5. Augmented Dickey–Fuller (ADF) test of log-transformed Electricity Load and Internet
traffic data.

Variable t-Statistics 1% Critical
Value

5% Critical
Value p-Value

Electricity load −15.0217 −3.9596 −3.4105 <0.0001
Internet traffic −12.3736 −3.9596 −3.4105 <0.0001
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Table 6. Parameter estimations of VARX(4,0) model.

Parameter Estimate

yload(t−1) 1.3210
yinternet(t−1) 0.0053

yload(t−2) −0.1419
yinternet(t−2) −0.0047

yload(t−3) 0.0100
yinternet(t−3) 0.0021

yload(t−4) −0.1982
yinternet(t−4) −0.0057

c 0.1169
s(t−1) −0.0033
s(t−2) −0.0022

βtemperature 0.0004
βweekend −0.0044
βholiday −0.0029

4. Performance Evaluations

This section discusses comparisons of the various models performed using mean-
absolute-percentage-error (MAPE) and root-mean-square error (RMSE). These evaluation
methods are widely used to evaluate model performance, especially for STLF.

MAPE is defined as

MAPE =
100
n

n

∑
t=1
|(yt − ŷt)/(yt)| (18)

where yt is the actual value and ŷt is the forecasted demand at time t. The equation of
RMSE is given by

RMSE =

√
1
n

n

∑
t=1

(ŷt − yt)
2 (19)

Here we also obtained the accuracy results of the Internet traffic from the VAR model,
but given that the main purpose of our study is to forecast electricity load demand, we
only discuss the results of the power demand. Table 7 presents the MAPE results in
the validation set at k steps ahead. It shows that the VARX model is superior to other
models, through all steps. The second-best model was the ARIMA-GARCH model (3), with
temperature, special-day, and Internet traffic variables; it showed higher accuracy than the
other ARIMA-GARCH models that did not consider Internet traffic values as an input.

Table 7. Forecast performance evaluation by MAPE.

k

Taylor’s
Exponential
Smoothing

Method

GARCH-ARIMA Models

VARX
Model

(1) Without
Any

Predictor
Variables

(2) With
Temperature
and Special

Day
Variables

(3) With
Temperature,
Special Day,
and Internet

Traffic
Variables

1 12.59 5.49 5.05 4.48 1.29
2 12.78 5.85 5.38 4.88 2.23
3 12.99 6.65 6.07 5.74 3.16
4 13.21 6.80 6.21 5.80 4.06
5 13.44 7.22 6.64 6.26 4.99
6 13.67 8.03 7.14 6.75 5.91
7 13.88 8.62 7.65 7.29 6.86
8 14.06 9.13 8.15 7.81 7.75
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Table 8 shows the validation RMSE values; the performance of the VARX and GARCH-
based models showed the same patterns as those for the MAPE. However, in the case of
comparing the exponential smoothing method to ARIMA model (1), without any predictor
variables, the ARIMA model showed better performance than that of the Taylor’s model.
That is, it is preferred to fit ARIMA models for univariate datasets.

Table 8. Forecast performance evaluation by RMSE.

k

Taylor’s
Exponential
Smoothing

Method

GARCH-ARIMA Models

VARX
Model

(1) Without
Any

Predictor
Variables

(2) With
Temperature
and Special

Day
Variables

(3) With
Temperature,
Special Day,
and Internet

Traffic
Variables

1 188.98 67.72 61.93 57.81 16.86
2 189.53 70.30 65.32 61.48 29.29
3 190.26 79.37 73.93 70.98 41.48
4 191.27 78.88 73.68 70.43 53.26
5 192.43 84.45 78.26 75.34 64.63
6 193.56 90.16 83.27 80.60 75.84
7 194.78 95.76 88.59 86.29 86.39
8 196.11 101.73 93.93 91.87 96.66

Figures 3–6 show graphical model performances stratified by day type (Figures 3 and
4) and quarter-hour (Figures 5 and 6) for the MAPE and RMSE for 1 h and 8 h forecasts,
respectively. Here, we only compare three representative models: Taylor’s exponential
smoothing method, ARIMA-GARCH 3, and VARX models; and we assume four variables
were available: temperature, special day, Internet traffic, and Electricity load demand.
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Figure 3 represents accuracy plots categorized by day type for 15 min forecasting.
Special days were excluded in the day type stratification because there were no holiday
seasons in the test set period. The VAR model shows the lowest error regardless of the day
type, in terms of MAPE and RMSE. However, forecasts on weekdays were less accurate in
ARIMA and VAR models, while the GARCH model shows the opposite.

Figure 4 shows the accuracy plots by day type for 2 h forecasting. It shows similar
patterns to that of the 15 min forecasting, but the VAR model show less accuracy in weekday
results. If the forecasting horizons are very short (k = 1), then the VAR model should be
suggested. However, if the horizons are short (k = 8), the ARIMA-GARCH model is worth
consideration.

Figure 5 shows accuracy plots categorized by quarter-hour forecasting. Notably, the
x-axis sequence of 1 to 96 corresponds to 00:15 a.m. to midnight. Forecasts prove less
accurate between 9:00 a.m. to 10:45 a.m. (x = 32–39) when the morning classes begin.
Although the GARCH and VAR models show better performances in the afternoon, the
ARIMA model shows continuously poor results until night. The VAR model outperforms
during general hours, but the accuracies of the GARCH model diminishes again between
07:00 p.m. to 10:30 p.m. (x = 72–86).

Figure 6 shows the accuracy plots for 2 h forecasting. The ARIMA and GARCH
models show similar patterns to the 15 min forecasting. However, the performance of the
VAR model is poor as it is best suited to very short-term forecasting. As seen in Figure 4,
the ARIMA-GARCH model provides higher accuracy than the VAR model.

Figure 7 represents the actual values of the day after the national holiday from the vali-
dation set to compare the predicted values from each model. The 15 min (k = 1) forecasting
does not show much difference in general, but Taylor’s model showed underestimated
in terms of level. The 2 h (k = 8) forecasting also shows that Taylor’s model significantly
underestimates predicted values above the others. We assume the main reason for this is
the fact that Taylor’s model cannot apply the exogenous variables such as a special day.
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5. Concluding Remarks

Accurate STLF is a critical issue for decision makers and power generation companies
in terms of policy making and development planning. Thus, many attempts have been
made to improve the performance of electricity load prediction. This study examined the
relevant time series methods for short-term forecasting of electricity load demand through
15 min to 2 h time horizons, in an institutional campus in Seoul. Taylor’s double seasonal
exponential smoothing methods, ARIMA-GARCH models, and the VARX model were
used for optimization. In this study, these models provided the lowest MAPEs and RMSEs
from 15 min (k = 1) to 2 h (k = 8) forecasting.
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The results show that the VAR model is superior to the other univariate models
through all steps. Taking the indirect variable as another dependent variable, rather than
applying it as input values, provided high accuracy as well as the advantage of time
efficiency, with a multivariate model. However, caution must be applied when using the
VAR model, by checking the series are stationary and if not, a further cointegration test is
required. Sometimes the cointegrated relationship shows up in the same variables with
longer data sets, with lower frequency. If this is the case, the vector error correction model
is considered the appropriate method. It is known that sometimes it shows strong evidence
in the relationship between multivariate variables, depending on the length, or time, unit
of the datasets.

The second-best model was the ARIMA-GARCH with Internet traffic, temperature and
special-day predictors. It demonstrated that Internet traffic data are useful as input values,
even in univariate models. The results were not always good when fitting volatilities,
with the GARCH term in the ARIMA models through all steps, even though the ARCH
effects tests indicated heteroscedasticity in the data. However, the data in this study were
appropriate for STLF, by fitting GARCH models including the Internet traffic usage data.

In buildings that do not offer Internet traffic data, it is worth considering finding a
potential dependent variable in a multivariate model such as VARX.

The results demonstrated that weather and holiday characteristics have an impact in
demand forecasting. However, even if the external variables were appropriate, the accuracy
varies, depending on whether the model fits the volatilities in the data. Although the best-
fitted model was the VARX model using electricity load demand and Internet traffic data
as multiple dependent variables, the other models still offer great insights for considering
explanatory factors. In addition, using the VARX model is fast and time-effective.

Further, we discuss the model performances in depth by stratifying day types and
quarter-hour of the days, to compare ARIMA, ARIMA-GARCH, and VAR models with
exogenous variables. We show that the forecasts degrade over the time horizon, and the
VARX model is not universally superior to other models.

In this study, we mainly aimed to compare the performance of the exponential smooth-
ing methods, ARIMA-GARCH models, and VARX models. However, different adaptations
of the models, such as SVM models, fuzzy models, and Kalman filters will be examined in
future study.

Other future studies may set the goal of building an optimal and customized fore-
casting model for each single unit/building, according to building size, age, and type of
external wall (for smaller units).
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