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Abstract: The paper is devoted to the comparison of different one-dimensional models of blood flow.
In such models, the non-Newtonian property of blood is considered. It is demonstrated that for the
large arteries, the small parameter is observed in the models, and the perturbation method can be
used for the analytical solution. In the paper, the simplified nonlinear problem for the semi-infinite
vessel with constant properties is solved analytically, and the solutions for different models are
compared. The effects of the flattening of the velocity profile and hematocrit value on the deviation
from the Newtonian model are investigated.
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1. Introduction

The one-dimensional (1D) models are used for the simulation of blood flow in large
vascular systems, where the application of 2D and 3D models leads to computational
difficulties [1–4]. In clinical practice, such models are used as a predictive tool in vascular
surgery [5]. The 1D models are constructed by the averaging of the equations of hydrody-
namics on the vessel cross-section [6,7]. The results obtained by 1D models are compatible
with the averaged results of the 3D simulations [8].

As it is obtained in experiments, blood demonstrates the non-Newtonian behaviour [9],
with the shear-thinning [10], thixotropic [11] and viscoelastic [12] properties. The complete
1D model of blood, with time-dependent characteristics, where all these properties are
taken into account, is presented in [13]. As it is mentioned in [14], only the shear-thinning
property is important for the blood flow models because the other mentioned properties
do not significantly change the velocity field. The shear-thinning property of blood can be
successively described by the generalized Newtonian models, where the dynamic viscosity
is dependent only on the shear rate tensor [15]. For example, the models of such type are
applied to the 2D and 3D blood flow simulations in [16–21].

The typical example of the generalized Newtonian fluid is a so-called Power Law
model. This model is used for the 2D and 3D modelling of blood flow dynamics in a
coronary artery [22], aorta [17], aorta-iliac bifurcation [23], thoracic aorta [24], carotid
artery [25] and in various types of stenosed vessels [18,20,26]. In [22,27], it is demonstrated
that at high shear rates, the solutions are close to the solutions for the Newtonian model,
but at low shear rates, serious deviations are observed.

In many works, models with two asymptotic values of dynamic viscosity, corresponding
to infinitely small and infinitely large shear rates, are used. The examples of such mod-
els are: Carreau model [9,16–20,22,24,27–31]; Carreau–Yasuda model [9,17,18,22,23,25,27,31–
33]; Cross model [9,16,17,20,27,34,35]; Simplified Cross model [9,16,36]; Modified Cross
model [9,16,22,27,36]; and Yeleswarapu model [37–40]. In [16], models of such types are
applied to the simulation of blood flow in atherosclerotic coronary arteries, and results
are compared with clinical measurements. The lowest average deviations are obtained for
Cross and Simplified Cross models. The largest deviations are observed for the Modified
Cross model. In [23], the non-Newtonian effects on the low-density lipoprotein transport
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in arteries are analysed. It is demonstrated that the Newtonian model is valid for mass
transport at low Reynolds numbers. At high values, the non-Newtonian models provide
more accurate results.

Some non-Newtonian models are dependent on the hematocrit—the typical exam-
ples are: the Quemada model, used in [16,20,27,41,42], and the Modified Yeleswarapu
model [21,43].

In most works devoted to 1D models of blood flow, the non-Newtonian properties
are ignored. As it is mentioned above, the complete 1D model, where the time-dependent
non-Newtonian properties are considered, is proposed by Ghigo et al. [13]. Some attempts
to construct the non-Newtonian models of blood flow in large vascular networks have
been made in [44,45].

In the present paper, the non-Newtonian 1D models of blood flow, obtained by the
averaging of Navier–Stokes equations on the vessel cross-section, are presented. It is
demonstrated that for the large arteries, the small parameters take place in the models. It
provides the possibility to use the perturbation method for obtaining analytical solutions of
the problems for a 1D system of hemodynamical equations. The simplified but nonlinear
problem for the case of a semi-infinite vessel is solved analytically. Thus, in the paper, the
theoretical problem for the comparison of different 1D models is considered. The solutions
obtained for the non-Newtonian models are compared with each other. The effects of the
flattening of the velocity profile and hematocrit are analysed.

The paper has the following structure. In Section 2, the 1D models of blood flow are
considered. The nonlinear expressions for the frictional term are presented. Section 3 is
devoted to the application of the perturbation method to obtain the analytical solution
of the problem for the semi-infinite interval. The solutions for the different models are
compared by the values of the non-Newtonian factor, which estimates the deviations of the
solutions for Newtonian and non-Newtonian models. Some concluding remarks are made
in Section 4.

2. Non-Newtonian Models of One-Dimensional Hemodynamics
2.1. Non-Newtonian Models of Blood Flow

The model of blood flow as a flow of viscous incompressible fluid is described by
the incompressibility condition and momentum equation, when the body force action is
ignored:

∇×V = 0, ρ

(
∂V
∂t

+ V×∇V
)
= −∇p + ∇× T, (1)

where ρ is a constant density, t is time, V is the velocity, p is the pressure, T is the viscous
stress tensor.

The time-independent non-Newtonian model (so-called generalized Newtonian fluid)
is based on the following relation [15]:

T = 2µ(I2)D,

where D is the strain rate tensor, I2 is its second invariant and µ is a dynamic viscosity.
The case of constant value of µ corresponds to the Newtonian fluid. The expressions for
µ(I2) for the models, widely-used for the blood, are presented in Table 1. The value of
parameter µ for the Newtonian model can be taken from [16,18,21,28]; values of n and
k for the Power Law model can be taken from [23,46,47]; values of µ0, µ∞, λ and n for
the Carreau model can be taken from [9,16–24,48]; values of µ0, µ∞, λ, n and a for the
Carreau–Yasuda model can be taken from [9,16,23,33]; values of µ0, µ∞, λ and m for the
Cross model can be taken from [9,16,17,20,35]; values of µ0, µ∞ and λ for the Simplified
Cross model can be taken from [9]; values of µ0, µ∞, λ, m and a for the Modified Cross
model can be taken from [9]; values of µ0, µ∞ and λ for the Yeleswarapu model can be
taken from [16,38]; the dependence of these parameters on hematocrit H for the Modified
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Yeleswarapu model are presented in [21] and values of µ, k0, k∞ and γ̇c for the Quemada
model are presented in [16,20,49].

Table 1. Rheological models of blood as generalized Newtonian fluid.

Model µ(I2)

Newtonian µ(I2) = µ = const

Power Law µ(I2) = kI
n−1

2
2

Carreau µ(I2) = µ∞ + (µ0 − µ∞)
(

1 +
(
λ
√

I2
)2
) n−1

2

Carreau–Yasuda µ(I2) = µ∞ + (µ0 − µ∞)
(

1 +
(
λ
√

I2
)a
) n−1

a

Cross µ(I2) = µ∞ +
µ0−µ∞

1 + (λ
√

I2)
m

Simplified Cross µ(I2) = µ∞ +
µ0−µ∞

1 + λ
√

I2

Modified Cross µ(I2) = µ∞ +
µ0−µ∞

(1 + (λ
√

I2)
m
)

a

Yeleswarapu µ(I2) = µ∞ + (µ0 − µ∞)
1 + ln(1 + λ

√
I2)

1 + λ
√

I2

Modified Yeleswarapu

Quemada
µ(I2) = µ

(
1− 1

2 kQ H
)−2

, kQ =
k0 + k∞

√√
I2

γ̇c

1 +

√√
I2

γ̇c

The system (1) under some assumptions (e.g., see [2,6]) can be reduced to the following
form:

∇×V = 0,
∂Vz

∂t
+ Vr

∂Vz

∂r
+ Vz

∂Vz

∂z
= −1

ρ

∂P
∂z

+
1
ρr

∂

∂r
(rTrz), (2)

where (r, z) are the cylindrical coordinates, P = P(t, z) is the pressure, corresponding to
the vessel cross-section at coordinate z, Vr and Vz are the components of V. System (2) can
be averaged on the vessel cross-section with the following representation of Vz [6]:

Vz(t, z) = U(t, z)s
(

r
R(t, z)

)
, (3)

where U(t, z) is the mean velocity, R(t, z) is the vessel radius and s is the dimensionless
velocity profile.

As it is demonstrated in [6,7], system (2) after the averaging is reduced to the following
form:

∂A
∂t

+
∂Q
∂z

= 0,
∂Q
∂t

+
∂

∂z

(
α

Q2

A

)
+

A
ρ

∂P
∂z

= f (A, Q), (4)

where A = A(t, z) is the cross-sectional area, Q = Q(t, z) is the flow rate (Q = AU), f is
the frictional term, defined as [13]:

f (A, Q) =
2π

R
Trz|r=R,

and α is the momentum correction coefficient, obtained as:

α =

∫
σ

s2dS

A
,
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where σ is the vessel cross-section. System (4) must be closed by the equation-of-state
P = P(A). For the case of flow in arteries, the following equation is widely used [8]:

P− Pext = Pd +
β

Ad
(
√

A−
√

Ad), (5)

where Pext is the external pressure, Ad and Pd are the diastolic cross-sectional area and
pressure, β = 4

3
√

πEh, where E is the Young’s modulus and h is the vessel wall thickness.
The case of constant values of these parameters is considered in the present paper.

After the substitution of (5) into (4), the second equation is rewritten as:

∂Q
∂t

+
∂

∂z

(
α

Q2

A

)
+ γ
√

A
∂A
∂z

= f (A, Q),

where γ = β
2Adρ .

The system (4) can be rewritten using the new dimensionless variables:

z̃ =
z

LC
, t̃ =

t
TC

, Ã =
A
Ad

, p̃ =
p

ρU2
C

, Q̃ =
Q

AdUC
.

where LC is considered as a vessel length and UC is estimated by the wave speed at mean
pressure, TC = LC/UC. The tilde sign will be ignored in the text below.

In the dimensionless variables, system (4) is rewritten as:

∂A
∂t

+
∂Q
∂z

= 0,
∂Q
∂t

+
∂

∂z

(
α

Q2

A

)
+ χ

√
A

∂A
∂z

= f (A, Q), (6)

where χ = γ
√

AC/U2
C.

The expressions of f (A, Q) for the models from Table 1 in the dimensionless case are
presented in Table 2. In these expressions, the values of s′(1) are used. The values of α are
computed from the values of s(y), where y = r/R. Thus, the system (6) will be closed if
the dependence of s on y will be introduced. This expression can be obtained from the
solution of the problem for the steady flow in a circular tube. For the Power Law model,
this problem is solved exactly:

s(y) =
3n + 1
n + 1

(
1− y1 + 1

n

)
,

and α is computed as:

α =
3n + 1
2n + 1

.

In the cases of other models, s(y) can be obtained only numerically. It can be dependent
on the flow conditions (e.g., see [30,31]). According to the existence of the cellular part, the
flattened velocity profile is typical for the blood [50]. Such profiles are obtained in 2D and
3D simulations of blood flow, based on the non-Newtonian models in [9,18,31,32]. For the
introduction of the flattened profile by (3), into the 1D Newtonian model, in [1,4,6,7] the
following expression is used:

s(y) =
d + 2

d

(
1− yd

)
. (7)

where d is the dimensionless parameter. Plots of s(y) at various values of d are presented
in Figure 1. As it can be seen, the flattening of the profile can be regulated by the proper
value of d.

A similar approach is used in [13] for the time-dependent non-Newtonian 1D model,
but s is dependent on t and y. The expression for the velocity profile is represented by the
Womersley solution for the pulsatile flow of the Newtonian fluid in a circular tube.
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Table 2. Expressions for the frictional term.

Model f (A, Q)

Newtonian f (A, Q) = s′(1)ε Q
A , ε = − KTC

AC
, K = − 2πµ

ρ ,

Power Law f (A, Q) = s′(1)|s′(1)|n−1ε
Q|Q|n−1

A
3n−1

2
, ε = − KUn−1

C TC

A
n + 1

2
C

,

K = − 2kπ
n + 1

2
ρ

Carreau f (A, Q) = s′(1)ε Q
A + s′(1)ξ

(
1 + (s′(1))2ζ Q2

A3

) n−1
2 Q

A ,

ε = − K1TC
AC

, ξ = − K2TC
AC

, ζ =
K3U2

C
AC

,

K1 = − 2πµ∞
ρ , K2 = − 2π(µ0−µ∞)

ρ , K3 = λ2π

Carreau–Yasuda f (A, Q) = s′(1)ε Q
A + s′(1)ξ

(
1 + |s′(1)|aζ

|Q|a

A
3a
2

) n−1
a Q

A ,

ε = − K1TC
AC

, ξ = − K2TC
AC

, ζ =
K3Ua

C

A
a
2
C

,

K1 = − 2πµ∞
ρ , K2 = − 2π(µ0−µ∞)

ρ , K3 = λaπ
a
2

Cross f (A, Q) = s′(1)ε Q
A + s′(1)ξ 1

1 + |s′(1)|mζ |Q|
m

A
3m
2

Q
A ,

ε = − K1TC
AC

, ξ = − K2TC
AC

, ζ =
K3Um

C

A
m
2

C

,

K1 = − 2πµ∞
ρ , K2 = − 2π(µ0−µ∞)

ρ , K3 = λmπ
m
2

Simplified Cross f (A, Q) = s′(1)ε Q
A + s′(1)ξ 1

1 + |s′(1)|ζ |Q|
A

3
2

Q
A ,

ε = − K1TC
AC

, ξ = − K2TC
AC

, ζ = K3UC√
AC

,

K1 = − 2πµ∞
ρ , K2 = − 2π(µ0−µ∞)

ρ , K3 = λπ
1
2

Modified Cross f (A, Q) = s′(1)ε Q
A + s′(1)ξ 1(

1 + |s′(1)|mζ |Q|
m

A
3m
2

)a
Q
A ,

ε = − K1TC
AC

, ξ = − K2TC
AC

, ζ =
K3Um

C

A
m
2

C

,

K1 = − 2πµ∞
ρ , K2 = − 2π(µ0−µ∞)

ρ , K3 = λmπ
m
2

Yeleswarapu
f (A, Q) = s′(1)ε Q

A + s′(1)ξ
1 + ln

(
1 + |s′(1)|ζ |Q|

A
3
2

)
1 + |s′(1)|ζ |Q|

A
3
2

Q
A ,

ε = − K1TC
AC

, ξ = − K2TC
AC

, ζ = K3UC√
AC

,

K1 = − 2πµ∞
ρ , K2 = − 2π(µ0−µ∞)

ρ , K3 = λ
√

π

Quemada
f (A, Q) = s′(1)ε

1− H
2

k0 + k∞
√
|s′(1)|ζ

√
|Q|

A
3
4

1 +
√
|s′(1)|ζ

√
|Q|

A
3
4

−2

Q
A

ε = − K1TC
AC

, ζ = K2
√

UC

A
1
4
C

K1 = − 2πµ
ρ , K2 = π

1
4√
γ̇c
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Figure 1. Plots of s(y) at different values of d.

Being motivated by the works mentioned above, in the presented paper we decided to
use the expression (7) for the velocity profile. It must be noted that the use of the prescribed
expression for the profile is a lack of the considered 1D models. However, as it is mentioned
above, it is used in many other works. Moreover, as it is demonstrated in [8], the effects of a
more realistic representation of the profile, where effects such as the existence of boundary
layers, recirculation zones and others that can be taken into account, do not seriously
change the values of the averaged characteristics. As a result, the model representation (7)
is used as an approximation or simplification in this study, but parameter d will be varied
to estimate the effect of profile flattening on the solution.

The value of α, corresponding to (7), is computed as:

α =
d + 2
d + 1

.

2.2. Dimensionless Parameters

For the estimation of parameters for dimensionless Equation (6), the values of LC, UC
and Ad are taken from [8] for the large arteries, such as a carotid artery, aorta and iliac
artery. The value of ρ is taken as 1.05 g/cm3. The value of χ is estimated as 0.9783 for the
carotid artery, 0.9501 for the aorta and 0.9739 for the iliac artery. Parameters ε, ξ and ζ are
dependent on the parameters of rheological models and vessel properties. In the presented
study, it is proposed that the following relationship between ε and ξ takes place: ξ = Cε,
where C is a constant.

For the Newtonian model, ε is approximately equal to 0.0137 for the carotid artery and
≈0.0020 for the aorta and iliac artery. For the Power Law model and parameters from [46]
ε ≈ 0.0063 for the carotid artery, 0.0010 for aorta and 9.9× 10−4 for the iliac artery. For the
parameters from [23,47], ε ≈ 0.0096 for carotid artery, 0.0018 for aorta and 0.0015 for iliac
artery.

For the Carreau model and parameters from [9,16–18,20–24,48], C is approximately
equal to 15. For the dimensionless parameters, the following values take place: ε ≈ 0.0135,
ζ ≈ 5.54098186× 107 for carotid artery; 0.0019 and 1.87761843× 106 for aorta; 0.0020,
1.66957179× 107 for the iliac artery.

For the Carreau–Yasuda model and parameters from [9,16,23,33], C is approximately
equal to 15. The parameter ε has the same values as for the Carreau model. Parameter
ζ has the following values: 3.4552× 104 for the carotid artery; 4.1662× 103 for aorta and
1.6325× 104 for iliac artery.
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For the Cross model and parameters from [9], the value of C is estimated as 15.
Parameter ε has the same values as for Carreau and Carreau–Yasuda model. For ζ, the
following values take place: 2.8088× 103 for the carotid artery, 4.9312× 102 for aorta and
0.0084, 1.5161× 103 for the iliac artery. For the parameters from [16,17,20,35] C ≈ 9.55.
Parameter ε has the same values. Parameter ζ is equal to 1.7801× 104 for the carotid artery,
1.5301× 103 for aorta and 7.4602× 103 for the iliac artery.

For the Simplified Cross model, C is estimated as: C ≈ 25. Parameters have the
following values: ε ≈ 0.01968, ζ ≈ 1.7974× 104 for the carotid artery; 0.0028, 3.3088× 103

for aorta and 0.0029, 9.8666× 103 for iliac artery.
For the case of the Modified Cross model C is estimated as 25 and ε has the same

values as for the Cross model. For the carotid artery, ζ ≈ 2.76116896× 109; 4.70660529× 107

for aorta and 6.52156883× 108 for iliac artery.
For the Yeleswarapu model and parameters from [16,38], C ≈ 13.7 and ε ≈ 0.01968 as

for the Simplified Cross model, ζ ≈ 3.3275× 104 for the carotid artery, 0.0028, 6.1254× 103

for aorta and 0.0029, 1.8265× 104 for the iliac artery.
For the Modified Yeleswarapu model, the parameters are dependent on the hematocrit

H [21], so the dimensionless parameters ε, ξ and ζ are also dependent on its values. Let
us obtain its values for two values of H: 0.4 and 0.5. At H = 0.4, the value of C is
approximately equal to 9.3876 and ε ≈ 0.0175, ζ ≈ 1.9299× 104 for the carotid artery,
0.0025, 3.5527× 103 for aorta and 0.0026, 1.0594× 104 for iliac artery. At H = 0.5, the value
of C is estimated as 13.3797, ε ≈ 0.0228, ζ ≈ 2.0163× 104 for the carotid artery, 0.0032,
3.7117× 103 for aorta and 0.0033, ζ ≈ 1.1068× 104 for iliac artery.

For the Quemada model, two parameters—ε and ζ—are considered. For the parame-
ters from [16,20,49], the following values are obtained: ε ≈ 0.0047, ζ ≈ 34.57 for the carotid
artery, 6.81× 10−4, 14.83 for aorta and 6.98× 10−4, 25.61 for the iliac artery.

As can be seen, the small parameter ε is observed in the system (6), so the perturbation
method can be applied to obtain analytical solutions. For most of the considered models,
the large value of ζ takes place. The first term−εQ/A in the expression for f (A, Q) prevails,
and if the values of ε are close, it can lead to the close values of the solutions for different
models.

3. Solution of the Problem for the Semi-Infinite Interval

In this section, for the comparison of the models, the problem for the system (6)
in the semi-infinite spatial interval is solved analytically by the perturbation method.
The problem is considered as a model of the flow in a semi-infinite vessel with constant
mechanical properties, which is situated at the interval z ∈ [0, + ∞). At the left side of
this interval, the flow is induced by the periodic time functions, which are presented as the
value of the flow rate. The perturbations induced by this function propagate at z→ + ∞.
Thus, we try to compare models on the problem, which can be solved analytically. For the
solution, the assumption Q > 0 is used. The values of dimensionless parameters are taken
for the case of the carotid artery.

It must be noted that the considered problem is analytically solved for the following
purposes:

(1) To compare the results for different non-Newtonian models and estimate the
deviation from the Newtonian solution;

(2) To estimate the effect of the velocity profile;
(3) To estimate the effect of hematocrit H (for the Quemada and modified Yeleswarapu

models);
(4) To provide a tool for testing the programs that implement the numerical methods

algorithms.
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3.1. Perturbation Method

Let the semi-infinite interval z ∈ [0, + ∞) be considered. The initial conditions are
presented as:

A(0, z) = A0 + εϕ1(z) + ε2 ϕ2(z) + . . . , (8)

Q(0, z) = Q0 + εψ1(z) + ε2ψ2(z) + . . . , (9)

where ϕi(z),ψi(z) are bounded at z→ ±∞, A0,Q0 are the constants. The solutions obtained
by this method correspond to the situation when the steady state, defined by the constant
values A0 and Q0, is perturbed by the small additive terms, as shown in (8) and (9).

The boundary condition for (6) is presented as:

Q(t, 0) = ω(t) = Q0 + εω1(t) + ε2ω2(t) + . . . , (10)

where ωi(t) are discussed below. This condition induces the flow at the left boundary
z = 0.

The solution of problem (6), (8)–(10) is presented in the following form:

A(t, z) = A0(t, z) + εA1(t, z) + ε2 A2(t, z) + . . . , (11)

Q(t, z) = Q0(t, z) + εQ1(t, z) + ε2Q2(t, z) + . . . . (12)

After the substitution of (11), (12) into (6), the problems for Ai(t, z), Qi(t, z) are formu-
lated. In the presented study, the terms only up to and including the second order of ε are
considered. It is easy to obtain that A0(t, z) = A0, Q0(t, z) = Q0.

For the first-order terms A1 and Q1, the following problem takes place:

∂A1

∂t
+

∂Q1

∂z
= 0,

∂Q1

∂t
+ b1

∂A1

∂z
+ b2

∂Q1

∂z
= f0, (13)

A1(0, z) = ϕ1(z), Q1(0, z) = ψ1(z), (14)

Q1(t, 0) = ω1(t), (15)

where b1, b2 and f0 are defined as:

b1 = χ
√

A0 − α
Q2

0
A2

0
, b2 =

2αQ0

A0
, f0 =

f (A0, Q0)

ε
.

For the second-order terms A2, Q2, the following problem is considered:

∂A2

∂t
+

∂Q2

∂z
= 0,

∂Q2

∂t
+ b1

∂A2

∂z
+ b2

∂Q2

∂z
= F(t, z), (16)

A2(0, z) = ϕ2(z), Q2(0, z) = ψ2(z), (17)

Q2(t, 0) = ω2(t), (18)

where

F(t, z) = β1
∂(A1Q1)

∂z
+ β2

∂Q2
1

∂z
+ β3

∂A2
1

∂z
+ δ1 A1 + δ2Q1,

where

β1 =
2αQ0

A2
0

, β2 = − α

A0
, β3 = −

(
α

Q2
0

A3
0
+

χ

4
√

A0

)
,

and constants δ1, δ2 for every model have its own expressions. For the Power Law model
(including Newtonian at n = 1), they are written as:

δ1 = −s′(1)|s′(1)|n−1 (3n− 1)Qn
0

2A
3n + 1

2
0

, δ2 = s′(1)|s′(1)|n−1 nQn−1
0

A
3n−1

2
0

.
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For the Carreau–Yasuda model (including Carreau at a = 2), the following expressions
take place:

δ1 = − s′(1)

2A2
0

(
A

3a
2

0 + |s′(1)|aζQa
0

)(2Q0 A
3a
2

0 + 2|s′(1)|aζQa + 1
0 +

+ C
(

1 + |s′(1)|aζQa
0 A−

3a
2

0

) n−1
a
(

2Q0 A
3a
2

0 − |s
′(1)|aζQa + 1

0 + 3|s′(1)|aζQa + 1
0 n

))
,

δ2 = s′(1)
A

3a
2

0 + |s′(1)|aζQa
0 + C

(
1 + |s′(1)|aζQa

0 A−
3a
2

0

) n−1
a
(

A
3a
2

0 + |s′(1)|aζnQa
0

)
A0

(
A

3a
2

0 + |s′(1)|aζQa
0

) ,

for the Modified Cross model (a = 1 corresponds to the Cross model, a = 1, m = 1—to the
Simplified Cross model):

δ1 = − s′(1)

2A2
0

(
A

3m
2

0 + |s′(1)|mζQm
0

)(2Q0 A
3m
2

0 + 2Q1 + m
0 |s′(1)|mζ +

+ C
(
−3Q1 + m

0 a|s′(1)|mζm + 2Q0 A
3m
2

0 + 2Q1 + m
0 |s′(1)|mζ

)(
1 + |s′(1)|mζQm

0 A−
3m
2

0

)−a)
,

δ2 = s′(1)
1

A0

(
A

3m
2

0 + |s′(1)|mζQm
0

)(A
3m
2

0 + |s′(1)|mζQm
0 +

+ C
(
−a|s′(1)|mζQm

0 m + A
3m
2

0 + |s′(1)|mζQm
0

)(
1 + |s′(1)|mζQm

0 A−
3m
2

0

)−a)
.

For the Yeleswarapu model and its modified form, δ1 and δ2 are presented as:

δ1 = − s′(1)

2A
5
2
0

(
A

3
2
0 + |s′(1)|ζQ0

)2

(
2Q0

√
A0(A

3
2
0 + |s′(1)|ζQ0)

2 +

+ CA2
0Q0

2A
3
2
0 + 2|s′(1)|ζQ0 +

(
2A

3
2
0 − |s

′(1)|ζQ0

)
ln

A
3
2
0 + |s′(1)|ζQ0

A
3
2
0

),

δ2 = s′(1)

A0

(
A

3
2
0 + |s′(1)|ζQ0

)2
+ CA

3
2
0

(
A

3
2
0 + |s′(1)|ζQ0 + A

3
2
0 ln

(
A

3
2
0 + |s′(1)|ζQ0

A
3
2
0

))
(

A
3
2
0 + |s′(1)|ζQ0

)2 ,

For the Quemada model, the following expressions are obtained:

δ1 = − s′(1)

A
9
4
0

(
−2A

3
4
0 − 2

√
|s′(1)|ζ

√
Q0 + Hk0 A

3
4
0 + Hk∞

√
|s′(1)|ζ

√
Q0

)3×

(2
(

A
3
4
0 +

√
|s′(1)|ζ

√
Q0

)
Q0

(
−4A

7
4
0 − 8A0

√
|s′(1)|ζ

√
Q0 + 2A

7
4
0 Hk0−

−A0Hk∞

√
|s′(1)|ζ

√
Q0− 4A

1
4
0 |s
′(1)|ζ2Q0 + 5

√
|s′(1)|ζ

√
Q0Hk0 A0 + 2A

1
4
0 |s
′(1)|ζ2Q0Hk∞

)
,
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δ2 =
s′(1)

A0
√

Q0

(
−2A

3
4
0 − 2

√
|s′(1)|ζ

√
Q0 + Hk0 A

3
4
0 + Hk∞

√
|s′(1)|ζ

√
Q0

)3×

(
4
(

A
3
4
0 +

√
|s′(1)|ζ

√
Q0

)(
−2
√

Q0 A
3
2
0 − 4A

3
4
0

√
|s′(1)|ζQ0 +

√
Q0 A

3
2
0 Hk0−

−2|s′(1)|ζ2Q
3
2
0 + 2

√
|s′(1)|ζQ0Hk0 A

3
4
0 + |s′(1)|ζ2Q

3
2
0 Hk∞

)
.

Let the initial functions in (14) and (17) be presented as:

ϕ1(z) = Aeiz, ψ1(z) = Qeiz, ϕ2(z) = Ae2iz, ψ2(z) = Qe2iz,

where i2 = −1 and A, Q, A, Q are the real constants.
For the simulation of the oscillatory behaviour of flow rate at z = 0, it is proposed that

function ω1(t) in (15) is presented as:

ω1(t) = q0(t) + q1(t),

where q0(t) and q1(t) are the solutions of the following initial problems:

q̇0 = f0, q0(0) = 0,

ȧ1 = −iq1, q̇1 = −ib1a1 − ib2q1, a1(0) = A, q1(0) = Q.

It is easy to obtain that:

q0(t) = f0t, a1(t) = C1eγ1t + C2eγ2t, q1(t) = C1iγ1eγ1t + C2iγ2eγ2t,

where γ1,2 = i
2

(
−b2 ±

√
4b1 + b2

2

)
and

4b1 + b2
2 = 4

(
χ
√

A0 + (α2 − α)

(
Q0

A0

)2
)

> 0,

at α ≥ 1. Constants C1 and C2 are computed as:

C1 = −Aγ2 + iQ
γ1 − γ2

, C2 =
Aγ1 + iQ

γ1 − γ2
.

The solution of the problem (13)–(15) is written as:

A1(t, z) = a1(t)eiz, Q1(t, z) = q0(t) + q1(t)e
iz.

Let the function ω2(t) be presented as:

ω2(t) = q0(t) + q1(t) + q2(t),

where q0, q1, q2 are the solutions of the following initial problems:

q̇0 = δ2 f0t, q0(0) = 0,

ȧ1 = −iq1, q̇1 = −ib1a1 − ib2q1 + g1(t), a1(0) = q1(0) = 0, (19)

where g1(t) = δ1a1(t) + δ2q1(t) + iβ1q0(t)a1(t) + 2iβ2q0(t)q1(t),

ȧ2 = −2iq2, q̇2 = −2ib1a2 − 2ib2q2 + g2(t), a2(0) = A, q2(0) = Q, (20)
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where g2(t) = 2iβ1a1(t)q1(t) + 2iβ2q2
1(t) + 2iβ3a2

1(t).
The initial problems (19) and (20) can be rewritten as:

ẏ = Py + g(t), y(0) = y0, (21)

where P is a constant complex matrix.
The solution of (21) is obtained as:

y(t) = Y(t)

Y−1(0)y0 +

t∫
0

Y−1(τ)f(τ)dτ

,

where Y(t) is the fundamental matrix of system ẏ = Py. The expression for q0(t) is written

as: q0(t) = δ2 f0t2

2 , expressions for a1(t), q1(t), a2(t), q2(t) are not presented according
to its cumbersomeness, but they can be easily obtained using the systems of symbolic
computations.

The solution of problem (16)–(18) is presented as:

A2(t, z) = a1(t)eiz + a2(t)e2iz, Q2(t, z) = q0(t) + q1(t)e
iz + q2(t)e

2iz.

3.2. Comparison of Solutions

For the comparison of the solutions, obtained for the non-Newtonian and Newtonian
models, the following criterion, which is called the non-Newtonian factor, is used:

NNF =
||Re(Q(t, z))− Re(QNewt(t, z))||

||Re(QNewt(t, z))|| × 100%,

where L2 norm is used, QNewt is the solution for the Newtonian model. The values of Re(Q)
are considered in NNF because the damping of the solution, induced by the viscosity, is
most evident for this function. For various models, the following factors affect the obtained
solutions: the value of ε and the expression for the nonlinear frictional term f (A, Q), which
are defined by the characteristics of rheological models. These factors can lead to the
difference between the solutions.

For the comparison of the solutions, the following parameter values are used: A0 = π,
Q0 = 1, A = Q = A = Q = 1, t is considered on the time interval [0, 2π], z ∈ [0, 15]. The
plots of the real part of ω(t) and corresponding Re(A(t, 0)) for the Power Law model with
parameters from [47] are presented in Figure 2. Figure 3 shows typical plots of the real
parts of Q and A.

The value of NNF for the Power Law model is equal to 2.5826 % for the parameters
from [47] and to 4.4378 % for parameters from [46]. The plots of the Re(Q) at the midpoint
of the considered space interval are presented in Figure 4. As can be seen, the strongest
damping is demonstrated for the Newtonian model.

The plots of NNF for the models without the hematocrit at different values of d are
shown in Figure 5. The maximum values take place for Simplified Cross and Yeleswarapu
models (≈14%) at d = 6. The maximum values for other models are realized also at this
value of d and are approximately equal to 8 %. For the parabolic profile (d = 2), typical for
the Newtonian model, the NNF is equal to 3 % for the Simplified Cross and Yeleswarapu
model and can be considered as negligible for the other models.

In Figure 6, the plots of NNF for the models, where the value of H is included, are
presented. At most H values, the value of NNF for the parabolic profile is greater than
for the Modified Yeleswarapu model, but at other d values, the situation is reversed.
The greatest deviations from the solution for the Newtonian model are observed at d = 6
(approximately 11% for the Quemada model and 17% for the modified Yeleswarapu model).
The plots of Re(Q) at selected values of d and H are presented in Figure 7 in comparison
with the solution for the Newtonian case.
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Figure 2. Plots of the real parts of solution on the boundary z = 0 for the Power Law with parameters
from [47]. (a) plot of Re(Q(t, 0)) = Re(ω(t)). (b) plot of Re(A(t, 0)).
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Figure 3. Plots of the real parts of solution for the Power Law with parameters from [47]. (a) plot of
Re(Q(t, z)). (b) plot of Re(A(t, z)).
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Figure 4. Plots of Re(Q(t, 7.5)) for the Power Law model: 1—Newtonian model; 2—model with
parameters from [46]; 3—model with parameters from [47].
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Figure 5. Plots of NNF as function of d for the models without the hematocrit: 1—Cross model
with parameters from [9]; 2—Cross model with parameters from [16]; 3—Simplified Cross model;
4—Modified Cross model; 5—Carreau–Yasuda model; 6—Carreau model; 7—Yeleswarapu model.
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Figure 6. Plots of NNF for the models with hematocrit for the problem for semi-infinite interval: blue
line—Modified Yeleswarapu model; red line—Quemada model.
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Figure 7. Plots of Re(Q(t, 7.5)) for the models including H at selected values of d and H in comparison
with the solution for the Newtonian model (a) d = 4, H = 0.47. (b) d = 6, H = 0.45. Black line—
Newtonian model; blue line—Modified Yeleswarapu model; red line—Quemada model.

4. Conclusions

In the presented paper, the following problems are considered:
(1) The non-Newtonian models of 1D hemodynamics are presented. Such models are

constructed by the averaging of the equation of incompressible flow of viscous fluid over
a vessel’s cross-section. The models are characterized by the nonlinear frictional terms,
obtained from the rheological relations on the stress tensor.

(2) It is demonstrated that in the case of large arteries, small parameters are observed
in the models, so the perturbation method can be used for the analytical solution of model
problems.

(3) The problem for the semi-infinite space interval is solved. The expressions for the
first- and second-order terms in the expansion on the small parameter are obtained.

(4) For the comparison of the solutions, the non-Newtonian factor NNF is introduced.
For the Power Law model, it is demonstrated that the flattening of the velocity profile does
not lead to more significant damping of the solution than for the Newtonian case. For the
other models, the deviation from the Newtonian case starts to increase with the increase in
the flattening of the profile. For the models, where the hematocrit is taken into account, the
deviation from the Newtonian solution increases with the increase of hematocrit value at
all considered velocity profiles.

It must be noted that the obtained analytical solutions can be used for the testing of
the programs, which implement the algorithms for the simulation of blood flow in large
vascular systems.

The comparison of models is based on a simplified problem which can be solved
analytically. For a whole comparison, the models will be compared in the cases of flows in
large vascular systems, which will be considered in future works.
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