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Abstract: In this study, the triangle interpolation method for the calculation of mapping functions
of plates containing an opening with arbitrary shapes is investigated with an improved method
for point adjudgment during iterations. Afterwards, four kinds of openings with typical shapes
are considered and the mapping functions for them are calculated, based on which the influence of
calculation parameters such as iteration time and the number of terms on the accuracy of mapping
function is discussed. Finally, the stress around an inverted U-shaped opening and around an arched
opening under different far-field stress conditions is calculated and the effect of opening shape and
lateral pressure coefficient on stress distribution and rock mechanical behaviors is further analyzed
combined with the discrete element method (DEM) numerical simulation. The result shows that
the stability and failure pattern of the rock mass is correlated with the stress around the opening,
which is affected by the opening shape. The existence of opening also greatly reduces the enhancing
influence of confining stress on rock specimen.

Keywords: complex variable method; conformal mapping; triangle interpolation; stress analytical
solution; DEM numerical simulation

1. Introduction

There are an extensive range of underground openings such as roadways, tunnels, gas
wells and so on in rock engineering. Stress distribution and failure characteristics around
underground openings are important references in terms of the engineering design and
stability assessment for such openings.

Currently, a great number of experimental studies have been conducted for the pur-
pose of improving the understanding of the mechanical behavior of rock mass under
different engineering conditions [1–5]. The mechanical behavior of underground engineer-
ing structures is usually studied via experiments on rock specimens containing one or
more openings or joints under different stress conditions [6–8]. With the employment of
the digital image correlation (DIC) technique, Zhou et al. [9] and Tan et al. [10] studied
the mechanical behavior and crack propagation of rock specimens containing rectangu-
lar openings under static and dynamic loading, respectively. Wu et al. [11] processed
rock specimens containing an opening with five presentive shapes and investigated the
influence of an opening shape on the mechanical properties and fracture characteristics
of rock specimens under uniaxial loading. These studies show that maniacal properties
and fracturing behavior of rock specimens are tightly correlated with the loading condi-
tion and opening shape. The existence of openings significantly degrades the strength of
specimens. The initial failure tends to appear at the top and bottom of the opening and
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dominated cracks always develop from opening corners. These influences of openings
may be attributed to stress distribution. The mechanical behavior of rock mass containing
defects also affects the confining stress. Wang et al. [12] reported that for rock specimens
containing two flaws under compression tests, crack propagation and failure pattern of
specimens are obviously affected by confining stress. The failure pattern of the specimen is
transformed from vertical failure to horizontal failure with the increase in confining stress
and is dominated by shear cracks under high confining stress conditions.

Experimental studies have significantly contributed to revealing the mechanical prop-
erties and failure behavior of rock mass containing defects. However, focusing on the
phenomena analysis is less able to reveal the stress characteristics within the rock mass,
which is essential for the prediction of potential risk [13]. Alternatively, with the devel-
opment of computing capability, analytical and numerical methods have been widely
employed for complex stress problems. Particularly, analytical studies promise high ac-
curacy solutions and allow efficient parametric investigation to the analysis influence of
engineering parameters on opening stability. With the employment of the complex variable
method, stress solution for elastic plates containing an opening has been studied in a large
amount of literature. Ukadgaonker and Awasare [14–17] conducted a series of studies on
the analytical solutions for circular, elliptical, triangular, and rectangular openings in an
infinite plane. Sharma [18] presented the general stress functions for determining the stress
concentration around circular, elliptical and triangular openings with different opening
orientation and far-field stress conditions. Wu et al. [19] calculated the stress concentration
factor on the periphery of the horseshoe-shaped opening based on the analytical stress
solution and analyzed the fracture response of specimens containing an opening with the
combination of an analytical solution and experimental results. Zhao et al. [20] presented
the analytical solution for rock stress around a square tunnel under different confining
stress conditions. They found that with the increasing pressure coefficient, the boundary
stress gradually converted from tensile stress to compressive stress for the two sidewalls
while the opposite situation occurred for the roof and floor. According to the boundary
conditions with the consideration of lining support force, Lv et al. [21] calculated the ana-
lytical solutions for a non-circular tunnel with closed support, which offers a perspective
on the stress solution for supported openings at great depth. Recently, Setiawan and Zim-
merman [22] revived a graphical approach proposed by Melentiev [23] and then proposed
a new method for the calculation of in-plane stress around a hole with arbitrary shapes in
isotropic or anisotropic materials.

In the above-mentioned analytical studies, the calculation of stress solution is based on
conformal mapping, which allows an opening in a domain to be mapped into a unit circle
in another domain via a mapping function. Therefore, the determination of the mapping
function is preliminary and essential for the analytical solution based on the complex
variable theory. The mapping function for a circular opening can be directly calculated
according to its radius. For openings with simple shapes such as regular polygons, their
mapping functions can also be easily calculated by given formulas [24,25]. However, for
openings with complex shapes, mapping functions are usually characterized by a great
number of terms and parameters, which makes it difficult to determine. Lv et al. [26]
developed a general optimization method to calculate the mapping function parameters
for plates containing an opening with arbitrary shapes, in which an objective function is
proposed to calculate the optimal parameters by reducing the coordinate error of mapping
points during iterations. Combined with Box’s optimization method [27], this method is
further improved by Tan et al. with a new objective function proposed for the optimization
calculation [28,29]. Another method for the calculation of mapping functions is the triangle
interpolation method. By repeating the mutual iteration of odd and even interpolation
points, Zhu et al. [30] solved the mapping functions for a series of engineering openings
with complex shapes based on the triangular interpolation theory. Compared with other
methods for the calculation of mapping functions, this method is of high efficiency and
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allows more terms with coefficients in the form of complex numbers to obtain a high
accurate solution for openings with complex shapes.

In this study, the procedure of calculating the mapping functions for openings with
complex shapes using the triangular interpolation method was introduced and improved.
The mapping functions of four openings with presentative shapes were calculated and
the factors affecting their accuracy were discussed. In addition, the inverted U-shaped
opening and arched opening were selected, and the stress solution around them with
different lateral pressure coefficients were calculated. The influence of the opening shape
and confining stress on the stress characteristics was studied. Furthermore, DEM numerical
simulations were conducted with the failure patterns of openings at different confining
stress levels presented. With the combination of analytical and numerical results, the
correlation between stress distribution and failure patterns around the openings was
discussed.

2. Determination of Mapping Function
2.1. Principles of Triangle Interpolation

Based on conformal mapping method, the plane containing an opening (z-plane) can
be mapped to the plane containing a unit circle (ζ-plane), which is realized by the mapping
function:

Z = ω(ζ) =
∞

∑
k = 1

Ckζ2−k (1)

Take the leading m Ck of ω(ζ), then it can be written as:

Z = ω(ζ) =
m

∑
k = 1

Ckζ2−k (2)

Usually, Ck are complex constants, which can be expressed as:

Ck = Ak + iBkk = 1, 2, 3, . . . , m (3)

where both Ak and Bk are real constants.
For any point σ at the boundary of the unit circle in ζ-plane whose polar coordinate is

(1, θ), it can be expressed as:
σ = cos θ + i sin θ (4)

Similarly, for the mapping point t of σ at the boundary of the opening in z-plane,
whose polar coordinate is (r, α), it can be expressed as:

t = r cos α + ir sin α (5)

By substituting Equations (3)–(5) into Equation (2), we can find:

r cos α + ir sin α =
m

∑
k = 1

{
Ak cos[(k− 2)θ] + Bk sin[(k− 2)θ]
−iAk sin[(k− 2)θ] + iBk cos[(k− 2)θ]

}
(6)

With the extraction of the real part and imaginary part, the following equation can be
obtained: 

r cos α =
m
∑

k = 1
{Ak cos[(k− 2)θ] + Bk sin[(k− 2)θ]}

r sin α =
m
∑

k = 1
{−Ak sin[(k− 2)θ] + Bk cos[(k− 2)θ]}

(7)
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For m points at the unit circle in ζ-plane with coordinates of (1, θj), their mapping
points in z-plane are (rj, αj). Based on the orthogonality of trigonometric functions, Ak and
Bk can be expressed as:

Ak = 1
m

m
∑

j = 1

{
rj cos αj cos

[
(k− 2)θj

]
− rj sin αj sin

[
(k− 2)θj

]}
Bk = 1

m

m
∑

j = 1

{
rj cos αj sin

[
(k− 2)θj

]
+ rj sin αj cos

[
(k− 2)θj

]} (8)

Then, 2n points are uniformly sampled at the unit circle in ζ-plane, which are divided
into two groups σe,j (1, θe,j) and σo,j (1, θo,j):{

θe,j = 2π j
n

θo,j = π(2j−1)
n

j = 1, 2, 3, . . . , n (9)

During the first iteration, n points tj (rj, αj) (j = 1, 2, 3, . . . , n) are randomly sampled at
the boundary of the opening in z-plane. By substituting σe,j and tj into Equation (8), the

initial solutions A(0)
k and B(0)

k can be obtained:
A(0)

k = 1
m

m
∑

j = 1

{
rj cos αj cos

[
(k− 2)θe,j

]
− rj sin αj sin

[
(k− 2)θe,j

]}
B(0)

k = 1
m

m
∑

j = 1

{
rj cos αj sin

[
(k− 2)θe,j

]
+ rj sin αj cos

[
(k− 2)θe,j

]} (10)

Then the initial mapping function ω(0)(ζ) is determined with the substitution of A(0)
k

and B(0)
k into Equation (2). Based on ω(0)(ζ), the mapping points to,j in z-plane of σo,j can

be calculated by:
to,j = ω(0)(σo,j

)
j = 1, 2, 3, . . . , n (11)

If the difference between tj and to,j is within tolerance, A(0)
k and B(0)

k are regarded as
the optimal Ak and Bk, respectively. Otherwise, to,j will be moved to the opening boundary
and replaced by the original tj. By substituting σo,j and tj into Equation (8), the solutions of
Ak and Bk in the first iteration can be determined by:

A(1)
k = 1

m

m
∑

j = 1

{
rj cos αj cos

[
(k− 2)θo,j

]
− rj sin αj sin

[
(k− 2)θo,j

]}
B(1)

k = 1
m

m
∑

j = 1

{
rj cos αj sin

[
(k− 2)θo,j

]
+ rj sin αj cos

[
(k− 2)θo,j

]} (12)

The mapping function ω(1)(ζ) in the first iteration can be determined by Equation (11)
with the substitution of A(1)

k and B(1)
k . Here the first iteration is completed. The accuracy of

ω(1)(ζ) can be assessed by comparing tj and the mapping points te,j of σe,j calculated by
ω(1)(ζ); ω(1)(ζ) is employed as the optimal mapping function if its accuracy is satisfying.
Otherwise, te,j will be moved to the opening boundary and then become the new tj. Then
the next iteration calculation will be conducted. With the increase in iteration times, the
solution accuracy will gradually increase and finally remain stable.

As for the movement of to,j and te,j into the opening boundary, the previous study [30]
has realized this process in the Cartesian coordinate system. As shown in Figure 1, for a
point z0 in z-plane, its Cartesian coordinate is (x0, y0). The line through z0 and the origin is
described by function g(z) and the opening boundary is described by function f (z). Then,
the corresponding point z1 at the opening boundary for z0 can be calculated by:

g(z1) = f (z1) (13)
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Figure 1. Schematic diagram of an opening in an infinite elastic plate.

Though it is feasible for openings with simple shapes, this method may be unavailable
when the function describing the opening boundary is difficult to determine. To address
this problem, reference points at opening boundary rather than the boundary function
were used to moving an outside-opening point into the opening boundary. As shown in
Figure 2, there are nref reference points uniformly distributed at the opening boundary in
the polar coordinate system. For an outside-opening point t0 (r0, α0), its corresponding
point at the opening boundary is tnew (rnew, α0). The reference points previous to and next
to point t0 are p1(r1,α1) and p2(r2,α2), respectively. Then rnew can be calculated by linear
interpolation:

rnew =
r1r2(cos α2 sin α1 − sin α1 cos α2)

(r2 sin α2 − r1 sin α1) cos α0 − (r2 cos α2 − r1 cos α1) sin α0
(14)Mathematics 2021, 9, x FOR PEER REVIEW 6 of 20 
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Figure 2. Schematic diagram of reference points at the opening boundary.

With Equation (14), the movement of to,j and te,j can be easily and accurately realized
during each iteration. In this study, nref in all calculations for mapping functions is set as
1 × 104 for a high accurate solution.
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2.2. The Determination of Mapping Functions

As shown in Figure 3, four openings with typical shapes were used to verify the
availability of the triangle interpolation. Among them the trapezoidal opening and irregular
inverted U-shaped opening are asymmetric openings while the inverted U-shaped opening
and the arched opening are symmetric openings. For the trapezoidal opening (Figure 3a),
H1 = 2.50 m, H2 = 3.70 m and L1 = 4.00 m. For the irregular inverted U-shaped opening
(Figure 3b), H1 = 2.50 m, H2 = 1.40 m, H3 = 1.90 m, L1 = 3.15 m and L2 = 1.05 m. For
the inverted U-shaped opening (Figure 3c), H1 = 2.50 m, H2 = 1.40 m, H3 = 1.90 m and
L1 = 4.20 m. For the arched opening (Figure 3d), R1 = 6.30 m, R2 = 8.80 m, R3 = 1.60 m,
R4 = 15.60 m, L1 = 12.25 m, L2 = 2.50 m, L3 = 4.64 m, and L4 = 0.96 m. The origin of all
planes containing a single opening is the centroid of the opening.
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By uniformly sampling n points σj (1, θj) from σ1 (1, 0), the mapping point of σj is

(rσ, ασ) and its corresponding point at the opening boundary is (r(0)σ , ασ), the average
absolute relative error (average ARE) of the n points is defined as:

febre =
1
n

n

∑
j = 1

∣∣∣rσ − r(0)σ

∣∣∣
r(0)σ

(15)
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The change in the average ARE and the maximum absolute relative error (maximum
ARE) of the mapping functions for each opening with the increase in iteration time are
presented in Figure 4. In this study, n was set as 200 in all cases. It can be seen that both
average ARE and maximum ARE decrease exponentially with the increase in iteration
time. In all cases, average ARE decrease rapidly and then remains at a stable level close
to zero with the increase in iteration time, indicating that the mapping functions for all
openings are of high accuracy. However, the maximum ARE for all openings except the
arched opening fails to decrease to zero but remains at a stable level greater than zero when
the iteration time reaches a certain number. Especially for the irregular inverted U-shaped
opening (Figure 4b), the maximum ARE is as high as 0.019. In contrast, the maximum ARE
for the arched opening is almost closed to zero, showing little error of the mapping function.
From Figure 4, the accuracy improvement of mapping functions becomes insignificant once
iteration time reaches a certain value. In the following calculations, once error decrement,
which is the difference between average ARE in the current iteration and in the prior
iteration, is less than 1 × 10−6, the calculation result is determined to be convergent, and
the result of the last iteration is adopted.
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The increase in Ck number m contributes to the improvement of the accuracy of the
mapping function. However, too many Ck terms may lead to a time-consuming calculation
and high computational complexity. Therefore, the optimal Ck number is expected to
be determined to achieve the balance between accuracy and efficiency. Accordingly, the
relation curves between average ARE and m for the mapping functions of plates with the
four kinds of openings are presented in Figure 5. For the irregular inverted U-shaped
opening, the accuracy of mapping function remains a stable level when m is greater than 60.
For the others, mapping functions almost reach stable when m is greater than 20. Therefore,
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in this study, m was set as 60 for the irregular inverted U-shaped opening and 20 for the
other openings. Figure 6 presents the iteration time for convergency with the increase of m
for each opening. Overall, more iterations are required for the calculation convergency for
the asymmetric openings (trapezoidal opening and irregular inverted U-shaped opening)
than that for symmetric openings (inverted U-shaped opening and arched opening). This
may be because Ck are complex numbers in the mapping functions for the former openings
but are real number for the later openings, which makes the calculation for the former ones
more complex and accordingly more iteration times for them are required.
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shape exist at the lower right corners of the irregular inverted U-shaped opening though
the whole mapping shape agree well with the original one. Comparing Figures 4 and 7
shows that for the arched opening without corners, the mapping function is perfectly
accurate with little error. However, obvious error is more likely to happen at the corners of
the other openings especially for those with complex shapes.

The parameters of mapping functions for some openings are listed in Table 1. As the
mapping function of the plane containing the irregular inverted U-shaped opening has too
many terms of Ck, its parameters are not presented. For the inverted U-shaped opening and
the arched opening which are symmetrical about the x axis, Ck are real constants, namely
Bk = 0.
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Table 1. Mapping function parameters of plates with different openings.

Trapezoidal Opening Inverted U-Shaped
Opening

Arched
Opening

k Ak Bk Ck Ck
1 2.108 −0.016 2.252 5.689
2 0.022 −0.027 −0.061 −0.071
3 −0.190 −0.233 −0.105 −0.760
4 0.054 −0.209 0.147 0.421
5 −0.295 −0.102 −0.237 −0.152
6 0.026 −0.035 0.073 −0.003
7 0.022 0.009 0.032 0.049
8 −0.016 0.026 −0.022 −0.033
9 0.017 0.014 0.013 0.004
10 −0.007 0.003 −0.008 0.009
11 −0.004 −0.005 −0.003 −0.007
12 0.010 −0.007 0.008 0.001
13 −0.001 −0.001 −0.006 0.000
14 0.001 0.001 −0.001 0.001
15 0.000 0.001 0.002 0.000
16 −0.005 0.001 −0.002 −0.002
17 0.000 −0.001 0.003 0.003
18 0.001 0.000 0.000 −0.001
19 0.000 0.001 −0.002 −0.001
20 0.002 0.000 0.001 0.002
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3. Stress Solution of Plates Containing a Single Opening
3.1. Calculation Models

In practical engineering, the surrounding rock mass of the underground opening is
usually in complex stress conditions. The far-field stress may have a significant influence
on the stress distribution around the opening and thus may further affect the stability and
failure pattern of the opening. To improve the understanding of stress distribution around
the opening under different far-field stress conditions, the inverted U-shaped opening and
arched opening are selected and the analytical stress solutions for them are calculated,
based on which the effect of the opening shape and lateral pressure coefficient λ on stress
distribution is investigated. To make the calculation more effective, principal stresses
are suggested for the description the far-field stress condition, which can be realized by
adjusting the orientation of the opening. In practical underground engineering, as the
direction of vertical stress is usually close to or identical to that of a principal stress and
the tunnel orientation is usually designed to be parallel to a principal stress direction
to minimize the effect of antiplane stresses. The change in opening orientation is not
considered in the following examples. As shown in Figure 8, the far-field vertical stress σ∞

x
and the far-field horizontal stress σ∞

y are two principal stresses in the plate, which are set
as p and λp, respectively. λ is the lateral pressure coefficient. In this study, seven levels of λ
are considered, whose value is from 0 to 1.0 with an interval of 0.1. The detailed solution
procedure for a plate containing an opening has been elaborated by many studies [28,31].
Therefore, it is not presented in this study.
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3.2. Stress Calculation for Plates

Figure 9 presents the analytical solutions of hoop stress σθ on the opening boundaries
with some typical λ. The negative σθ is tensile stress and the positive σθ is compressive
stress. Tensile stress appears in the roof and floor of the openings while compressive stress
appears in other locations for both kind of openings under uniaxial stress (λ = 0), but
the tensile stress gradually decreases and finally converts into compressive stress with
the increase in confining stress. However, despite their similarity, significant difference
is observed between the stress distribution around the inverted U-shaped opening and
around the inverted U-shaped opening. The compressive stress concentration level at the
corners of the inverted U-shaped opening is much higher than that at the corners of the
arched opening. For example, the maximum hoop stress at the corners is 7.69p for the
inverted U-shaped opening but is only 3.73p for the arched opening. In addition, the two
kinds of openings also show different stress response to the change in λ. Figure 10 presents
the change trend of the maximum hoop stress σθ ,max, the minimum hoop stress σθ ,min and
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the difference between them (σθ ,max − σθ ,min) with the increase in λ. For both openings,
σθ ,min is close to -p when λ = 0 and linearly increase with the increase in λ (Figure 10b).
When λ reaches a certain value, which is about 0.58 for the inverted U-shaped opening and
0.62 for the arched opening, σθ ,min begin to be positive, which means there is no tensile
stress appearing at the opening boundaries anymore. However, from Figure 10a we can
see that σθ ,max at the boundary of the inverted U-shaped opening increases linearly with
λ but σθ,max at the boundary of the arched opening almost remains constant. In addition,
Figure 10a shows that the gap between σθ ,max and σθ ,min is more and more greater for the
inverted U-shaped opening but keeps narrowing for the arched opening.
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4. DEM Numerical Simulation
4.1. Numerical Modelling

The mechanical properties and failure patterns of rock mass containing an opening
under different stress conditions were further investigated by DEM numerical simulations
via the commercial DEM code PFC2D. The balls within the models were bonded by
contacts with the linear parallel bond model, which has been extensively used to study
the mechanical behavior of rock mass by Itasca and many studies [32–35]. As shown in
Figure 11, numerical specimens containing an inverted U-shaped opening and an arched
opening were established. Axial stress σv was produced by axial displacement-control
loading and confining stress σh was applied on both sides of the specimens. The meso-
parameters of the numerical specimens were calculated by a series of numerical standard
uniaxial compression tests based on a kind of sandstone with UCS of 49.5 MP and Young’s
Modulus of 7.2 GPa, respectively. To make the numerical results for them comparable, the
parameter Ck for both of their mapping functions were scaled down by 1: C1 respectively
to make sure the sizes of the two openings were at the same level. Then, the size of the
scaled-down openings was used in the numerical modelling.

4.2. Mechanical Properties

Some representative curves of axial stress versus axial strain for numerical specimens
are presented in Figure 12. The axial stress is computed by dividing sectional area of the
specimen into the force on the loading plate. The axial strain is the ratio of the initial
length of the specimen to the axial displacement of the loading plate. It should be noted
that the computed stress and strain are used to demonstrate the effect of a hole on the
mechanical behavior of surrounding rock mass rather than to quantify the stress and strain
conditions within specimens as they are not uniform within the specimens containing holes.
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For all intact specimens containing an opening, their stress-strain curves increase linearly
during the early loading stage until close to their peak points. All the curves drop sharply
during post-peak stage under uniaxial compressive loading (σh = 0 MPa), indicating strong
brittle behavior. However, the plastic behavior appears under confining stress conditions,
especially for the numerical specimens containing an inverted U-shaped opening where
stress curves tend to be flat close to the peak point.
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The change trends of peak axial stress of numerical specimens with different confining
stress are shown in Figure 13. For intact specimens, a near linear relation between peak axial
stress and confining stress is observed. However, this relation is not linear for specimens
containing an opening. Moreover, the peak axial stress of specimens containing an opening
is much lower than that of intact specimens. Take the numerical specimen containing an
arched opening for example, its peak axial stress under uniaxial compression condition
is 30.94 MPa, which is 79.76% of that of the intact specimen. In comparison, when the
confining stress reaches 20 MPa, peak axial stress of the intact specimen sharply increases to
104.74 MPa while that of the specimen containing an arched opening only slightly increases
to 45.49 MPa, which is only 43.43% of the intact one, also indicates that the existence of the
opening significantly suppresses the positive influence of confining stress on strength of
specimens. In addition, the opening shape also has an influence on the specimen strength.
The specimen containing an arched opening is able to bear higher axial stress than that
containing an inverted U-shaped opening under the same confining stress condition.
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4.3. Failure Patterns

Figures 14 and 15 present the failure patterns of specimens in some representative
cases. The left part of each sub-figure plots the failure pattern of the specimen at the point
of 95% peak axial stress in the pre-peak stage and the right part plots the failure pattern at
the point of 70% peak axial stress in the post-peak stage, which is the end of the loading
test. As revealed by Figure 12, specimens are mainly under elastic deformation in the
pre-peak stage, therefore the failure that appears in this stage may tightly relate to the
stress distribution determined by the analytical solution of the elastic plate containing
the opening. For the specimen containing a single inverted U-shaped opening at the
point of 95% peak axial stress in the pre-peak stage, failure concentrates the corners and
the wall sides without confining stress. Meanwhile, a tensile crack parallel to the axial
loading direction from the middle part of the roof, where the maximum tensile stress in
the corresponding analytical stress solution, is observed. When there is confining stress,
the characteristics of failure around the sidewalls and corners remains the same, but the
tensile crack on the opening roof fails to appear anymore. It can be seen in all cases for the
inverted U-shaped opening, failure forming a “V-shaped” wedge around the sidewalls,
which are a compressive stress concentration area in corresponding cases. Similar failure
patterns happened to the specimen containing a single arched opening in the pre-peak
stage, where tensile cracks appear in the middle parts of the opening roof and floor under
uniaxial compressive loading but do not appear under confining stress conditions.
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Combining the analytical solution and numerical results shows that the failure patterns
around openings in the pre-peak stage are in accord with stress distribution characteristics
in the corresponding analytical cases. With the loading going on, the stress distribution
continuously changes with more and more cracks appearing. In the post-peak stage, the
specimens are broken with intensive failure, where the patterns are not only led by initial
cracks during elastic deformation but also affected by the interaction between the specimen
boundaries and the openings. For the specimen containing an inverted U-shaped opening
under uniaxial loading, two shear cracks appeared in the failure area around the opening
sidewalls and extends to the upper right corner and the lower left corner respectively,
which forms a diagonal failure area connected with the opening. When the confining stress
reached 5 MPa, the specimen was fractured by four shear cracks connecting the opening
and the specimen corners. Then, the shear cracks seem were suppressed with the confining
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stress increasing to 10 MPa. When the confining stress was 15 MPa, no shear cracks
connecting the opening and the specimen boundary appeared. The specimen instability is
dominated by intensive failure around both sidewall because of strong compressive stress
concentration. Similar response of failure patterns to confining stress are also happened to
the specimen containing an arched opening.

5. Discussion
5.1. Generality of the Improved Triangle Interpolation Method for the Determination of
Mapping Function

The accuracy of the mapping function depends on the iteration time and the number
of Ck. The optimal iteration time can be determined when the error decrement is less
than a given value, which is 1 × 10−6 in this study. Generally, the optimal number of Ck
depends on the complexity of the opening. The mapping function for an opening with
a more complex shape requires more terms of Ck for a satisfying accuracy, but this study
reveals that the accuracy will gradually converge on a constant value with the increase in
Ck number, showing an exponential decrease trend. As too many terms of Ck may increase
the difficulty of following the calculations for analytical stress solution, the minimum
number of Ck satisfying the desired is suggested according to the practical engineering
requirements.

The triangle interpolation method has been proved to be an efficient method to
calculate the mapping functions for openings with arbitrary shapes. In the previous
study, the adjustment of mapping points during iterations was conducted by means of the
boundary curve function of the opening. However, the boundary curve function may be
inaccurate and difficult to be determined for openings with complex shapes. Alternatively,
by sampling enough reference points uniformly at the boundary, the adjustment of mapping
points can be realized easily without an accuracy loss caused by the boundary curve
function.

5.2. Influence of Opening Shape and Confining Stress on the Mechanical Behaviour of Specimens

Based on the analytical and numerical results, it can be inferred that for openings
under low confining stress conditions, initial failure may always appear on the roof in the
form of tensile cracks. However, under high confining stress, the tensile concentration
will be reduced and even disappear. Fracturing, deformation and rock burst around the
sidewalls and corners, which are high compressive stress concentration areas, are more
likely to appear than a disaster led by tensile failure on the opening roof. Accordingly, the
stability of sidewalls and corners deserve more attention than that of roof. Based on the
stress variation laws revealed by the analytical solution, however, it is logical that the stress
around the sidewalls will convert into tensile stress and compressive stress concentration
will form in the roof and floor of the opening when the lateral pressure coefficient reaches a
certain level. In such a case, vulnerable areas and failure patterns around the opening may
be quite different and corresponding solutions and analyses should be further carried out.

Compared with the inverted U-shaped opening, the analytical stress solution shows
that the compressive stress concentration around the arched opening is much lower under
the same far-field stress condition. The stress distribution around the arched opening is
more uniform and the difference between the maximum hoop stress and the minimum hoop
stress reduces with the increase in lateral pressure coefficient, which is opposite to that for
the inverted U-shaped opening. Numerical results also show that the strength of specimens
contacting an arched opening is higher than that of specimens containing an inverted U-
shaped opening under all test conditions. These comparisons seem to indicate that opening
sections with corners are not suggested for long-term rock engineering underground.

6. Conclusions

In this study, the stress solution for plates containing an opening was studied based on
conformal mapping. The triangle interpolation method for the determination of mapping



Mathematics 2021, 9, 2462 17 of 18

functions was discussed and improved. The stress distribution and failure patterns of
rock mass containing an opening under different confining stress conditions were further
analyzed with the combination of analytical stress solutions and numerical simulations.
The main conclusions of this paper include:

(1) Mapping function is essential for the stress solution of rock mass around underground
openings. By keeping even and odd interpolation points iterating each other repeat-
edly, the mapping function for a given opening can be effectively determined by the
triangle interpolation method. The key point of this method is to move the calculated
mapping points into the opening boundary during each iteration. Compared with
boundary curve function, the method of sampling reference points at the boundary
combined with linear interpolation is suggested for this adjustment as it is easy to
conduct and promise high accuracy.

(2) Stress distribution characteristics around the opening are significantly affected by the
opening shape, which further affects the stability and failure pattern of the rock mass.
The maximum hoop stress at the boundary of the inverted U-shaped opening is much
higher than that at the boundary of the arched opening under the same far-field stress
condition and shows a linear increasing trend with the increase in lateral pressure
coefficient. However, the sensitivity of the maximum hoop stress of the later one to
the lateral pressure coefficient is much less, remaining at a stable level despite of the
varying lateral pressure coefficient.

(3) Combining the analytical stress solution and DEM numerical tests shows that the
failure patterns of specimens in the pre-peak stage agree well with the analytical
elastic stress solution. Under uniaxial stress conditions, initial failure is characterized
by tensile cracks from the roof and floor of the openings, where there are tensile
stress concentration areas, then failure from the sidewalls and corners caused by
concentrated compressive stress is observed. Under biaxial stress conditions, the
analytical stress solution reveals that tensile stress around the openings gradually
decreases and finally coverts into compressive stress with the increase in the lateral
pressure coefficient. Accordingly, the tensile failure is suppressed in the corresponding
numerical cases.
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