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Abstract: In this paper, the interior elastic direct and inverse scattering problem of time-harmonic
waves for a non-penetrable partially coated obstacle placed in a homogeneous and isotropic medium
is studied. The scattering problem is formulated via the Navier equation, considering incident
circular waves due to point-source fields, where the corresponding scattered data are measured on
a closed curve inside the obstacle. Our model, from the mathematical point of view, is described
by a mixed boundary value problem in which the scattered field satisfies mixed Dirichlet-Robin
boundary conditions on the Lipschitz boundary of the obstacle. Using a variational equation method
in an appropriate Sobolev space setting, uniqueness and existence results as well as stability ones are
established. The corresponding inverse problem is also studied, and using some specific auxiliary
integral operators an appropriate modified factorisation method is given. In addition, an inversion
algorithm for shape recovering of the partially coated obstacle is presented and proved. Last but not
least, useful remarks and conclusions concerning the direct scattering problem and its linchpin with
the corresponding inverse one are given.

Keywords: direct and inverse scattering problem; partially coated obstacle; interior mixed boundary
value problem; variational formulation; modified factorization method; inversion algorithm

1. Introduction

Mathematical and modelling techniques for wave scattering theory have played an
essential role in recent decades and are widely used in real-world problems. Broadly
speaking, classic scattering theory is concerned with the effect a bounded obstacle has on a
time-harmonic incident wave, which is known as a scattering problem. A lot of scientific
work has been done for direct scattering problems as well as for the inverse ones [1–6].
The first problems have the following interpretation: If the total field is the superposition
of an incident field uinc and the scattered field usct, then the direct scattering problem is
to determine the scattered field from the knowledge of the incident wave field and the
governing differential equation of the wave motion. On the other hand, we have the inverse
scattering problems, where the determination of physical or/and geometrical properties of
the inhomogeneity from the knowledge of the incident and scattered field is considered.

At this point we mention that some scientific research works deal with inverse
problems for elasticity using methods for hyperbolic equations and not methods ap-
plicable to elliptic ones, e.g., [7,8]. Hence, these problems in elastodynamics are time-
dependent, and they constitute a scientific extension for the reader in time-dependent
inverse problems.

In this work, the elastic direct scattering problem of time-harmonic waves by a
bounded non-penetrable partially coated obstacle will be studied. In particular, our par-
tially coated obstacle will be referred to as the scatterer, which consists of an inhomogeneity
to the propagation of a given time-harmonic elastic wave field; our incident wave is a
point-source field located at a point inside the scatterer (see later p. 2, Figure 1). Hence,
knowing the governing Navier differential equation of the total wave field, the geometrical
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and physical properties of the scatterer, and the incident field, the scattered field will be
determined. Further, the corresponding inverse problem and shape identification of the
obstacle will be considered and studied. In contrast to traditional approaches applied in
inverse scattering theory, which deal with iterative techniques such as regularised New-
ton methods [9–11] or conjugate gradient methods, our study focuses on a non-iterative
method. The latter is known as factorization method (FM); here we exploit a modified factor-
ization method (MFD) which avoids the need of solving the corresponding direct scattering
problem. The MFD belongs to a wide class of methods, known as qualitative methods, and is
a different technique for solving inverse scattering problems compared to an iterative one.
These methods require less a priori information, and for an excellent source we refer the
reader to [4].
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Figure 1. The mixed scattering configuration

vector, given by

T(r) = 2µn̂r · ∇+ λ n̂r∇ ·+µ n̂×∇×, (6)

where nr stands for the outward unit normal vector define almost everywhere on ∂B at
the point r. The superscript (which will be omitted from now on) denotes the action of
the differential operator on the indicated variable. Throughout this paper c > 0 is the
surface impedance being a constant,λ, µ, are the Lamé coefficients as before, and ρ(r)
denotes the mass density, given by

ρ(r) =





ρ0, r ∈ R2 \ B

ρ1, r ∈ B.
(7)

In what follows in this paper, we assume C be a Lipschitz closed curve inside B and B0

be the interior domain enclosed by C. We also assume as incident wave a point-source
uinc

r0 (r) given by uinc
r0 (r) ≡ Γ̃(r, r0), r ∈ R2 and r0 ∈ C where Γ̃(r, r0) is the fundamental

solution of the Navier equation (2), given by (1); the mixed scattering configuration is
shown in Fig. 1.

We need the following Sobolev space setting. Let Γ0 be a partial boundary of Γ, then

4

Figure 1. The mixed scattering configuration.

Our scattering problem will be mathematically modelled by a mixed boundary value
problem, and emphasis on its well-posedness using a variational method will be given.
We will extend the results from the acoustic case proposed in [12] to the more complicated
elastic one. We consider as incident elastic wave uinc

r0
, a source located at a point with

position vector r0 [13], i.e.,

uinc
r0

(r) =
i
4
{− 1

ρω2∇r ⊗∇r [ H(1)
0 (kp|r− r0|)− H(1)

0 (ks|r− r0|)]

+
1
µ

Ĩ H(1)
0 (ks|r− r0|) }, r 6= r0 (1)

where Ĩ is the identity dyadic, H(1)
0 (z) is the Hankel function of first kind and zero order,

ρ denotes the mass density, ω > 0 is the angular frequency and kp and ks are the wave
numbers of longitudinal and shear waves respectively. This is actually similar to the
fundamental solution in two dimensional elasticity with a singularity at the point r0 which
satisfies the following Navier equation
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(
∆∗ + ρω2

)
Γ̃(r− r′) = −Ĩ δ(r− r′), r, r′ ∈ R2 (2)

where ∆∗ = µ∆ + (λ + µ)∇(∇·) stands for the Kupradze’s differential operator, λ, µ are
the Lamé constants of the elastic medium and δ(r − r′) represents the Dirac measure
concentrated at the point r. For the Lamé constants, strong ellipticity conditions µ > 0
and λ + 2µ > 0 hold, in order for the medium to sustain longitudinal as well as trans-
verse waves.

The paper at hand deals with an interior scattering problem where both incident point-
sources and scattered wave fields inside our obstacle are considered. For our problem,
Dirichlet-Robin type boundary conditions will be considered, a Sobolev space setting
will be presented and the appropriate mixed boundary value problem will be studied.
In elasticity, the Dirichlet boundary condition has the meaning of a rigid body where the
displacement vector is given, whereas the Robin type or impedance boundary condition is
applied on the coated part of the elastic obstacle. The latter partially coating part of our
boundary is due to a constant surface impedance c (see Equation (5)), and the mathematical
relation upon this part is a combination of the displacement and surface-stress vector,
simultaneously [14].

Applications regarding elastic materials and environments, especially for the coated
obstacle case, are very extensive and there a lot of examples from real-world problems in the
following areas: engineering mechanics, medical imaging, non-destructive testing and evaluation,
geophysics material science, etc. (for details see [15] and references therein). The present
results concerning elastic direct scattering problems are used in the study of corresponding
inverse problems for partially coated obstacles buried-or-non in elastic layered background
media. The latter research direction is also investigated in this paper and useful results
are given.

Our paper is organised as follows. In Section 2, the direct scattering problem for
a partially coated obstacle irradiated by an elastic incident point-source field is consid-
ered. We formulate our problem in a suitable functional space setting, which is described
by a specific mixed boundary value problem for the Navier equation. We consider the
case where our point-source field is located on some curve C inside the scatterer. The
latter is crucial, since our future goal is the shape reconstruction of the obstacle via the
scattering data measured on the above curve. In Section 3, uniqueness and existence of
the direct mixed scattering problem via the variational method is established, and using
Riesz-Fredholm theory, stability of solutions is also proved. In Section 4, we study the
corresponding inverse scattering problem and using the factorization method due to some
specific auxiliary operators, determination of the shape of the partially coated obstacle
from the knowledge of near-field data is achieved. Finally, in Section 5 we end up with
fruitful conclusions and remarks for partially coated obstacles in elastic media.

2. Setting up the Scattering Problem

Let B ⊂ R2 denote a closed bounded and simply connected domain with Lipschitz
boundary ∂B ≡ Γ := ΓD ∪Π ∪ ΓI , where ΓD (D : stands for the Dirichlet boundary con-
dition) and ΓI (I: stands for the Robin boundary condition) are disjoint, relatively open
subsets of Γ having Π as their common boundary in Γ. Moreover, the Dirichlet and
impedance type of boundary conditions are specified on ΓD and ΓI , respectively.

We state the direct scattering problem which is described by the following mixed
boundary value problem: For a given elastic incident point-source uinc

r0
, find the total elastic

wave field utot = usct + uinc
r0

, such that
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(∆∗ + ρ(r)ω2)utot(r) = 0, r ∈ B (3)

utot(r) = 0, r ∈ ΓD (4)

Tutot(r) + iωc utot(r) = 0, r ∈ ΓI (5)

where ∆∗ is Kupradze’s differential operator (see p. 2), and T is the physical stress vector,
given by

T(r) = 2µn̂r · ∇+ λ n̂r∇ ·+µ n̂×∇×, (6)

where nr stands for the outward unit normal vector define almost everywhere on ∂B at
the point r. The superscript (which will be omitted from now on) denotes the action of the
differential operator on the indicated variable. Throughout this paper c > 0 is the surface
impedance being a constant, λ, µ, are the Lamé coefficients as before and ρ(r) denotes the
mass density, given by

ρ(r) =





ρ0, r ∈ R2 \ B

ρ1, r ∈ B.
(7)

In what follows in this paper, we assume C to be a Lipschitz closed curve inside B and
B0 to be the interior domain enclosed by C. We also assume as incident wave a point-source
uinc

r0
(r) given by uinc

r0
(r) ≡ Γ̃(r, r0), r ∈ R2 and r0 ∈ C where Γ̃(r, r0) is the fundamental

solution of the Navier Equation (2), given by (1); the mixed scattering configuration is
shown in Figure 1.

We need the following Sobolev space setting. Let Γ0 be a partial boundary of Γ, then
we define

H1/2(Γ0) = {u|Γ0 : u ∈ H1/2(Γ)},

H̃1/2(Γ0) = {u ∈ H1/2(Γ) : supp(u) ⊆ Γ̄0},

H−1/2(Γ0) = (H̃1/2)′ the dual space of H̃1/2(Γ0),

H̃−1/2(Γ0) = (H1/2(Γ0))
′ the dual space of H1/2(Γ0),

H1
0(B, ΓD) = {u ∈ H1(B) : u = 0, on ΓD},

where H1(B) and H1
loc(R

2 \ B̄) are the usual Sobolev spaces, H1/2(Γ) is the trace space and
H1

0(B, ΓD) is equipped with the norm induced from H1(B), i.e.,

‖u‖2
H1(B) = ‖u‖2

L2(B) + ‖∇u‖2
L2(B). (8)

We now define the following interior mixed boundary value problem (IMBVP):

(∆∗ + ρ1ω2)usct(r) = 0, r ∈ B (9)

usct(r) = f, r ∈ ΓD (10)

Tusct + iωcusct = h, r ∈ ΓI . (11)
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If we assume utot = usct, f = −uinc
r0
∈ H

1
2 (ΓD), h = −(Tuinc

r0
(r) + iωcuinc

r0
(r)) ∈ H−

1
2 (ΓI),

then the problem (9)–(11) is a special case of (3)–(5). The above IMBVP will be expressed in
a variational sense and its well-posedness will be exploited.

3. Variational Formulation and Its Linchpin with Well-Posedness

In this section a variational formulation of the problem will be presented, and an
equivalent integral form of the scattering problem (9)–(11) will be established.

Let φ ∈ H1
0(B, ΓD) be a vector test function; we multiply each one of the

Equations (9)–(11) with function φ ∈ H1
0(B, ΓD) (where overline “− ” denotes the con-

jugate), and applying the first generalised Betti’s formula [16] for functions usct and φ
we get ∫

B
φ · ∆∗usctdυ =

∫

∂B
φ · Tusct ds−

∫

B
E(φ, usct) dυ, (12)

where

E(v, w) = (µ + 2λ)

(
∂v1

∂x1

∂w1

∂x1
+

∂v2

∂x2

∂w2

∂x2

)

+ µ

(
∂v1

∂x2

∂v2

∂x2
+

∂v2

∂x1

∂w2

∂x1

)

+ λ

(
∂v1

∂x1

∂w2

∂x2
+

∂v2

∂x2

∂w1

∂x1

)

+ µ

(
∂v1

∂x2

∂w2

∂x1
+

∂v2

∂x1

∂w1

∂x2

)
(13)

with v = (v1, v2) and w = (w1, w2) is a specific energy functional in 2D-linear elasticity
and expresses the energy disseminated through the point of the material being shifted.
Using now Equation (9) and the notation ∂B ≡ Γ := ΓD ∪Π ∪ ΓI , from (12) we take

∫

B
(−ρ1ω2)φ · usctdυ =

∫

ΓI

φ · Tusctds +
∫

ΓD

φ · Tusctds

−
∫

B
E(φ, usct)dυ. (14)

The latter with the aid of (11) yields to
∫

B

(
E(φ, usct)− ρ1ω2φ · usct

)
dυ + iωc

∫

ΓI

φ · usct ds

=
∫

ΓI

h ·φ ds +
∫

ΓD

φ · Tusct ds, (15)

and having in mind that φ ∈ H1
0(B, ΓD), we easily take

∫

B

(
E(φ, usct)− ρ1ω2φ · usct

)
dυ + iωc

∫

ΓI

φ · usct ds =
∫

ΓI

h ·φ ds. (16)

In the variational sense, the problem (9)–(11) is equivalent by finding a function usct ∈ H1(B)
which satisfies:

∫

B

(
E(φ, usct)− ρ1ω2φ · usct

)
dυ + iωc

∫

ΓI

φ · usct ds =< h, φ >, (17)
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where
∫

ΓI
h ·φ ds =< h, φ >. For the latter, we consider that for any m ∈ C, k, g ∈ H−

1
2 (ΓI)

and φ ∈ H1
0(B, ΓD) a test function, we can get

< k, k >=
∫

ΓI

k · kds =
∫

ΓI

|k|2 ds ≥ 0, for k ∈ H−
1
2 (ΓI) ∩ H1

0(B, ΓD). (18)

It easily follows that for < k, k >= 0 we can arrive at
∫

ΓI
|k|2ds = 0 and hence k = 0.

Further, we easily get < k, φ >= < φ, k >, < m k, φ >= m < k, φ > as well as
< k + g, φ >=< k, φ > + < g, φ >; therefore, < k, φ > is an inner product.

In what follows, we prove continuous dependence of the solution of our IMBVP due
to the boundary data, and therefore the following uniqueness-existence theorem holds.

Theorem 1. The interior mixed boundary value problem (IMBVP) (9)–(11), has a unique weak
solution usct ∈ H1(B) satisfying (17), and furthermore

‖usct‖H1(B) ≤ C
(
‖f‖

H
1
2 (ΓD)

+ ‖h‖
H−

1
2 (ΓI)

)
(19)

for some positive constant C.

Proof. Let us first deal with the uniqueness by showing that the homogeneous problem
of (9)–(11) (f = h = 0), has only the trivial solution, i.e., usct = 0 in B. We consider the
variational Equation (17), by letting φ = usct, and therefore

∫

B

(
E(usct, usct)− ρ1ω2 usct · usct

)
dυ + iω c

∫

ΓI

usct · usct ds =< h, usct >. (20)

Since h = 0, we get
∫

B

(
E( usct, usct)− ρ1ω2|usct|2

)
dυ + iωc

∫

ΓI

|usct|2ds = 0. (21)

By taking the imaginary part in the latter relation, we have

Im
(∫

B

(
E( usct, usct)− ρ1ω2|usct|

)
dυ + iωc

∫

ΓI

|usct|2ds
)
= 0, (22)

and using (13) and the fact ρ1 ω2|usct|2 ∈ R, we get

ωc
∫

ΓI

|usct|2ds = 0. (23)

Having in mind that ω, c are positive real numbers, we take usct = 0, on ΓI . We can also
get by the boundary condition (11) that Tusct(r) = 0, on ΓI . By Holmgren’s uniqueness
theorem [17] we conclude that usct = 0 in B, and hence uniqueness is secured.

We continue our well-posedness analysis with the existence of solutions of the problem
(9)–(11). Let a vector function u0 ∈ H1(B) being a solution of the static Navier equation
∆∗u = 0 in B with u0 = fext on Γ, where

fext|Γ =





f, on ΓD

0, otherwise
(24)
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i.e., fext is the continuous by zero extension of f on Γ. Using the property
‖fext‖

H
1
2 (Γ)
≤ C1‖f‖

H
1
2 (ΓD)

we can obtain ‖u0‖H1(B) ≤ C1‖fext‖
H

1
2 (Γ)
≤ C2‖f‖

H
1
2 (ΓD)

, where

C1, C2 are positive constants. If we now denote by w the difference usct − u0 we take,
(

∆∗ + ρ1ω2
)

w(r) = ∆∗usct − ∆∗u0 + ρ1ω2usct − ρ1ω2 u0 (25)

and with the aid of ∆∗u0 = 0 in B and (9) we arrive at
(

∆∗ + ρ1ω2
)

w(r) = −ρ1ω2u0 in B. (26)

After some manipulations, we also have the following boundary condition

Tw + iωw = h− (Tu0 + iωc u0), on ΓI (27)

as well as the boundary condition

w = 0 on ΓD. (28)

We mention here that relations (26)–(28) will be used for proving the stability of
solution of our IMBVP (see later, p. 10).

In the sequel, our proof moves on with stability-existence results. Having in mind
that w = usct − u0, we will prove the following alternative form of the Equation (17)

∫

B

[
E(φ, w)− ρ1ω2φ ·w

]
dυ + iωc

∫

ΓI

φ ·w ds

= < h, φ > −
∫

ΓI

φ · (Tu0 + iωc u0) ds

+
∫

B
ρ1ω2 φ · u0 dυ. (29)

Indeed, we make use of the following first generalised Betti’s formula:
∫

B
φ · ∆∗u0 dυ =

∫

∂B
φ · Pu0 ds−

∫

B
E(φ, u0) dυ (30)

where Pu0 is the generalised stress vector on the boundary ∂B defined, by [18]

Pu0 = (µ + α̃)
∂u0

∂n
+ β̃ n̂ divu0 − α̃ n̂⊥div⊥u0 (31)

with the differential operator div⊥ given as [18]

div⊥u :=
∂u1

∂r2
− ∂u2

∂r1
, u(r) ≡ (u1(r), u2(r)), r = (r1, r2). (32)

We point out that if we set α̃ = µ and β̃ = λ, our surface stress vector Pu0 will be
transformed to the physical stress vector Tu0 = 2µ ∂u0

∂n̂ + λn̂ divu0 − µn̂⊥div⊥u0. Hence
relation (30), via ∆∗u0 = 0 in B, can be written as

∫

B
E(φ, u0)dυ =

∫

ΓI∪Π∪ΓD

(
2µ

∂u0

∂n̂
+ λn̂divu0 − µn̂⊥div⊥u0

)
·φ ds. (33)

Taking into account that φ ∈ H1
0(B, ΓI), the latter yields to

∫

B
E(φ, u0) dυ =

∫

ΓI

(
2µ

∂u0

∂n
+ λn̂ divu0 − µn̂⊥div⊥u0

)
·φ ds. (34)
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The variational Equation (17), via (34) gives
∫

B

(
E(φ, w)− ρ1ω2 w ·φ

)
dυ + iωc

∫

ΓI

w ·φ ds

= < h, φ > −
∫

ΓI

(2µ
∂u0

∂n
+ λn∇u0 − µn⊥∇⊥u0) ·φ ds

+
∫

B
ρ1ω2 u0 ·φ dυ−iωc

∫

ΓI

u0 ·φ ds, (35)

where relation usct = w + u0 has been taken into account. Hence,
∫

B

(
E(φ, w)− ρ1ω2 w ·φ

)
dυ + iωc

∫

ΓI

w ·φ ds

= < h, φ > −
∫

ΓI

(Tu0 + iωcu0) ·φ ds

+
∫

B
ρ1ω2u0 ·φ dυ. (36)

If we now define the following auxiliary operators:

α(w, φ) =
∫

B

(
E(φ, w)− ρ1ω2 w ·φ

)
dυ + iωc

∫

ΓI

w ·φ ds, (37)

`(φ) =< h, φ > −
(∫

ΓI
(Tu0 + iωcu0) ·φ ds−

∫

B
ρ1ω2u0 ·φ dυ

)
, (38)

α1(w, φ) =
∫

B

(
E(φ, w) + w ·φ

)
dυ + iωc

∫

ΓI

w ·φ ds (39)

and
α2(w, φ) =

∫

B
(−ρ1ω2 − 1)w ·φ ds, (40)

then, it can easily be seen that (36) arrives at:

α(w, φ) = α1(w, φ) + α2(w, φ). (41)

Via (37) and (38), it is obvious that

α(w, φ) = `(φ), (42)

with `(φ) being a linear bounded conjugate function, and therefore

α1(w, φ) + α2(w, φ) = `(φ). (43)

We also mention that although we have to deal with the complicated nature of E
(given in (13)), we can easily prove that α(w, φ) is a sesquilinear form.

Following now similar steps as those in [19], we deal with the integral operator
α1(w, φ) given by (39), which for φ = w arrives at

α1(w, w) =
∫

B
(E(w, w) + w ·w )dυ + iωc

∫

ΓI

w ·w dυ. (44)

After some calculations, for w = (w1, w2) we can rewrite E(w, w) as

E(w, w) = λ|∇ ·w|2 + µ

(
∂w1

∂x1

)2
+ (λ + µ)

[(
∂w1

∂x1

)2
+

(
∂w2

∂x2

)2
]

. (45)



Mathematics 2021, 9, 2485 9 of 24

From the latter, E(w, w) is non-negative and using (44) we arrive at

|α1(w, w)| = |
∫

B

(
λ|∇ ·w|2 + |w|2

)
dυ + M + iωc‖w‖2

L2(ΓI)
|, (46)

where

M =
∫

B

(
µ

(
∂w1

∂x2
+

∂w2

∂x1

)2
+ (λ + µ)

[(
∂w1

∂x1

)2
+

(
∂w2

∂x2

)2
])

dυ. (47)

After some manipulations in (46), we also have the following

|α1(w, w)| ≥ λ
∫

B
|∇ ·w|2dυ +

∫

B
|w|2dυ. (48)

We denote as a constant c′ = min{λ, 1} (which is a positive constant) and hence,

|α1(w, w)| ≥ c′ {‖∇w‖2
L2(B) + ‖w‖2

L2(B)}. (49)

From the latter inequality we get

|α1(w, w)| ≥ c′ ‖w‖2
H1(B), (50)

and therefore, the functional α1 is strictly coercive.
Next we deal with the boundedness of the functional `(φ). Using (38) we have

|`(φ)| = | < h, φ > −
(∫

ΓI
(Tu0 + iωcu0) ·φ ds−

∫

B
ρ1ω2u0 ·φ dυ

)
|. (51)

If we now consider in (51) the Cauchy–Schwartz inequality and some calculations, we
arrive at

|`(φ)| ≤ ‖h‖
H

1
2 (Γ)
‖φ‖

H
1
2 (Γ)

+ ‖Tu0‖
H

1
2 (Γ)
‖φ‖

H
1
2 (Γ)

+|iωc| ‖u0‖
H

1
2 (Γ)
‖φ‖

H
1
2 (Γ)

+|ρ1ω2| ‖u0‖H1(B)‖φ‖H1(B). (52)

Hence, from the fact that T is bounded, i.e., there exists a positive constant c̃ such that
‖Tu0‖

H
1
2 (Γ)
≤ c̃ ‖u0‖

H
1
2 (Γ)

, we can get

|`(φ)| ≤ ‖h‖
H

1
2 (Γ)
‖φ‖

H
1
2 (Γ)

+ c̃‖u0‖
H

1
2 (Γ)
‖φ‖

H
1
2 (Γ)

+|iωc| ‖u0‖
H

1
2 (Γ)
‖φ‖

H
1
2 (Γ)

+|ρ1ω2| ‖u0‖H1(B)‖φ‖H1(B), (53)

and finally,

|`(φ)| ≤ ‖h‖
H

1
2 (Γ)
‖φ‖

H
1
2 (Γ)

+ (c̃ + |iωc|) ‖u0‖
H

1
2 (Γ)
‖φ‖

H
1
2 (Γ)

+|ρ1ω2| ‖u0‖H1(B) ‖φ‖H1(B). (54)
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Therefore, there exist positive constants c1, c2, c3 such that

|`(φ)| ≤ c1‖h‖
H−

1
2 (ΓI)
‖φ‖

H̃
1
2 (ΓI)

+ c2‖u0‖
H

1
2 (ΓI)
‖φ‖

H̃
1
2 (ΓI)

+ c3‖u0‖
H

1
2 (ΓD)

‖φ‖H1(B). (55)

After some calculations, we arrive at

‖`(φ)‖H1(B) ≤ C′(‖h‖
H−

1
2 (ΓI)

+ ‖f‖
H

1
2 (ΓD)

)‖φ‖H1(B), (56)

for some positive constant C′ and therefore ` is bounded. Having in mind that α = `
(see (42)), we have that

‖α‖H1(B) ≤ C′(‖h‖
H−

1
2 (ΓI)

+ ‖f‖
H

1
2 (ΓD)

), (57)

and applying the Riesz representation theorem, we get

‖w‖H1(B) ≤ C′(‖h‖
H−

1
2 (ΓI)

+ ‖f‖
H

1
2 (ΓD)

). (58)

Since now usct = w + u0, we take

‖usct‖H1(B) ≤ ‖w‖H1(B) + ‖u0‖H1(B), (59)

and the latter via (58), gives

‖usct‖H1(B) ≤ c̃1

(
‖h‖

H−
1
2 (ΓI)

+ ‖f‖
H

1
2 (ΓD)

+ ‖u0‖H1(B)

)
(60)

for some positive constant c̃1. Using now the trace theorem [20], there exists a positive
constant C such that

‖usct‖H1(B) ≤ C (‖h‖
H−

1
2 (ΓI)

+ ‖f‖
H

1
2 (ΓD)

). (61)

Finally, combining the previous results with the above inequality and using the Lax–
Milgram theorem [4] our proof is completed.

4. The Inverse Problem

In this section we address the inverse scattering problem concerning partially coated
obstacles which are bounded and simply connected domains in R2. Our aim is to recover
the shape of the partially coated scatterer B from the knowledge of the near field data
usct(r), r ∈ C due to the point source uinc

r0
(r) ≡ Γ̃(·, r0), r0 ∈ C (see (1)).

The latter is mathematically modelled by the following interior mixed boundary
value problem:

(∆∗ + ρ1ω2)utot(r) = 0, r ∈ B (62)

utot(r) = 0, r ∈ ΓD (63)

Tutot(r) + iωcutot(r) = 0, r ∈ ΓI , (64)

where utot(r) = uinc
r0

(r) + usct(r), ρ1 is the mass density in B and c > 0 the surface impedance.
The problem (62)–(64) is actually the problem (9)–(11)written this time in terms of the total
displacement field utot. The mixed partially coated obstacle B and its boundary Γ can
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be uniquely determined; the proof is omitted for brevity since it can be exploited if we
consider minor modifications as those used in [15].

The Modified Factorization Method

In the sequel, we will follow the basic ideas arising from the factorization method, in
order to recover the boundary of the non-penetrable partially coated obstacle B. These ideas
have been used widely, mostly in various inverse-acoustic and electromagnetic scattering
problems [4,21]. For inverse elastic scattering problems, factorization method has also
been employed [15,22], and in this work we will exploit a modification of the factorization
method concerning the shape recovering of the scatterer B.

Initially, we introduce the near−field operator N :
[
L2(C)

]2 →
[
L2(C)

]
defined as:

(Nb)(r) =
∫

C
usct(r) · b(r0) ds(r0), r ∈ C. (65)

The factorization method requires the following decomposition

N = H̃∗MH̃, (66)

where the operator H̃ = (H1, H2)> :
[
L2(C)

]2 →
[

H
1
2 (ΓD)

]2
×
[

H−
1
2 (ΓI)

]2
is given by

H1b = υb|ΓD , H2b = (T + iωc)υb|ΓI , (67)

υb is a single-layer potential of the form

υb =
∫

C
Γ̃(r, r0) b(r0) ds(r0), (68)

(b ∈ [ L2(C) ]2 the density function), and H̃∗ is the adjoint operator of H̃ (operator M
will be given shortly (see p. 13)). For the decomposition of N , we also need to define a
boundary data-to-near filed data operator:

G : [ H
1
2 (ΓD) ]

2 × [ H−
1
2 (ΓI) ]

2 →
[

L2(C)
]2

, (69)

such that
G(f(r), h(r)) = usct(r) |C. (70)

Taking into account operator H̃, we now get

G(H̃b) = G(υb|ΓD , (T + iωc)υb|ΓI ). (71)

Using the single layer potential and the relation

Γ̃(r, r0) ≡ uinc
r0

(r) = utot(r, r0)− usct(r) , (72)

we take

−G(H̃b)(r) = −G(H1b, H2b)

= −G
(∫

C
Γ̃(r, r0) b(r0) ds(r0), (T + iωc)

∫

C
Γ̃(r, r0) b(r0) ds(r0)

)

= −G
(
−
∫

C
f(r) · b(r0) ds(r0) |ΓD , −

∫

C
h(r) · b(r0) ds(r0) |ΓI

)
, (73)
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and therefore

−GH̃b(r) = −G
(
−
∫

C
f(r) · b(r0) ds(r0) |ΓD , −

∫

C
h(r) · b(r0) ds(r0) |ΓI

)
. (74)

We now consider the continuous by zero expansion fext, hext of f and h, respectively,
upon Γ, i.e.,

fext(r) |ΓD= f(r), hext(r) |ΓI= h(r) (75)

and by (74) we have

−GH̃b(r) = −G
(∫

C
fext(r) · b(r0) ds(r0)|∂B, −

∫

C
hext(r) · b(r0) ds(r0)|∂B

)
, (76)

hence,
−(GH̃)b(r) =

∫

C
usct(r) · b(r0) ds(r0). (77)

Combining (65) and (77) the following factorization for near-field operator N holds:

(Nb)(r) = −(GH̃b)(r), (78)

or, in equivalent form
N = −GH̃. (79)

In the sequel, we will calculate and find the adjoint operator of H̃. Let
(p(r), q(r)) ∈ [ H̃−

1
2 (ΓD) ]

2 × [ H̃
1
2 (ΓI) ]

2 and b(r) ∈ [ L2(C) ]2. Then

< H̃b, (p, q) > =
∫

C
b(r) ·

∫

ΓD

p(r) Γ̃(r, r0) ds(r) ds(r0)

+
∫

C
b(r) ·

∫

ΓI

q(r) (T − iωc) Γ̃(r, r0) ds(r) ds(r0)

= < b, H̃∗(p, q) >. (80)

After some calculations we end up with adjoint operator H̃∗, given by

H̃∗(p, q)(r) =
∫

ΓD

p(r) Γ̃(r, r0) ds(r0) +
∫

ΓI

q(r)(T − iωc) Γ̃(r, r0) ds(r0). (81)

In addition, we define a combination of single and double layer potential V, written as:

V(r) :=
∫

Γ
pext(r0) Γ̃(r, r0)ds(r0) +

∫

Γ
qext(r0) (T − iωc)Γ̃(r, r0)ds(r0), (82)

where (pext, qext) ∈ [ H−
1
2 (Γ) ]2 × [ H

1
2 (Γ) ]2. We now want to find the jump relation of

V(r) when r approaches the boundary Γ from the inside of the domain B. Using the jump
relation of the single and double layer potential [18], we arrive at

V(r)|r−→Γ =
∫

Γ
pext(r0) Γ̃(r, r0) ds(r0)

+
∫

Γ
qext(r0) (T − iωc) Γ̃(r, r0) ds(r0)− qext(r). (83)
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In a similar way, we can get the jump relation for (T + iωc)V(r)|r−→Γ in the form

(T + iωc)V(r)|r−→Γ

= T
[∫

Γ
pext(r0) Γ̃(r, r0) ds(r0) +

∫

Γ
qext(r0) (T − iωc) Γ̃(r, r0) ds(r0)

]
(84)

+iωc
[

pext(r0) Γ̃(r, r0) ds(r0) +
∫

Γ
qext(r0) (T − iωc) Γ̃(r, r0) ds(r0)

]

+pext(r)− 2iωc qext(r).

For our decomposition analysis, it is necessary to define the following boundary
integral operators S, K, K′ and Λ as (their properties and details can be found in [23]):

Sg(r) :=
∫

Γ
Γ̃(r, r0; p) · g(r0) ds(r0), r ∈ Γ (85)

Kg(r) :=
∫

Γ
T(r0)Γ̃(r, r0; p) · g(r0) ds(r0), r ∈ Γ (86)

K′g(r) :=
∫

Γ
T(r)Γ̃(r, r0; p) · g(r0) ds(r0), r ∈ Γ (87)

Λg(r) := T(r)
∫

Γ
T(r0)Γ̃(r, r0; p) · g(r0) ds(r0), r ∈ Γ (88)

where p ∈ S1 = {d ∈ R2 : |d| = 1} denotes the polarization vector of an elastic point source
at any r0 ∈ R2 (see (1)), and in particular we consider uinc

r0
(r) = Γ̃(r, r0) · p ≡ Γ̃(r, r0; p).

In this way we avoid the dyadic nature of the fundamental solution, and in relations
(85)–(88) the vector p plays the role of an argument rather than a variable.

We can now consider (83) and (84) restricted on ΓD and ΓI respectively, due to the
following matrix integral form (recall that pext|ΓI = 0, qext|ΓD = 0)




V|r−→ΓD

(T(r) + iωc)V|r−→ΓI


 =M




p

q


. (89)

In (89), and after some computational effort, the integral operatorM is found to be

M =




SΓD |ΓD (K− iωcS)ΓI |ΓD

(K′ + iωcS)ΓD |ΓI (Λ− iωcK′ + iωcK + ω2c2S− 2iωI)ΓI |ΓI


. (90)

The latter in combination with (70) and (81) lead to

GM



p

q


 = H̃∗(p, q). (91)

In the sequel, we prove the following.

Theorem 2. Assume that ω2 is not an eigenvalue of −∆∗ in B0, then

(i) For the integral operatorM we have

Im{<M(p, q), (p, q) >} < 0, (92)

for any (p, q) ∈
[

H−
1
2 (ΓD)

]2
×
[

H̃
1
2 (ΓI)

]2
and (p, q) 6= (0, 0).

(ii) The bilinear matrix operatorM is invertible.
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Proof. (i) Using the integral operator M and its linchpin with matrix Equation (89)
we have:

<M(p, q), (p, q) >=
∫

ΓD

V− · p ds(r0) +
∫

ΓI

(T(r) + iωc)V− · q ds(r0). (93)

From expressions (83) and (84), taking into account (82) and after some calculations
we find

p = −1
2
(TV+ − TV−)|ΓD (94)

q =
1
2
(V+ −V−)|ΓI (95)

and

(V+ −V−)|ΓD = 0 (96)

2iωc q = (TV+ − TV−)|ΓI . (97)

Taking into account (93) we have

<M(p, q), (p, q) >

= −1
2

∫

ΓD

V− · (T(r)V+ − T(r)V−) ds(r0)

+
1
2

∫

ΓI

(V+ −V−) · (T(r)V− + iωcV−) ds(r0)

= −1
2

∫

ΓD

(V+ · T(r)V+ −V− · T(r)V−) ds(r0)

(98)

+
1
2

∫

ΓI

[V+ · T(r)V− −V− · T(r)V− + (V+ −V−) · iωcV−] ds(r0)

= −1
2

∫

ΓD

(V+ · T(r)V+ −V− · T(r)V−) ds(r0)

+
1
2

∫

ΓI

[V+ · T(r)V− −V− · T(r)V− − (V+ −V−) · iωcV−] ds(r0).

Hence, we get

<M(p, q), (p, q) >

=
1
2

∫

ΓD

(V− · T(r)V− −V+ · T(r)V+) ds(r0)

(99)

+
1
2

∫

ΓI

(V+ · T(r)V+ −V− · T(r)V−) ds(r0)

+
1
2

∫

ΓI

[−iωc(V+ −V−) ·V+ + iωc(V+ −V−) ·V−] ds(r0).
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Taking the imaginary part of (99), we have

Im{<M(p, q), (p, q) >}

=
1
2

Im{
∫

ΓD

(V− · T(r)V− −V+ · T(r)V+) ds(r0)}

+
1
2

Im{
∫

ΓI

(V+ · T(r)V+ −V− · T(r)V−) ds(r0)}

+
1
2

Im{
∫

ΓI

[−iωc(V+ −V−) ·V+ + iωc(V+ −V−) ·V−] ds(r0)}

=
1
2

Im{
∫

ΓD

(V− · T(r)V− −V+ · T(r)V+)ds(r0)}

+
1
2

Im{
∫

ΓI

(V− · T(r)V− −V+ · T(r)V+) ds(r0)}

+
1
2

Im{
∫

ΓI

[−iωc(V+ −V−) ·V+ + iωc(V+ −V−) ·V−] ds(r0)},

and therefore we can arrive at

Im{<M(p, q), (p, q) >}
(100)

=
1
2

Im{
∫

ΓD

(V− · T(r)V− −V+ · T(r)V+) ds} −ωc
∫

ΓI

|V+ −V−|2 ds.

We now consider BR = CR\B, with CR being a circle with large enough radius R.
From the latter and after some calculations, we have

Im{< M(p, q), (p, q) >}

= Im{−ρω2
∫

BR∪B
|V|2dυ−

∫

|r|=R
V · TV ds−

∫

BR∪B
E(V, V)dυ}

(101)

−ωc
∫

ΓI

|V+ −V−| ds,

where E(V, V) is the analogous functional as it is given in (13) if we substitute v = V
and w = V. Using now Betti’s formula in (101), we get

Im{<M(p, q), (p, q) >} = −Im
{∫

|r|=R
V · TV ds

}
−ωc

∫

ΓI

|V+ −V−|2 ds. (102)

Using the radiation conditions [16]

TVp(r)− ikp(λ + 2µ)Vp(r) = O(r−2), r := |r| → ∞ (103)

and
TVs(r)− iksµVs(r) = O(r−2), r := |r| → ∞, (104)

hold uniformly for all directions r̂ = r
r , relation (102) arrives at

Im{<M(p, q), (p, q) >} ≤ −ζ
∫

|r|=R
|V|2 ds

−ωc
∫

ΓI

|V+ −V−|2 ds + O(R−1),
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where ζ = max{kp(λ + 2µ), ksµ } ∈ R. We now let R→ ∞ and since ζ > 0, ωc > 0,
we take

Im{<M(p, q), (p, q) >} ≤ 0 (105)

with (p, q) ∈
[

H̃−
1
2 (ΓD)

]2
×
[

H̃
1
2 (ΓI)

]2
. If we now assume for (105) that equality

holds, then both terms
∫
|r|=R |V|2 ds and

∫
ΓI
|V+ −V−|2 ds are vanishing. Using

Rellich’s Lemma and unique continuation principle [5,20], we get

V = 0 in R2\B, V−|ΓI = V+|ΓI = 0, (106)

and since V satisfies the Navier Equation (62) in B, by Holmgren’s theorem [24] we
take V = 0 in B. From (94)–(97) we can now conclude that

p(r) = q(r) = 0 = 2iωcq(r). (107)

Taking into account the above arguments, we can see that indeed the imaginary part
of the integral operatorM is strictly negative, i.e., relation (92) holds.

(ii) We now want to show that M is invertible. Concerning the injectivity of M, let
us assume thatM(p, q) = 0. Hence Im{<M(p, q), (p, q) >} is vanishing too, and
using previous argument (see (107)) we have p = q = 0, and now injectivity ofM
is secured.
In what follows, we consider the matrix−integral operator

M̃ =

(
SΓD |ΓD (KΓI − iωc SΓI )|ΓD

(−K′ΓD
− iωc SΓD )|ΓI (−ΛΓI − iωcK′ΓI

−ω2c SΓI + 2iωI)|ΓI

)
(108)

and therefore the following decomposition forM holds

M
(

p
q

)
=

(
1 0
0 −1

)
M̃
(

p
q

)
. (109)

The latter implies that invertibility ofM and M̃ is an equivalent argument and since
injectivity ofM is proved, the injectivity of M̃ is secured as well. In addition and due
to Fredholm theory, if we combine the above injectivity showing that M̃ is a Fredholm
operator with index zero, then operatorsM and M̃ are bounded and invertible.

We state the following lemma; its proof follows analogous arguments and minor
modifications as those in [12,25], and here it is omitted for brevity.

Lemma 1. Let S0, K0, K′0, Λ0 be operators corresponding to the operators (85)–(88), with kernel

Γ̃0(r, r′) =
3µ + λ

4πµ (2µ + λ)
log

1
|r− r′| Ĩ +

µ + λ

4πµ (2µ + λ)
J(r− r′), (110)

where r, r′ ∈ R2, r 6= r′, J(r) := r r>
|r|2 and Γ̃0(r, r′) corresponds to the elasto-static case i.e.,

(ω = 0). If we assume the differences S− S0, K− K0, K′ − K0 and Λ−Λ0, then:

(i) The operators S− S0, K− K0, K′ − K0 and Λ−Λ0 are compact.
(ii) The operators K0 and K′0 are adjoint operators.
(iii) The operator S0 is self-adjoint operator.
(iv) The operators S0 and −Λ0 are coercive.

We also give and prove the following result.
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Theorem 3. The near field operator

N : [ L2(C) ]2 → L2(C) (111)

given by (65) can be written as:
N = −H̃∗M−1H̃, (112)

with operator H̃∗ being compact and has dense range in [ L2(C) ]2.

Proof. Let us recall that
N = −GH̃.

The latter in combination with (91), the fact that M is invertible and M−1 is
bounded, gives:

N = −H̃∗M−1H̃. (113)

Compactness of H̃∗ now is secured, by the fact that u|B0 ∈ H1(B0) (B0 is

the interior domain enclosed by C) and u|C ∈ H
1
2 (C); therefore, the operator

G : [ H
1
2 (ΓD) ]

2 × [ H−
1
2 (ΓI) ]

2 → [ L2(C) ]2 is compact.
Last but not least, we will prove that H̃∗ has dense range. Assume that H̃b = 0. From

the definition of H̃ (see (67)), we have

υb|ΓD = 0 and (T + iωc)υb = 0. (114)

Hence υb solves the following exterior mixed boundary value problem:

(∆∗ + ρ1ω2)υ = 0, inR2 \ B (115)

υ = 0, on ΓD (116)

Tυ + iωcυ = 0, on ΓI (117)

Tυ(p) − ikp(λ + 2µ)υ(p) = O(r−2) (118)

Tυ(s) − iksµυ(s) = O(r−2) (119)

with r := |r| → +∞. The problem (115)–(119) has a unique solution [26], and we can easily
get υb = 0 in R2 \ B. From the analytic continuation argument we take υb = 0 in R2 \ B0,
and therefore υ+

b |C = υ−b |C = 0. Using the fact that ω2 is not an eigenvalue of −∆∗ in B0,
we arrive at υb = 0 in B0. We also have Tυ+

b − Tυ−b = 0 on C, and finally b = 0. The above
argument yields to injectivity of H̃ and therefore H̃∗ has dense range.

In the sequel, we make use of an essential theorem (see [25], p. 57) which is very
helpful in the suggested modified factorization method due to the introduction of some
proposed key auxiliary operators. For the convenience of the reader, we state it here.

Theorem 4. Let X ⊂ U ⊂ X∗ be a Gelfand triple with a Hilbert space U and a reflexive Banach
space X such that the embedding is dense. Furthermore, let Y be a second Hilbert space and let
N : Y → Y, G : X → Y and Λ : X∗ → X be linear bounded operators such that

N = GΛG∗.

If we assume that:

(i) G is a compact operator,
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(ii) There exists t ∈ [0, 2π] such that Re[eitΛ] = C + K with some compact operator K and
some self-adjoint and coercive operator C : X∗ → X, i.e., there is constant γ0 > 0 with
< φ, Cφ >≥ γ0‖φ‖2, for all φ ∈ X∗,

(iii) Im[Λ] is non−negative or non−positive on X∗, i.e., < φ, Im(Λ) >≥ 0 or < φ, Im(Λ) >≤ 0,
for all φ ∈ R(G∗) and φ 6= 0, and

(iv) Re[eitΛ] is one−to−one or Im(Λ) is strictly positive or strictly negative, for all φ ∈ R(G∗)
and φ 6= 0,

then the operator N] = | Re[eitN] |+ | Im(N) | is positive, and the range of G coincides with the

range of N
1
2
] .

Remark 1. The above analysis deals with the matrix−integral operatorM, for which the essential
theorem introduced by Kirsh and Grinberg [25] cannot be applied. In particular, the decomposition
of the real part of the matrix operatorM into a compact operator and a coercive one is not valid,
and hence we have to modify our functional analysis technique by considering some suitable
auxiliary operators.

In what follows, we define new operators ND , NI related with N as follows:

ND = N − ξ1U∗U, NI = N + ξ2U∗U, (120)

where ξ1, ξ2 ∈ C with Im ξ1 < 0, Im ξ2 > 0 and U : [ L2(C) ]2 → [ L2(C) ]2 is given as

(Ub)(r) =
∫

C
Γ̃(r, r0) b(r0) ds(r0), r ∈ ∂D. (121)

In (121) ∂D is the smooth boundary of a known domain D which is open, bounded with
D ⊂ B, B0 ⊂ D and ∂D ∩ C = ∅. The following theorem holds.

Theorem 5. We assume that ω2 is not an interior Dirichlet eigenvalue of ∆∗ in both D and B0.
Then the following decompositions hold:

ND = −
(

H1
U

)∗
M1

(
H1
U

)
, (122)

and

NI = −
(

U
H2

)∗
M2

(
U

H2

)
, (123)

with
M1 =M1O +M1C (124)

and
M2 =M2O +M2C, (125)

In addition, the operatorsM1O,M2O are coercive andM1C,M2C are compact.

Proof. Let us consider the following exterior boundary value problem:

(∆∗ + ρ0ω2)w = 0 in R2 \ D (126)

w = g1 on ∂D (127)

Tw(p) − ikp(λ + 2µ)w(p) = O(r−2), (128)

Tw(s) − iksµw(s) = O(r−2), (129)
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for r := |r| → ∞ and g1 ∈
[
L2(∂D)

]2. We also define the operator

Q̃ = (Q1, Q2) :
[

L2(∂D)
]2
→ [ H

1
2 (ΓD) ]

2 × [ H−
1
2 (ΓI) ]

2 (130)

given by
Q1g1 = w|ΓD and Q2g1 = (Tw + iωc w)|ΓI , (131)

with w being a solution of (126)–(129). The exterior boundary value problem (126)–(129)
has a solution with boundary data g ∈ [ L2(∂D) ]2 [15,26] and its regularity properties yield
to compactness of the operator Q. Using relation (68) it is easy to prove that υb solves
problem (126)–(129), with g1|∂D = υg|∂D, and via (121)

g1|∂D = υg|∂D = Ug. (132)

In addition, from definitions of H̃ and Q̃ (see (67) and (131)), we get

H1 = Q1U. (133)

and using a similar consideration, the following relation

H2 = Q2U (134)

also holds. From (120) and the factorization relation (113) we have

ND = N − ξ1U∗U

= −H̃∗M−1H̃ − ξ1U∗U

(135)

= −
(

H1
U

)∗( I 0
0 Q2

∗

)
M−1

(
I 0
0 Q2

)(
H1
U

)
− ξ1U∗U

= −
(

H1
U

)∗[( I 0
0 Q2

∗

)
M−1

(
I 0
0 Q2

)
+

(
0 0
0 ξ1 I

)](
H1
U

)
.

If we use the notation

M1 :=
(

I 0
0 Q2

∗

)
M−1

(
I 0
0 Q2

)
+

(
0 0
0 ξ1 I

)
, (136)

then (122) is secured. In what follows and sinceM−1 is bounded, we can write

M−1 =

(
S−1

0 0
0 Λ−1

0

)
−M−1Mc

(
S−1

0 0
0 Λ−1

0

)
, (137)

where

Mc =M−
(

S0 0
0 Λ0

)
. (138)

Then (137) via (136) is written as

M1 =

(
S−1

0 0
0 ξ1 I

)
+

(
0 0
0 Q2

∗Λ−1
0 Q2

)

−
(

I 0
0 Q2

)
M−1Mc

(
S−1

0 0
0 Λ−1

0

)(
I 0
0 Q2

)
(139)
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and if we set

M1O :=
(

S−1
0 0
0 ξ1 I

)
, (140)

and

M1C

:=
(

0 0
0 Q2

∗Λ−1
0 Q2

)
−
(

I 0
0 Q2

∗

)
M−1Mc

(
S−1

0 0
0 Λ−1

0

)(
I 0
0 Q2

)
,

(141)

thenM10 is a coercive operator andM1c a compact one. Here we have taken into account
the compactness of Q2 andMc as well as that Re ξ1 > 0.

Following a similar analysis as before for ND, we can also prove relation (123). We
now use the notation

M2O :=
( −ξ2 I 0

0 Λ−1
0

)
(142)

and

M2C :=
(

Q1
∗S−1

0 0
0 0

)
−
(

Q1
∗ 0

0 I

)
M−1Mc

(
S−1

0 0
0 Λ−1

0

)(
Q1 0
0 I

)
(143)

If we assume that Re ξ2 < 0 we conclude thatM20 is coercive and since the operators
Q1 andMc are compact,M2c is also compact.

We also state the following theorem.

Theorem 6. Assume that ω2 is neither a Dirichlet eigenvalue of −∆∗ in D, nor in B0, then

(i) The operators Im{M1} and Im{M2} are strictly negative.

(ii) The operators (H1
∗, U∗) =

(
H1
U

)∗
and (U∗, H2

∗) =
(

U∗

H2

)∗
are compact and have

dense ranges in L2(C).

Proof. (i) Let us consider an arbitrary l̃ = (l1, l2) ∈ [ H
1
2 (ΓD) ]

2 × [ L2(∂D) ]2 and as-
sume Im ξ1 < 0. We have the following analysis:

Im{<M1l, l >}

= Im {<
(

I 0
0 Q2

∗

)
M−1

(
I 0
0 Q2

)
l, l >}+ Im{< ξ1l2, l2 >}

(144)

= Im {< l̂, Ml̂ >}+ Im {ξ1} ‖l2‖2

= −Im {<Ml̂, l̂ >}+ Im {ξ1} ‖l2‖2

where

l̂ =M−1
(

I 0
0 Q2

)
=M−1

(
l1

Q2l2

)
. (145)

Taking into account that Im{<Ml̂, l̂ >} ≥ 0, from (145) we end up with

Im{<M1l, l >} ≤ 0. (146)
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Concerning now the vanishing of (146), if we assume Im{<M1l, l >} = 0, then
via (145) we can arrive at Im{<Ml̂, l̂ >} = Im ξ1 ‖l2‖2 = 0 and therefore by (145),
we get: (

l1
Q2l2

)
=

(
0
0

)
and l2 = 0. (147)

Hence l̃ = 0, and operator Im{M1} is strictly negative. Following similar arguments
as above, and considering Im ξ2 > 0, the operator Im{M2} is also strictly negative.

(ii) From relation (121) we can see that

(U∗b)(r) =
∫

C
Γ̃(r, r0) b(r0) ds(r0), r ∈ C, (148)

hence, compactness of U∗ is secured since the integral operator U∗ has a weakly
singular kernel. We assume now that Ub(r) = 0, r ∈ ∂D, which is written as

∫

C
Γ̃(r, r0) b(r0) ds(r0) = 0, r ∈ ∂D. (149)

The single layer potential in the left hand side of (149) satisfies the Navier equation
for r ∈ D, with ∫

C
Γ̃(r, r0) · b(r0) ds(r0)|∂D = 0, (150)

and since ω2 is not a Dirichlet eigenvalue of −∆∗ in D we arrive at∫
C Γ̃(r, r0) b(r0) ds(r0) = 0 for r ∈ D, which also vanishes in R2; therefore, b = 0.

The injectivity now of U∗ is proved.

In view of Theorems 5 and 6 it is obvious that operator ND satisfies all the conditions
of Theorem 4, and hence

Range
[
(N #

D)
1
2

]
= Range[(H1

∗, U∗)], (151)

where
N #

D = | Re{ND} |+ | Im{ND} |. (152)

For φ̃ = (φ1, φ2) ∈ [ H̃−
1
2 (ΓD) ]

2 × [ L2(∂D) ]2, we have that

(H1
∗, U∗)φ̃(r) =

∫

ΓD

φ1(r0) Γ̃(r, r0) ds(r0) +
∫

∂D
φ2(r0) Γ̃(r, r0) ds(r0). (153)

The operator NI also satisfies the conditions of Theorem 3, hence

Range
[
(N #

I )
1
2

]
= Range[(U∗, H∗2)], (154)

where
N #

I = | Re{NI} |+ | Im{NI} |. (155)

Again, for every φ̃ = (φ1, φ2) ∈ [ L2(∂D) ]2 × [ H̃
1
2 (ΓI) ]

2, we have

(U∗, H∗2)φ̃(r) =
∫

∂D
φ1(r0) Γ̃(r, r0) ds(r0) +

∫

ΓI

φ2(r0) (T + iωc)Γ̃(r, r0) ds(r0). (156)

Proposition 1. Assume that ω2 is neither a Dirichlet eigenvalue of −∆∗ in both D and B0. If we
take any given nonitersecting arc L, which is smooth piecewise and without cups, defined by

Φ1
L(r) =

∫

L
φ1(r0) Γ̃(r, r0) ds(r0) +

∫

∂D
φ2(r0) Γ̃(r, r0) ds(r0), (157)
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for any φ̃ = (φ1, φ2) ∈ [ H̃−
1
2 (L) ]2 × [ L2(∂D) ]2 with φ1(r) 6= 0 for all r ∈ L, we have that:

L ⊆ ΓD ⇔ Φ1
L ∈ Range[(H∗1 , U∗)]. (158)

Proof. Let us first consider that L ⊆ ΓD. Then from H̃−
1
2 (L) ⊂ H̃−

1
2 (ΓD), and taking into

account (153), we easily get
Φ1

L ∈ Range(H∗1 , U∗). (159)

On the contrary and using the abduction method, let us assume that L is not a subset of ΓD
and

Φ1
L ∈ Range(H∗1 , U∗) (160)

simultaneously. Therefore, there exists β̃ = (β1, β2) ∈ [ H̃−
1
2 (ΓD) ]

2× [ L2(∂D) ]2 for which
the following relation holds:

Φ1
L(r) =

∫

ΓD

β1(r0) Γ̃(r, r0) ds(r0) +
∫

∂D
β2(r0) Γ̃(r, r0) ds(r0). (161)

If we now take a fixed point r ≡ z0, such that z0 /∈ ΓD, but z0 ∈ L, then a singularity for
Φ1

L(r) at r = z0 occurs, whereas the right hand side of (161) has not. The assertion easily
follows by contradiction.

Taking into account Theorems 4–6 and Proposition 1, we are ready now to state the
following essential theorem of this paper.

Theorem 7. Assume that ω2 is neither a Dirichlet eigenvalue of −∆∗ in D nor a Dirichlet
eigenvalue of −∆∗ in B0. Then

L ⊆ ΓD ⇔ Φ1
L ∈ Range[(H1

∗, U∗)] (162)

and

L⊆ ΓD ⇔
∞

∑
j=1

| < Φ1
L, ψj >L2(C) |2
|λj|

< ∞. (163)

Here (λj, ψj) is an eigenvalue system of N #
D, where N #

D is given in (152).

Using the same steps as before, the shape reconstruction of ΓI can be treated in a
similar way. Indeed, if we again assume that ω2 is neither a Dirichlet eigenvalue of −∆∗ in
D nor a Dirichlet eigenvalue in B0 as well, then the following relations

L ⊆ ΓI ⇔ Φ2
L ∈ Range[(U∗, H2

∗)], (164)

and

L ⊆ ΓI ⇔
∞

∑
j=1

| < Φ2
L, ψj >L2(C) |2
|λj|

< ∞. (165)

hold, where

Φ2
L :=

∫

∂D
φ1(r0) Γ̃(r, r0) ds(r0) +

∫

L
φ2(r0)(T − iωc) Γ̃(r, r0) ds(r0), (166)

with φ̃ = (φ1, φ2) ∈ [ L2(∂D) ]2× [ H̃
1
2 (L) ]2 and φ2(r) 6= 0 for all r ∈ L, and here as before

(λj, ψj) is an eigenvalue system of N #
I , recall N #

I = | Re{NI} |+ | Im{NI} |.

5. Conclusions

In this paper an elastic mixed scattering problem in two dimensional linear elastic-
ity for a non-penetrable obstacle was studied. The direct scattering problem as well as
the corresponding inverse one were addressed. We mention that our problem is not a
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typical one, since it concerns a point-source field placed inside the scatterer, i.e., inside
a Lipschitz closed curve into the partially coated obstacle (see Figure 1). We make the
following remarks:

(i) On the boundary of the scatterer, a Dirichlet and an impedance type of boundary
condition is imposed, specified by ΓD and ΓI , respectively. Our method can be
expanded and is still valid, for the case where our boundary is divided into more
than two disjoint, relatively open subsets of Γ.

(ii) Solvability of the direct problem is an essential one, since the measurements (data) of
the scattered waves inside the partially coated scatterer are used for the corresponding
inverse problem.

(iii) Concerning the corresponding inverse scattering problem, a modified factorisation
method in order to retrieve the shape reconstruction of a partially coated obstacle
was presented.

(iv) Basic auxiliary operators were introduced, since from the mathematical point of view
the basic Theorem 4 (page 17) could not be applied. The key idea was to factorise
these new auxiliary operators and prove some essential properties, in order to apply
the above theorem and recover the shape reconstruction of the obstacle.

(v) An inversion algorithm via Proposition 1 and Theorem 7 were established. Concern-
ing numerical examples, and to the best of our knowledge, in elasticity there are no
numerical results for partially coated obstacles which deal with a Dirichlet boundary
condition and an impedance one. However, this is beyond the aim of this paper;
our analytical method contributes to the understanding of the physical background,
and its usefulness lies in checking the credibility of the corresponding numerical
technique. We hope to provide examples in the future, and numerical results showing
the applicability of the method are also welcomed.
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