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1. Introduction

In modeling applied issues, only fractional data might be known, or there might be a
level of vulnerability in the boundaries of the model, or a few estimations might be loose.
Due to such features, we would like to investigate functional equations in fuzzy settings.
In the last 40 years, the fuzzy hypothesis has become an important examination tool and
a lot of progress has been made in the theory of fuzzy sets to find the fuzzy analogues
of the old style set theory.This branch finds many uses in the sciences. Katsaras [1] and
Felbin [2] presented the notion of fuzzy norms on linear spaces. Recently, many authors
have investigated the functional equations in fuzzy normed linear spaces (See e.g., [3-7]).

The stability problem of functional equations began with a question of Ulam [8]
regarding the stability of group homomorphisms. Let (G, -) be a group and let (Gy, ) be
a metric group with the metric d(.,.). Given € > 0, does there exist a & > 0, such that if a
mapping h : G — G satisfies the inequality d(h(x - y),h(x) *h(y)) < é forall x,y € Gy,
then there exists a homomorphism H : G; — G, with d(h(x), H(x)) < € for all x € G;?
That is, under what condition does there exist a homomorphism near an approximate
homomorphism? Hyers [9] provided a first solution to the question of Ulam for additive
mappings between Banach spaces. After Hyers, various functional equations have been
studied by many authors. We refer the readers to [3,7,10-17] for recent results and history

on the stability.
Consider the following functional equation:
fQx+y) + f(2x —y) = 4f (x +y) +4f (x —y) +24f (x) — 6f (y)- (1)

Since it is quite easy to prove that the function f(x) = x* fulfills (1), it is called a
quartic functional equation. Each solution of the quartic functional equation is called a
quartic mapping.

Many mathematicians have investigated the quartic functional equations. Lee et al. [18]
derived the general solution of (1) and examined its stability results in Banach spaces.
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Eshaghi Gordji et al. [19] investigated the stability of mixed type quartic-cubic—quadratic
functional equations in non-Archimedean normed spaces. Ravi et al. [20] studied the
stability of mixed type cubic—quartic equations in Banach spaces. Lee et al. [21] investigated
the quartic functional equations in the space of generalized functions. Yang et al. [7]
investigated the stability in the fuzzy B-normed spaces. Wang et al. [17] showed the
stability of a mixed type cubic—quartic functional equation in 2-Banach spaces.

In this work, we introduce the generalized quartic functional equation of the form

4,(2 z-tl.)

= Y e(ti+jttkte+iy)—pr Y (it +jt; + ki) @)

1<i<j<k<I<m 1<i<j<k<m

m—1 ) .
+y2 ) P(iti+jt) + s Z(i+1)4[¢<tl+1)+2¢( i) |

1<i<j<m i=0

where m > 5 and

= (m—4),

m% —7m+ 12
IIJ2 - ( 2 )/

—m3 +9m? — 26m + 24
P3 = 3 .

The main purpose of this paper is to investigate the Hyers—Ulam stability of (2) in
fuzzy normed spaces with the help of direct and fixed point methods. We also provide
some corollaries in which the stability of this equation can be controlled by sums and
products of powers of norms. In one of the corollaries, we obtain the hyperstability of (2).

This work is coordinated as follows. In Section 2, we derive the general solution of (2)
between real vector spaces. In Section 3, we investigate the fuzzy stability results of (2) by
using the direct method. In Section 4, we examine the fuzzy stability results of (2) by using
a fixed point method.

We will use some preliminary definitions and notions of [22-24] to study the Hyers—
Ulam stability of (2) in fuzzy normed spaces.

Definition 1 ([22-24]). Let E be a real vector space. A function F : E x R — [0,1] is called a
fuzzy norm on E if for every p,q € Eand u,v € R,

F1) F(p,v) =0forv <0;

(p, ) is a non-decreasing function of R and limy,_ F(p,v) = 1;
F¢) forp #0, F(p, ) is continuous on R.

(

() p=0%< F(p,v) =1forallv > 0;

(F3) F(ep,v) =E(p, 1) fe #0;

(F1) F(p+qu+0) >min{F(p,u),F(q,0)};
i

The pair (E, F) is called a fuzzy normed vector space.
The following fixed point theorem plays a crucial role in the investigation of the
stability of (2).

Theorem 1 (Alternative fixed point theorem [25]). Let (E,d) be a generalized complete metric
space and I' : E — E be a strictly contractive function with Lipschitz constant L < 1. Suppose that
for a given element a € E there exists a positive integer m such that d(T"™"1a,T™a) < co. Then,
(i) the sequence {I"™a}$_, converges to a fixed point b € E of T;

(ii) b is the unique fixed point of T in the set F = {q € E: d(I"™a,q) < co};

(iii) d(q,b) < 127d(q,Tq), q € F.
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2. General Solution

Theorem 2. Let E, W be real vector spaces. If ¢ : E — W is a mapping which fulfills (2) for all
t1,ta, -+, tm € E, then, the mapping ¢ is quartic.

Proof. Taking ty = t, = -+ = t,, = 0in (2), we have ¢(0) = 0. Now, substituting
(¢,0,---,0) for (t1,t2,- - - , tm) in (2), we get

Hence, the function ¢ is even. Replacing (t1,t2, -, ty) with (0,£0,---,0) in (2),
we get

¢(2t) = 2%p(t), teE. ©)
Then, by inductiononm € N,

P(2"t) =24"¢p(t), tcE. 4)
Replacing t with o in (4), we get

#( 30 ) = gm0, t<E ®

Substituting (x, -3, %, —%, %,0,~ -+,0) for (t1,tp,t3,ta, t5, .. ., t) in (2), utilizing the
evenness of ¢ and using (4) and (5), we obtain that (1) holds for every x,y € E. Therefore,
the mapping ¢ is quartic. O

In what follows, we assume that E is a linear space, (Z, F) is a fuzzy normed space,
and (W, G) is a fuzzy Banach space. For notational convenience, we define the mapping
D¢ : E™ — Wby

D(P(tl/ tz/ T /tm)

= ¢<iiti> - Y ¢ (iti + jtj + ke + 1t;)

i=1 1<i<j<k<I<m

), plititjttkl) g2 ) @(iti+jty)

1<i<j<k<m 1<i<j<m
e pti) +¢(—tiv1)
-3 ), (i+1) [
0<i<m—1 2

forall ty,tp,-- - ,ty € E. Here, 11, ¢, and 1p3 are those in (2).
We denote ¢ = 13 < 0.

3. Results: Direct Technique
Theorem 3. Let a mapping x : E™ — Z satisfy

F(x(0,2,0,---,0),8) > F(px(0,t,0,---,0),5) 6)

forallt € Eandall § > 0, and

lim F(X (2’t1,2’t2,- . ,2’tm),2415) —1 @)

[—o0

forall ty,ty, -ty € Eand all § > 0, where 0 < p < 2% Suppose that an even mapping
¢ : E — W with ¢(0) = 0 satisfies

G(D(P(tl/ tZ/ v /tm)ré) = P(X(tl,tz, e rtm)/é) (8)
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forall t1,ty,- -+ ,ty € Eand all 6 > 0. Then, the limit
Q4(t) = G — lim gb(th) teE )
4 pm g
exists and there exists a unique quartic mapping Q4 : E — W such that
Gp(t) — Qult), ) = F(x(0,8,0,--,0), [¢[6(2* ~ ) ), (10)
forallt € Eand 6 > 0.
Proof. Replacing (t1,tp,- - ,tm) with (0,£,0,---,0) in (8), we have
G(pep(2t) — 16y(t),8) > F(x(0,4,0,- - ,0),8), t € E, 5 > 0. (11)
From (11), we get
G("’(;f) — o), 24‘5¢) > E(x(0,4,0,-+-,0),8), tCE, 5> 0. (12)

Substituting 2/t for ¢ in (12), we obtain

G<¢<zl“t> 9@y ¢ ) > F(x(0,2't,0,++,0),6). (13)

24(I+1) 241 7 24(l+1) |l[)|

Using (6) and F3 in (13), we reach

P (') s 5
G( 24(1+1) - 4l 24(l+1)|ll7| > F<X(O, t0,--- ,0), l>' (14)

Replacing & with p'8 in (14), we attain

P2y p(2't)  pls
G( Q) o I, > F(x(0,t,0,---,0),8), tEE, 6>0. (1)

Note that l 1 » '
— 1+ 1
p(2'1) P21 _ p(2't) .

oAl P(t) = o pait ) 4

From (15) and (16), we get

G ( 24l (P(t)’ 1§0 24(i+1) |1P|
1-1 i+1) i i 17
. o200 @2it)  pls (17)
2 min U {G< 24(i+1) 4 |ip|24(+1)
=0
> F(x(0,t,0,---,0),6), t€E, 6 >0.

Replacing t with 2"t in (17) and with the help of (6) and F3, we arrive at

PRI oy § 0 "0,
G( S $(2 t),§)24(i+1)|lp| > F(x(0,2",0,---,0),6).
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Hence, we have
c ¢(2(l+n)t) B ¢(2nt) i -1 p15
24(I+n) D4n 7 o4n = 24(i+1) ||
> F(p"x(0,4,0,- -+ ,0),0) (18)
1)
2 F(X(O,t,(), v /0)/ 1’l>'
P
Replacing § with p"d in (18), we obtain for all [,n > 0
¢(2(l+n)t) (])(Z”t) I+n—1 pi5
G( oA(in) | odn 1; 2461) | > F(x(0,4,0,---,0),0).
Replacing § with = ¢ in the above inequality, we get
i=n 24(z+1)w,|
¢ p(2") 5
— > e ¢
G( 24(l+n) 24n O ) 2 F X(O, t,0, ,0), Zl+"71 ol (19)
i=n 24(i+1)‘¢‘

foralll,n > 0. As0 < p <2*and Y3, (2%)1 < oo, F5 implies that the right-hand side of

(19) goes to 1 as n — oo. Hence, {¢(2mt) } is a Cauchy sequence in (W,G). As (W, G) is

24m
a fuzzy Banach space, this sequence converges to some point Q4(t) € W. Now, we can
define a mapping Q4 : E — W by

Qu(t) = G — lim LGS

24l

Putting n = 0 and taking the limit / tends to co in (19), with the help of Fs, we get

G(¢p(t) — Qu(t),6) > F(X(O, 10, ,0), |p|o(2* —p)), tEES>0.

Now, we show that Q4 is quartic. Note that ¢ and Q4 are even mappings. Replacing
(t1,t2, -+, tm) with (21t1,21t2, -+, 2'ty,) in (8), we have

G(;Mng(z’tl,zltz,« - ,zltm),(s)
> F(;M(zltl,zltz,- . ,2ltm),5)
> F(X(21t1,21t2,~~ ,ZZtm),Z‘”cS)
forall t1,ty,-- ,t,; € E and all 6 > 0. Note that
IILTOP(X(thl,ZZtZ,- . ,ZZtm),Z‘”(S) —1.

Hence, Q4 satisfies the functional Equation (2). Therefore, Q4 : E — W is quartic.
Next, we show the uniqueness of Q4. Let R4 : E — W be another quartic mapping
satisfying (10). Then,
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Q4(21t)  Ry(2't)
:G< 4241 - 4241 ’5>

_G<@@m ¢ww+¢w0_mumﬁ>

24l 24l 24l 24l
: Qu(2't) ¢(2't) ¢ ¢(2't)  Ry(2't) &
2 min {G ( 24l - 24l 7 E G 24l o 24l 7 E }

4l 4
R

241 24 _
> F(PIX(Ort’O"” ,0), W)
4 4 _
>F<x(0,t,0,-~,0),2|¢‘;(21‘))>, teE, 6>0.
0
Since lim; %00241‘4]‘2572,247") = oo, we get
24|p|5(2* - p)
lim F 0,t¢0,---,0), —/—————= | = 1.
Lim ()c( ) 20

Thus, G(Q4(t) — Ry(t),8) = 1. Hence, Q4(t) = R4(t). Therefore, the proof is
now completed. O

We have the following result similar to Theorem 3, which corresponds to the case
p > 2%

Theorem 4. Let a mapping x : E™ — Z satisfy

F<X<o,;,0,. . ,0),5) > F(;X(O,t,o,-«« ,o),5> (20)

forallt € Eandall 6 > 0, and

. tp t t )
I]ighls(x<zll’221”2n;)’241>:1/ tl/tZIrt'rﬂEE/5>0/ (21)

where p > 2*. Suppose that an even mapping ¢ : E — W with ¢(0) = 0 fulfills

forall t1,ty, -+ ,ty € Eand all 6 > 0. Then, the limit

| —o0 Zl

Q4(t) = G — lim 24’4>(t) (23)
exists for each t € E and defines a unique quartic mapping Qu : E — W such that
Glg(t) ~ Qa(1),0) > F(x(0,£,0,+,0), [plo(p~2Y), teE >0, (29

Proof. Following the same method as in Theorem 3, we obtain the result. [J

In the remaining parts of this section, we apply the theorems to get some corollaries.
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Corollary 1. Let T > 0 be a real constant. If an even mapping ¢ : E — W with ¢(0) = 0 fulfills
G(D(t, o, 1), 6) = F(7,0),
forallty, ty, -+ ,tm € E, & > 0, then there exists a unique quartic mapping Q4 : E — W such that
G(p(t) — Qa(t),d) > F(t,15|pld), t€E, §>0.
Proof. Let us define x(t1,t, -+ ,tm) = Tand p = 20, Then, by Theorem 3, we have
G(¢(t) — Qq(t),6) > F(t,15|p|d), t € E, 6 > 0.
O

Corollary 2. Let € and p be real constants with p € (0,4) U (4, +o0). If an even mapping
¢ : E — W with ¢(0) = 0 fulfills

m
i=1
forallty, ty, -+ ,tm € E, & > 0, then there exists a unique quartic mapping Q4 : E — W such that
G(p(t) — Qu(t),0) = F(e[t]]”, |2* — 2"|[yl), teE, 6>0.

Proof. Let us define x(t1,f2,- -+ ,tm) = eXi 4 ||ti||P, p = 2P and apply Theorems 3 and 4.
Then, we get the result. [

Corollary 3. Let ¢,0,p, and q be real constants with mp,mq € (0,4) U (4, +o0). If an even
mapping ¢ : E — W with $(0) = 0 fulfills

m m
(Dt ta, -+ 1), 8) > F(e Y |t + 0T T I4:]7,5),
i=1 i=1
forallty, ty,- -ty € E, 6 > 0, then there exists a unique quartic mapping Qu : E — W such that

G(¢(t) — Qa(t),0) = F(el|t]|™, 2% —2"P||pls), teE, é>0.

Proof. Defining x(t1,t2, -+ ,tm) = eXity [|til|"P + 0TT/L, [|ti]|9, p = 2™P and applying
Theorems 3 and 4, we get the result. [

We obtain the hyperstability of ¢ if ¢ = 0 in Corollary 3.

Corollary 4. Let 6 and q be real constants with 0 < mq # 4. If an even mapping ¢ : E — W
with ¢(0) = 0 fulfills

m
G(Dg(ty b, ,tn),6) = F(0T T 1], 5),
i=1

forall t1,tp,- -+ ,tm € E, 6 > 0, then ¢ is quartic.

Proof. We consider Corollary 3 with & = 0. Then, we have
G((t) = Qa(t),9)
> F(e|lt]"”, [2* = 2"7[[]9)
= F(0,[2* —2"||p|s) =1,
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forallt € E, 6 > 0, and hence, ¢ = Q4 is quartic. O

4. Results: Fixed Point Technique

In this section, we consider the stability of the functional equation (2) using Theorem 1.
For notational convenience, we define ¢, as follows:

2 if a=0,
e = {; if a=1
andset A = {g: E— W: g(0) = 0}.
Now, we prove the main outcome of this section.

Theorem 5. Let ¢ : E — W be an even mapping such that ¢(0) = 0 and there exists a mapping
X : E™ — Z satisfying

lim F(x(2ht, Shta, -+, Cht), 6410) =1 (25)
|—o0

and

forall t1,ty,-++ ,tm € Eand 6 > 0. Let ¢(t) = éx(o,%,o,- -+,0). Assume there exists

L € (0,1) such that

F(ggq)(éat),é) > F(Lg(t),8), teE, 5> 0. 27)

Then, there exist a unique quartic mapping Q4 : E — W satisfying

Llfu
G(p(t) — Qu(t),8) > F(1 - L¢(t),5), tEE, §>0. (28)

Proof. Let 7 : A — [0, 0] be given by

v(f,g) = inf{w € (0,00) : G(f(t) —g(t),0) > F(we(t),d), t € X, >0},

and as standard, inf @ = +oco0.
The same method used in ([26], Lemma 2.1) gives a complete generalized metric space

(A7)
Let us define ¥, : A — A by

"Faf(t) =

;f(gut), te L.

Let f, g be elements of A such that

v(f.8) <e

Then,
G(f(t) —g(t),0) > F(ep(t),6), t€E 6>0,

whence
GU¥af (1) ~ ¥ag(0), ) = F( 9@, 0), tEE, 630,

It follows from (27) that

G(¥af(t) — Yag(t),8) > F(eLg(t),5), t€E, &> 0.
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Hence, we have v(¥,f, Yag) < €L. This shows

Y(Yaf, Yag) < LY(f, %),

that is, ¥, is a strictly contractive mapping on A with Lipschitz constant L. Substituting
(0,t,0,---,0) for (t1,tp,- -+ , ty) in (26), we get

G(¢¢(2t) - 24¢4>(t),5) > F(x(0,t,0,-++,0),8), t€E, 6>0. (29)

Using (27) and (F3) when a = 0, it follows from (29) that

G(‘P(Zt)—cp(t) g )2F(x(0/t/0w“/0)/‘5)-

2 "24y|
Hence,
2
G<¢(24t) - 4>(t),5) > F(x(0,4,0,-,0),2*y])
> F<x(0,t,0,- . ,0)’5>
24y

> F(Lo(t),6), t€E, 6>0.

Therefore,
Y(¥op, ) < L =L17 (30)

Replacing t with % in (29) (i.e.,, when a = 1) and using (F3), we obtain

o0 24(2) ) (o))

Hence,
4 (1t f
1 t
> _ — o e
(a0 )
> F(g(t),0), t€E 6>0
Therefore,

v(Y1g,¢) <1=L1"" (31)
Then, from (30) and (31), we conclude

Y(¥a,¢) < L' < oo,

Now, from Theorem 1, it follows that there exists a fixed point Q4 of ¥, in A such that
(i) ¥aQs = Qqand limy e 7(¥79, Qs) = 0;
(ii) Qg is the unique fixed point of ¥, intheset E = {g € A: d(¢,g) < oo};
(iif) (¢, Qs) < r (9, ¥ad)-

Letting v (¥.¢, Q1) = ], we get G(¥Lo(t) — Qu(t),8) > F(e;(t),6) forall t € E and
all 6 > 0. Since lim;_,,, £; = 0, we infer

1
Qs(t) =G — zliiﬁ‘o 4’((,%;”, t € E.
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Replacing (t1,tp,- -+, ty) with (§,llt1,(',‘f7t2,- o, /dztm) in (26), we obtain

G(1Dwdmdm~udmwﬁzPQ;mdmdm~»dm»0

e
> F(x(&htr, Ehta, -+, Ehtm), E110),

forall 6 > Oandallty,tp,- - ,t € E. Then, by the same method as in Theorem 3, we obtain
that the mapping Q4 : E — W is quartic. As v(¥,¢,¢) < L%, it follows from (iii) that
Y($,Qq) < %, which means (28).

Finally, we show that Q4 is unique. Let R4 : E — W be another quartic mapping
fulfilling (28). Since Q4(2't) = 24 Qy(t) and Ry(2't) = 24 Ry(t) forallt € Eand alll € N,

we obtain
G(Qa(t) — Ry(t),9)
Q4(2't)  Ry(2't
_G< 42(41 L 42(41 )'5)
Qa(2't 2!t 2If)  Ry(2't
:G< 20 931, 92 _ ﬁu)ﬁ)
. Q 2!t 24 &5 ol R.(2) &
me{G< 42(41 )—¢(24l >’2>’G<¢(241 ) _ 42(41 )/2>}
[1-a 24ls
2F<1L(p(21t),2>.
By (25), we have

] [1-a ] 24l 5
zlg?op<1 By RACE el B
Consequently, G(Qq4(t) — Ry4(t),6) = 1forallt € Eand § > 0. So Q4(t) = Ry(t) for

all t € E, which ends the proof. [

Now, we provide a corollary.
Corollary 5. Assume that an even mapping ¢ : E — W with ¢(0) = 0 fulfills

F(6,9),
G(Dg(ty,t, -+ ,tm),8) >  F(O X [|4]I°, ),
F(O(ZZ I6lI™ + T2 16]°), 6),

forall t1,ty,- -+ ,tm € Eand 6 > 0, where 0 > 0 and s > 0 are constants. Then, there exists a
unique quartic mapping Qa4 : E — W such that

F(6,15[y[6),
G(¢(t) = Qa(t),0) = S F(O[t]%, [2* — 2°|yl5), s # 4,
F(0]t]|™, 2% — 2" [y]3), S

forallt € Eandall 6 > 0.

Proof. We take

g,
Xttt tw) = 92?1:1”’5‘”5/
O (X 6™ +TT [15:]°),
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forall ty,tp,- - ,t;, € E. Then,

F(X(‘:lutlldth/ o /d;tm)/ 315)
F(6,¢0),
— m s (4—s)l
= S E(ozm It et "s),
4—ms)l
FOT " + 2 i)™ 665,
1,ifa=0,

— <1, if(a=0ands <4)or(a=1ands > 4),
1, if (a=0and sm < 4) or (a = 1and sm > 4).

Letting

1
(P(t> = IPX(OIEIOI o /O>/

we then have

]
—
™R
Rl
S
S|
—~
—
~
>
~—

P(ggqv(é‘at),é) = F(& ol

and

Fo,0)  =F(x(0.5,00).lvd)
E(6,1919),
= JE(£1EIR llo),
F( el 1lo).

Using (32)—(34) and applying Theorem 5, we consider the following cases.

Case (i): L = 21—4 fora =0;

274
Glp(t) ~ Qul1),0) = F( 255 0(0),6) = F@,150410)

Case (ii): L = 2°"*for (a = 0,5 < 4);

2574

Glp(t) ~ Qul1),0) = F( 125 0(0)0) = F(o1FIF, (24~ 2)luo).
Case (iii): L = 2*~* for (a=1,5s>4);
Glp(t) ~ Qul1),0) = F( =g 0(0).0) = F(o1FIF, (2~ 2)lyd).
Case (iv): L = 2" % for (a = 0,5 < %);
ms—4
Gl (1)~ Qult),0) 2 P12 m0(0),9)

= F(0llt]", (2 = 2")|pls).

(32)

(33)

(34)
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Case (v): L =2 for (a = 1,5 > 1);

v

Glp(t) ~ Qu(1),0) = F( {60

F(0llel"™, (2" —24)[yls).

Hence, the proof is completed. [

5. Conclusions

In this work, we have introduced a new type of quartic functional equation and have
derived its general solution. Mainly, we have showed its Hyers—Ulam stability by means
of direct and fixed point techniques in fuzzy normed spaces. As a byproduct, we have
obtained that if the control function is the fuzzy norm of products of powers of norms,
then the quartic functional equation is hyperstable.
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