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Abstract: The present study analyzes the efficiency of social expenditure by EU-28 countries within
the period 2014–2018 to reduce poverty. The data are provided by programs European Union
Statistics on Income and Living Conditions (EU-SILC) and European System of Integrated Social
Protection Statistics (ESSPROS) of Eurostat. We first calculate the Debreu–Farrell (DF) productivity
measure similarly to our previous work, published in 2020, for each EU-28 country and rank these
poverty policies (PPPs) on the basis of that efficiency index. We also quantify the intensity of the
relationship between efficiency and the proportion that each item of social expending suppose within
the overall. When evaluating public policies within a given number of years, we have available a
longitudinal set of crisp observations (usually annual) for each embedded variable and country. The
observed value of variables for any country for the whole period 2014–2018 is quantified as fuzzy
numbers (FNs) that are built up by aggregating crisp annual observations on those variables within
that period. To rank the efficiency of PPPs, we use the concept of the expected value of an FN. To
assess the relation between DF index and the relative effort done in each type of social expense,
we interpret Pearson’s correlation as a linguistic variable and also use Pearson’s correlation index
between FNs proposed by D.H. Hong in 2006.

Keywords: fuzzy sets; fuzzy numbers; linguistic variables; fuzzy data analysis; correlation between
fuzzy variables; poverty policy; efficiency; Debreu–Farrell productivity index

1. Introduction

This paper assesses public poverty policies (PPPs) in European Union by considering
not only attained a diminution of poverty, which obviously is directly linked with social
expenditure (SE), but also the productivity of this expenditure. Likewise, we quantify the
relationship of every kind of social expenditure (health and sickness benefits, pensions
benefits, family and children benefits, . . . ) with the efficiency of overall SE.

There are many papers on the productivity of public policies from the point of view
of fiscal systems [1–3], but also from the perspective of nonmonetary social benefits, such
as health and education [4–6]. The productivity of SE to reduce inequality and poverty
indexes have also been investigated in for EU-27 countries (EU-28 less Croatia) [7]; within
OECD countries [8]; in EU-15 countries [9] and within EU-28 [10–12]. Our analysis shows
a new perspective on this topic since we analyze a different period, and moreover, we use
fuzzy set theory tools to analyze data.

The key question we address here is the relationship between SE, on one hand, and
poverty rates on the other in EU-28. It is well known that there is an inverse relation of SE
with poverty and inequality indexes [13,14]. However, ref. [15] showed that despite there is
a great negative correlation of SE and poverty levels in EU-28 states, it cannot be concluded
that increases in SE lead directly to reductions in poverty. Therefore, ref. [15] suggests
that more efforts in social benefits suppose unequal results of poverty policies. Hence,
convergence in SE does not imply converging in poverty levels. This fact comes clear
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in the case of Mediterranean countries as, e.g., Spain where a growth of social expenses
could end up absorbed by middle-income households instead lower-income ones due
to Mathew effect [16]. Indeed, ref. [17] point out that whereas tax systems and in-cash
benefits could generate a diminution of income inequality indexes, they may also produce
undesired consequences. It is well known that pensions for the elderly people have a small
redistributive effect.

Although family and housing benefits are more progressive than pensions, they have
a limited impact since they do not suppose a great proportion of SE. On the other hand,
ref. [18] indicates that the results of unemployment policies objected to the Lisbon strategy.
That paper outlines that unemployment expenses have not had expected results, and also
redistribution programs have not been effective enough in poverty elimination. Likewise,
several papers found that the benefits of social assistance policies have not a great effect in
many countries [19–23]. Hence, we feel justified assessing productivity of SE on poverty
diminutions within EU-28 countries. It could lead us to understand why several countries,
after making a similar budgetary effort in social policies, obtain different results in poverty
reduction due to the unequal productivity of their social programs.

Our analysis on EU-28 PPPs is done within 2014–2018 by using annual data from the
Eurostat programs: European Union Statistics on Income and Living Conditions (EU-SILC)
and European System of Integrated Social Protection Statistics (ESSPROS). To assess the
results of social policies within a period of several years, a usual practice consists of taking
the average value of annual observations as variable observations [8,10,12] or, alternatively,
limiting the analysis to a concrete year [7,12]. Clearly, those procedures suppose using
limited information. This drawback leads us to propose modeling observations on variables
in a period of multiple years by means of fuzzy numbers (FNs). Fuzzy data analysis will
allow using all the information in the sample and, in addition, structuring the value of
observations in such a way that we may obtain results with an intuitive interpretation. With
fuzzy data on evaluated PPPs, we perform two analyses. First, we rank EU-28 countries
taking into account the productivity of their PPP. To do it we calculate the fuzzy Debreu–
Farrell index for each country and face a problem of FN ordering. Second, we calculate
and evaluate the correlation of PPP efficiency with the way SE has been split into items as
health expenditure, pensions payments, . . . by using fuzzy tools.

The motivations of our research and its novelty can be summarized as follows:

• Periodic assessment of public policies is a must for their improvement. That explains
the existence of a wide literature on social policy evaluation, which has been sum-
marized in above paragraphs. Our analysis complement these papers by showing a
different perspective on this topic since we cover a different period and in some cases
we use a different sample of countries and database. Likewise, we also use a novel (in
this kind of analysis) mathematical instruments. Likewise, our results are compared
with those from precedent literature.

• The methodology proposed to deal with the variability in longitudinal data supposes
a novelty in the field of public policy evaluation. To the best of our knowledge
in this field, there is a scarcity of papers that model uncertainty in data by using
soft computing tools as fuzzy sets. In most of the studies on this topic, when an
observation is given by a set of crisp results, these are reduced to a real number
(e.g., the arithmetical mean) to model the observation. Hence, subsequent analysis is
done ignoring actual data uncertainty. The use of fuzzy numbers lets modeling and
structuring observed uncertainty and also provides a developed mathematical core
that allows handling these data linked with their uncertainty in similar way to we do
with real numbers.

• The literature on productivity measurement under fuzziness is built up by adapting
conventional data envelopment analysis to fuzzy mathematics, and then so-called
fuzzy data envelopment analysis (FDEA) methods reach. Our paper also uses a fuzzy
efficient frontier to evaluate productivity, but it is built over the basis of the Debreu–
Farrell index that is fitted with a regression method. This way to fit efficient frontier is
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very common in economics (see [24]) but supposes a novel approach from fuzzy sets
literature perspective.

The following section describes the mathematical instruments from fuzzy set the-
ory used in this paper. Methodological aspects of our article: variables, database and
methodology that lead to assess the efficiency of SE in poverty reduction are exposed in
the third section. In the fourth section, we establish a hierarchy of PPPs in EU-28 by using
the concept of the expected value of an FN. Likewise, we evaluate the influence of the
composition of SE over the efficiency of PPPs. This last issue is done with the concept of
fuzzy correlation and modeling Pearson’s correlation coefficient (PCC) as a fuzzy linguistic
variable. The last section presents the principal conclusions from our paper.

2. Concepts of Fuzzy Set Mathematics
2.1. Fuzzy Numbers

A fuzzy number (FN) is a fuzzy set Ã defined over the set of real numbers, and it is
a fundamental concept of FST for representing uncertain quantities. Let us symbolize as
µÃ(x) the membership function of a fuzzy set Ã. Hence, Ã is also a FN if it is normal, i.e.,
max
x∈X

µÃ(x) = 1, and convex, that is, its α-cuts are closed and bounded intervals. Hence, it

can be represented as confidence intervals A =
[
A(α), A(α)

]
, where A(α) (A(α)) increases

(decreases) monotonously respect the membership degree α ∈ [0, 1]. A FN Ã is a fuzzy
quantity that matches “more or less” the real number A, such that µÃ A) = 1. This paper
uses triangular fuzzy numbers (TFNs), that are symbolized as Ã = (A, lA, rA). Hence, A is
the core, and it is the most reliable value: µÃ(A) = 1. Likewise, lA, rA ≥ 0 are the left and
right radius and measure the variability of Ã respect A. Membership function and α-cuts
of a FN are:

µÃ(x) =


x−A+lA

lA
A− lA < x ≤ A

A+rA−x
rA

A < x ≤ A + rA

0 otherwise

(1a)

A =
[
A(α), A(α)

]
= [A− lA(1− α), A + rA(1− α)] (1b)

The hypothesis of a triangular shape for uncertain variables is commonplace in pa-
pers on practical applications of FNs. We are aware that this hypothesis may suppose
simplifying the complexity of available information. However, we feel that this drawback
is balanced by several benefits:

• TFNs are well-adapted to how humans think about imprecise quantities. For example,
a prediction as “I expect that for the next two years the GPD growth rate will be
1.5% and deviations no greater than 0.05%” may be quantified in a very natural way
as (0.015, 0.005, 0.005). Notice that it is not needed to be a fuzzy set practitioner to
interpret and understand the information provided by that FN;

• When the information about a variable is vague and imprecise, as that in this paper,
representing the information as simple as possible is desirable, and the linear shape of
TFNs meets that requirement;

• TFNs are easier to handle arithmetically than other more complex shapes. From a soft-
computing perspective, they provide a good balance between precision on one hand
and computational effort and interpretability of results on the other. This fact explains
the great deal of literature about approximating triangular shapes to non-TFNs.

In some cases, it will be useful to transform a fuzzy number Ã into a crisp equivalent.
For example, when we are ranking alternatives from their scores in a variable that are
done by FNs. Fuzzy literature provides a great deal of ordering methods (see [25]). In this
paper, we will use the concept of the expected value of an FN in [26]. Let be an FN Ã and a
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parameter λ ∈ [0, 1] that quantifies the evaluator’s optimism grade. The expected value of
Ã for a given λ is:

EV(Ã; λ) = (1− λ)

1∫
0

A(α)dα + λ

1∫
0

A(α)dα (1c)

Hence, for a TFN:

EV(Ã; λ) = A− lA
2
(1− λ) +

rA
2

(1d)

2.2. Modeling the Value of the Pearson Correlation Coefficient as a Linguistic Variable

Linguistic variables are variables whose values are sentences from natural or artificial
languages named linguistic labels [27]. They are built up by segmenting a universal set in a
set of FNs where each one represents a linguistic label. For example, the variable coefficient
of correlation has a reference set [−1, 1] and may be partitioned in several linguistic labels
as, e.g., “no correlation”, “low(−)”, “medium(−)”, “high(−)” . . . }. Hence, “no correlation”
may be quantified with the TFN (0, 0.005, 0.005).

Let be a linguistic variable V with a reference set [Vmin, Vmax]. It is built up by
granulating the reference set into J levels (i.e., J fuzzy numbers), j = 1, 2, . . . , J, which in
this paper are assumed to be TFNs. Then, by considering Vmin = V1 < V2 < V3 < . . . <
VJ−1 < VJ = Vmax we obtain:

{Ṽk1 = (V1, 0, V2 −V1); Ṽj =
(
Vj, Vj −Vj−1, Vj+1 −Vj

)
, j = 2, 3, . . . , J − 1;

ṼJ =
(
VJ , VJ −VJ−1, 0

)
}.

(2)

Notice that it is accomplished that ∑j µṼj
(x) = 1 for any crisp value x∈[Vmin, Vmax].

The association of a given kind of social expense with the efficiency of PPPs is done by
means of a correlation index. As far as decision-making is concerned, it is usual to interpret
the value of the correlation coefficient qualitatively by means of linguistic labels as “high
(+) correlation” or “weak (−) correlation” that may depend on the context. Table 1 shows
three scales exposed in [27] that are used in psychology, political science and medicine.

Table 1. Interpretation of the Pearson’s and Spearman correlation coefficients.

Correlation
Coefficient

Dancey and Reidy
(Psychology)

Quinnipiac
University (Politics)

Chan
(Medicine)

−1 1 Perfect Perfect Perfect

−0.9 0.9 Strong Very Strong Very Strong

−0.8 0.8 Strong Very Strong Very Strong

−0.7 0.7 Strong Very Strong Moderate

−0.6 0.6 Moderate Strong Moderate

−0.5 0.5 Moderate Strong Fair

−0.4 0.4 Moderate Strong Fair

−0.3 0.3 Weak Moderate Fair

−0.2 0.2 Weak Weak Poor

−0,1 0.1 Weak Negligible Poor

0 0 Zero None None
Source: [28], Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine,
18(3), 91–93.
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By applying (2) on the scale by the Department of Politics at Quinnipiac University
in Figure 1, we built up the fuzzy linguistic variable “correlation coefficient” used in this
paper to qualitatively interpret the correlation. It is shown in Table 2.
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Table 2. Fuzzy linguistic variable “coefficient of correlation” built up from de Quinnipiac University scale.

Negative Correlation Positive Correlation

Fuzzy Number Linguistic Label Fuzzy Number Linguistic Label

Ṽ1 = (−1, 0, 0.2) Perfect (−) Ṽ13 = (1, 0.2, 0) Perfect (+)

Ṽ2 = (−0.8, 0.2, 0.3) Very strong (−) Ṽ12 = (0.8, 0.3, 0.2) Very strong (+)

Ṽ3 = (−0.5, 0.3, 0.2) Strong (−) Ṽ11 = (0.5, 0.2, 0.3) Strong (+)

Ṽ4 = (−0.3, 0.2, 0.1) Moderate (−) Ṽ10 = (0.3, 0.1, 0.2) Moderate (+)

Ṽ5 = (−0.2, 0.1, 0.1) Weak (−) Ṽ9 = (0.2, 0.1, 0.1) Weak (+)

Ṽ6 = (−0.1, 0.1, 0.1) Negligible (−) Ṽ8 = (0.1, 0.1, 0.1) Negligible (+)

Ṽ7 = (0, 0.1, 0.1) No correlation Ṽ7 = (0, 0.1, 0.1) No correlation

Source: own elaboration by using Table 1 in [28], Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency
Medicine, 18(3), 91–93.

2.3. Aggregating Crisp Observations by Means of a Triangular Fuzzy Number

In this paper, we capture the uncertainty in data by using FNs. We are aware that
Soft Computing Science provides several tools apart from fuzzy sets to represent uncertain
data: rough sets, gray sets, intuitionistic and neutrosophic sets . . . Using FNs instead other
alternatives presents pros and cons. In any case we feel that using TFN in our analysis is
suitable for the following reasons:

• Tools as intuitionistic fuzzy sets (IFSs) or neutrosophic fuzzy sets (NFSs) provide an
analytical framework to quantify uncertainty more precisely than FNs. Therefore,
they are able to capture more nuances from data and its imprecision. For example,
NFS state for any element not only a truth membership degree but also an indeter-
minacy and a falsity degree. However, their estimation implies a greater cost since
the number of parameters to fit for each uncertain observation is three times that
number than in the case of FNs. On the other hand, gray numbers (GNs) provide a
simpler representation of uncertain quantities than FNs. To define a GN is enough
to fit its kernel and a grayness measure. Hence, in several circumstances GNs may
oversimplify information. For example, GNs suppose a symmetrical structure for a
uncertain quantity when perhaps available information does not suggest so. TFNs
balances capturing much of the uncertainty in available information (less than, e.g.,
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NFS, but more than GNs), but with a smooth shape (less than GNs, but more than
NFSs).

• In many circumstances, rough sets also could provide accurate quantification of
uncertainty. However, as we will explain below, our problem is more linked to
vagueness in observations than with their indiscernibility.

• Our analysis needs implementing arithmetical operations with uncertain variables,
ranking them and evaluating Pearson’s correlation with uncertain observations. Fuzzy
sets literature has developed these questions widely, and so the use of TFNs allows
making these analyses similar to real numbers. Likewise, fuzzy arithmetic allows re-
sults conserving the triangular shape as well as the uncertainty within data throughout
calculations.

Cheng in [29] proposes a method that allows transforming a set of crisp observations
on a given variable in an FN. Let us symbolizing as {a1, a2, . . . , an} the set of crisp ob-
servations and Ã = (A, lA, rA) the TFN than will embed these observations. To fit Ã the
following steps must be followed:

Step 1. Calculate the distance between ith and jth value as dij =
∣∣ai − aj

∣∣. Of course,
dii = 0, dij = dji. Hence, we can build up a distance matrix D =

[
dij
]

n×n.
Step 2. Calculate the mean distance of ith opinion the other n − 1 as:

di =
∑n

i=1 dij

n− 1
(3a)

Hence, di measures the distance of ith opinion to the center of gravity of the opinion
pool. Of course, the weight of the value ai to determine A is decreasing respect to di.

Step 3. Find the matrix P =
[
pij
]

n×n that indicates the importance of ith opinion over
the jth to fix A by doing:

pij =
dj

di
(3b)

Moreover, so, pii = 1 and pij =
1
pji

. Notice that P is obtained from a comparison
of distances and so, it ensures its consistency, i.e., that there is a coherent judgment in
specifying the pairwise comparison of score importance.

Step 4. Fit coefficients wi, i = 1, 2, . . . , n, which measure the degree of importance
of ith observation to fit Ã, in such a way 0 ≤ wi ≤ 1, i = 1, 2, . . . , n. These weights are
adjusted by taking into account the relative degree of importance of ith observation respect
jth, j = 1, 2, . . . , n (3b). Following [29], if we symbolize as w the vector of weights nx1, Pw
= nw, where n is an eigenvalue of P and w an eigenvector. Likewise, given that it must
accomplished that ∑n

i=1 wi = 1, the weights are solved from (3b) by doing:

wi =
1

∑n
j=1 pji

(3c)

Hence, ref. [29] indicates that the consistency of P lead to:

pij =
wi
wj

(3d)

Step 5. Calculate the center of Ã as:

A =
n

∑
i=1

wiai (3e)

Step 6. Estimate so-called mean deviation (σ) of the FN Ã as a first step to adjusting

their spreads. Hence, ref. [29] defines the mean deviation of a FN as σ =

∫ A+rA
A−lA

|x−A|µÃx)dx∫ A+rA
A−lA

µÃx)dx



Mathematics 2021, 9, 128 7 of 25

and then for a TFN σ =
l2
A+r2

A
3(lA+rA)

By using the rate of the left spread respect to the right

η = lA
rA

:

lA =
3 (1 + η)ησ

1 + η2 and rA =
3 (1 + η)σ

1 + η2 (3f)

Notice that σ and η are, in fact, unknown parameters because they are built up from
lA and rA. Hence, ref. [29] proposes the following approximation for σ, σ̂:

σ̂ = ∑n
i=1 wi|A− ai| (3g)

Step 7. Find the estimate of η, η̂. By defining as al =

∑n
i=1

ai<A
wiai

∑n
i=1

ai<A
wi

and ar =

∑n
i=1

ai>A
wiai

∑n
i=1

ai>A
wi

, η̂ is:

η̂ =
A− al

ar − A
(3h)

Step 8. Find lA and rA by doing

lA =
3 (1 + η̂)η̂σ̂

1 + η̂2 and rA =
3 (1 + η̂)σ̂

1 + η̂2 (3i)

Numerical Application 1

Table 3 shows the values provided by Eurostat within 2014–2018 of the social expenses
over GPD, SER = SE/GPD for Belgium. Let us fitting that variable for the quinquennium
as a TFN S̃ER = (SER, lSER, rSER) by using (3a)–(3i).

Table 3. Annual social expenses (over GPD) by Belgium in the period 2014–2018.

Year 2014 2015 2016 2017 2018

SER 30 29.8 29.2 28.8 28.8
Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017).

The matrix of distances between observations is exposed in Table 4, and the relative
importance of each annual value of SER in the final TFN is provided in Table 5.

Table 4. Matrix of distances to build up the fuzzy number “Belgian SER within 2014–2018”.

2014 2015 2016 2017 2018

2014 0 0.2 0.8 1.2 1.2

2015 0.2 0 0.6 1 1

2016 0.8 0.6 0 0.4 0.4

2017 1.2 1 0.4 0 0

2018 1.2 1 0.4 0 0
Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017).
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Table 5. Relative importance of social expenses over GPD (SER) in each year in the triangular fuzzy
numbers (TFN) “Belgian SER in 2014–2018”.

2014 2015 2016 2017 2018

2014 1 0.824 1.294 0.765 0.765

2015 1.214 1 1.571 0.929 0.929

2016 0.773 0.636 1 0.591 0.591

2017 1.308 1.077 1.692 1 1

2018 1.308 1.077 1.692 1 1
Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017).

Then, the vector of weights is: w = (0.178, 0.217, 0.138, 0.233, 0.233) and, therefore
SER = 29.286. To fit the spreads, lSER and rSER we find that σ̂ = 0.478, SERl = 28.89 and
SERr = 29.89. Hence, η̂ = 29.286−28.89

29.89−29.286 = 0.654, lSER = 3 (1+0.654)·0.654·0.478
1+0.6542 = 1.085 and

rSER = 3 (1+0.654)·0.478
1+0.6542 = 1.660. Hence, annual SER by Belgium for 2014–2018 is fitted as

S̃ER = (29.286%, 1.085%, 1.660%).
Notice that quantifying Belgian SER as the TFN S̃ER = (29.286%, 1.085%, 1.660%) is

very suited to the intuition that comes after a visual inspection of Table 3 “Belgium SER
has been around 29% within 2014–2018”. Of course, more sophisticated representations of
uncertainty as IFSs or NFSs can capture a greater amount of information. However, the
cost of fitting these kind of sets is much greater and not very reliable with the information
available for our analysis (identical to that in Table 3 for Belgium SER). On the other hand,
if information came from an extended and structured questionnaire submitted to experts,
surely NFSs will provide a better representation of that information than FNs.

Belgium SER in Table 3 admits a gray number representation. Following the exposition
in [30] and taking into account that SER in Table 3 is within the interval [28.8, 30] since is the dis-
crete set {28.8, 28.8, 29.2, 29.8, 30}, the kernel of SER is SÊR = (28.8 + 28.8 + . . . +30)/5 = 29.32.
Grayness degree can be estimated by taking into account that SER for any country must be within
[0, 100] and so its value is (30− 28.8)/100 = 0.012. By using notation in [30], SER is 29.32(0.012).
Notice that this parameterization is simpler than S̃ER = (29.286%, 1.085%, 1.660%), but on
the other hand, the TFN captures the asymmetric distribution of values around the gravity
center of the data that GN does not.

Due to the kind of data that we will use in our analysis, we feel that using TFN param-
eterization from [29] provides an adequate compromise between applying the principle of
parsimony in vagueness modeling and avoiding unnecessary loss of information.

2.4. Correlation Coefficients for Fuzzy Data

Pearson’s correlation coefficient (PCC) is a real-valued function in <2n of the pairwise
observations over the variables X and Y: {(x1, y1); (x2, y2); . . . ; (xn, yn)}. Hence, PCC
between X and Y is estimated as:

corrX.Y = f (x1, . . . , xn; y1, . . . , yn) =
∑n

i=1

(
xi − ∑n

i=1 xi
n

)(
yi − ∑n

i=1 yi
n

)
√

∑n
i=1

(
xi − ∑n

i=1 xi
n

)2
∑n

i=1

(
yi − ∑n

i=1 yi
n

)2
(4a)

i.e., corrX.Y is a function f (x1, . . . , xn; y1, . . . , yn). Hence, if pairwise observations are given
by FNs {(X̃1, Ỹ1); (X̃2, Ỹ2); . . . ; (X̃n, Ỹn)}, corrX.Y induce a FN:

c̃orrX.Y = f (X̃1, . . . , X̃n; Ỹ1, . . . , Ỹn) =
∑n

i=1

(
X̃i − ∑n

i=1 X̃i
n

)(
Ỹi − ∑n

i=1 Ỹi
n

)
√

∑n
i=1

(
X̃i − ∑n

i=1 X̃i
n

)2
√

∑n
i=1

(
Ỹi − ∑n

i=1 Ỹi
n

)2
(4b)
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Fuzzy literature has proposed two ways to estimate PCC when the observations are
done by FNs (FPCC). The first approach to FPCC, ref. [31], applies Zadeh’s extension
principle to (4b). So:

µc̃orrX,Y
(z) = max

z= f (x1,...,xn ;y1,...,yn)
min[µX̃1

x1), . . . ., µX̃n
xn); µỸ1

y1), . . . ., µỸn
yn)] (5a)

Notice that it is often difficult computing the membership function of c̃orrX.Y. Follow-
ing [32], it may be easier computing corrX,Yα such as:

corrX,Yα =
[
corrX,Y(α), corrX,Y(α)

]
=
{

z = f (x1, . . . , xn; y1, . . . , yn)
∣∣∣xj ∈

[
X j(α), X j(α)

]
, yj

∈
[
Y j(α), Y j(α)

]
, j = 1, 2, . . . , n

} (5b)

Hence, in (5b) corrX,Y(α) (corrX,Y(α)) are the global minimum (maximum) of f (·)
within the rectangular domain in (5b).

corrX,Y(α) = min
j,k

{
f
(
Vj
)
, f (Ek)

}
and corrX,Y(α) = max

j,k

{
f
(
Vj
)
, f (Ek)

}
(5c)

Being the vector in <2n Vj, j = 1, 2, . . . , 22n a vertex of (5b), f (Ek) k = 1, 2, . . . , K an
extreme point of the function and Ek an interior point of (5b). Hence, to find the lower
(upper) extreme of α-cuts, a nonlinear minimizing (maximizing) mathematical program
must be solved.

The second approach to fit fuzzy correlation uses the weakest T-norm (Tw -norm)
in [33] instead of the min operator. So:

TW(a, b) =


a if b = 1
b if a = 1

0 otherwise
(6a)

where TW(a, b) ≤ min(a, b).
Since the max-operator is still the T-conorm to apply the use of the norm (6a), suppose

we reformulate the membership function of the correlation between X and Y as:

µc̃orrX,Y
(z) = max

z= f (x1,...,xn ;y1,...,yn)
TW [µX̃1

x1), . . . ., µX̃n
xn); µỸ1

y1), . . . ., µỸn
yn)] (6b)

Tw-norm lets obtaining less uncertain results than min-norm. Likewise, Tw-norm
allows an easier computation of (4b) when the observations are LR fuzzy numbers [34]
since c̃orrX,Y will conserve L-R shape. In the particular case of TFNs, the calculation of
c̃orrX.Y. is developed in [35]. In [33] following arithmetical rules to handle arithmetically
two TFNs Ã = (A, lA, rA) and B̃ = (B, lB, rB) are stated:

Ã + B̃ = (A, lA, rA) + (B, lB, rB) = (A + B, max(lA, lB), max( rA, rB)) (6c)

Ã− B̃ = (A, lA, rA)− (B, lB, rB) = (A− B, max(lA, rB), ( rA, lB)) (6d)

λÃ = λ(A, lA, rA) =

{
(λA, λlA, λrA), λ > 0
(λA,−λrA, λlA), λ ≤ 0

(6e)

√
Ã ≈

(√
A,

lA√
A

,
rA√

A

)
, A− lA > 0 (6f)

1
Ã
≈
(

1
A

,
rA
A2 ,

lA
A2

)
, A− lA > 0 (6g)
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Ã·B̃ = (A, lA, rA)·(B, lB, rB) =

=


(A·B, max(A·lB, B·lA), max(A·rB, B·rA)) i f A, B ≥ 0

(A·B,−max(A·lB, B·lA),−max(A·rB, B·rA)) i f A, B ≤ 0

(A·B, max(−A·rB, B·lA), max(−A·lB, B·rA)) i f A ≤ 0, B ≥ 0

(A·B,−max(A·lB,−B·rA),−max(A·rB,−B·lA)) i f A, B ≤ 0

(6h)

Ã
B̃
= (A, lA, rA)

(
1
B , rB

B2 , lB
B2

)
=


(

A·B, max
(

A·rB
B2 , B·lA

)
, max

(
A·lB
B2 , B·rA

))
i f A, B ≥ 0(

A·B, max
(
−A A·lB

B2 , B·lA

)
, max

(
− A·rB

B2 , B·rA

))
i f A ≤ 0, B ≥ 0

being B− lB > 0

(6i)

Hence, to fit c̃orrX.Y = (corrX.Y, lcorrX.Y , rcorrX.Y ). We must evaluate (4b) with (6c)–(6i).
Of course, FPCC may be interpreted qualitatively by using the linguistic variable

defined in Table 2. If min T-norm is used, the compatibility grade of c̃orrX.Y with the jth
linguistic label Ṽj C(c̃orrX.Y, Ṽj) can be found by using the max-min rule as:

C(c̃orrX.Y, Ṽj) = max
x

min
[
µc̃orrX.Y

x), µṼj
x)
]

(7a)

On the other hand, if Tw-norm is used and so the correlation is calculated by following
(6c)–(6h), the compatibility between c̃orrX.Y and Ṽj is measured by using a max-Tw rule:

C(c̃orrX.Y, Ṽk) = max
[
µc̃orrX.Y

Vj), µṼj
corrX.Y)

]
(7b)

In both cases, we can find the closest linguistic label in Table 1 to c̃orrX.Y, Ṽk, by doing:

Ṽk= argmax{C(c̃orrX.Y, Ṽj)}k=1≤j≤n

Numerical Application 2

We fit for 2014–2018 FPCC between social expenses over GPD (SER) and the per-
centual diminution of poverty risk index (RRP) in EU-28 countries. Fuzzy observations
of these variables are shown in Table 6. Likewise, we also fit crisp PCC by considering as
observations the core triangular shapes SER and RRP (3e).

Table 6. Fuzzy observations on social expenses over GPD, relative reduction of poverty-at risk index and Debreu–Farrell
measure in the period 2014–2018.

S̃ERi=(SERi,lSERi ,rSERi ) R̃RPi=(RRPi,lRRPi ,rRRPi ) D̃Fi=(DFi,lDFi ,rDFi )

Country SERi lSERi rSERi RRPi lRRPi rRRPi DFi lDFi rDFi

Belgium 29.29 1.09 1.66 41.43 8.19 5.15 0.590 0.030 0.003
Denmark 32.82 2.10 3.22 51.86 5.74 3.77 0.728 0.046 0.033
Germany 29.52 0.82 0.51 33.36 0.23 0.59 0.538 0.056 0.040
Ireland 15.82 2.38 3.95 53.42 3.61 5.92 1.000 0.000 0.000
Greece 25.67 1.72 0.88 16.13 0.23 2.36 0.295 0.017 0.063
Spain 24.09 1.34 2.36 25.09 3.63 6.03 0.399 0.031 0.028
France 34.22 0.60 0.36 44.15 2.49 0.95 0.607 0.074 0.118
Italy 29.28 0.85 1.29 21.37 1.02 0.09 0.302 0.038 0.031

Luxembourg 22.19 0.74 1.03 40.35 3.39 1.50 0.656 0.039 0.064
Netherlands 29.59 1.00 1.54 42.73 5.62 6.58 0.599 0.037 0.054

Austria 29.66 0.94 0.49 44.28 4.07 2.69 0.623 0.019 0.054
Portugal 25.19 1.65 2.56 24.65 3.30 5.08 0.454 0.020 0.049
Finland 31.24 2.21 1.18 54.51 1.52 4.48 0.774 0.110 0.089
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Table 6. Cont.

S̃ERi=(SERi,lSERi ,rSERi ) R̃RPi=(RRPi,lRRPi ,rRRPi ) D̃Fi=(DFi,lDFi ,rDFi )

Country SERi lSERi rSERi RRPi lRRPi rRRPi DFi lDFi rDFi

Sweden 28.98 1.04 0.64 45.71 3.08 2.18 0.767 0.052 0.014
UK 26.62 1.01 1.68 42.18 4.67 2.36 0.680 0.060 0.037

Bulgaria 17.39 1.45 1.29 21.12 3.60 6.38 0.400 0.061 0.106
Czechia 18.90 0.51 0.82 41.84 4.38 1.45 0.661 0.049 0.071
Estonia 16.00 0.46 0.91 24.94 4.62 6.02 0.456 0.065 0.019
Croatia 21.76 0.21 0.10 29.59 6.13 7.69 0.485 0.090 0.095
Cyprus 19.39 2.47 1.71 36.53 0.22 2.55 0.637 0.055 0.070
Latvia 14.93 0.22 0.51 20.57 5.13 2.69 0.386 0.099 0.057

Lithuania 15.47 0.58 0.86 23.33 0.36 3.96 0.464 0.007 0.080
Hungary 18.76 1.97 1.36 44.72 4.12 6.88 0.817 0.065 0.079

Malta 16.66 2.22 1.69 30.64 0.49 1.71 0.517 0.072 0.047
Poland 19.79 1.29 1.02 29.95 6.79 8.98 0.497 0.096 0.110

Romania 14.73 0.23 0.41 14.56 3.32 4.90 0.303 0.109 0.079
Slovenia 23.20 2.21 1.43 42.85 1.19 1.99 0.636 0.077 0.108
Slovakia 18.17 0.59 0.39 32.42 5.35 8.34 0.492 0.057 0.088

Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017). Variables SER and RRP are expressed
over 100 and DF over 1.

The α-cut representation of two FPCCs is given in Table 7. Of course, crisp PCC is
simply the 1-cut of both FPCCs, i.e., 0.4585. Hence, FPCC generalizes the results of crisp
PCC since this last is the core of FPCCs. Likewise, α-cuts of FPCCs can be understood as an
structured set of simulations that range from maximum fuzziness scenario (generated by
the 0-cut of fuzzy estimates of SER and RRP) to maximum reliability situation (that comes
from the cores of the observations on SER and RRP).

Table 7. α-cut representation of [31,34] FPPC between SER and relative reduction of poverty in EU-28
countries within the period 2014–2018.

Max–Min Correlation Max-Tw Correlation

α corrX,Y(α) corrX,Y(α) corrX,Y(α) corrX,Y(α)

0 −0.0643 0.7635 0.4196 0.4819
0.25 0.0762 0.7040 0.4294 0.4761
0.5 0.2140 0.6332 0.4391 0.4702

0.75 0.3427 0.5511 0.4488 0.4644
1 0.4585 0.4585 0.4585 0.4585

Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017).

FPCC in [31] does not preserve the triangular shape of input data. On the other hand,
by using FPCC [34], we obtain c̃orrX.Y = (0.4585, 0.0389, 0.0413). Table 8 shows that the
closest linguistic label for both correlations is “strong (+) relation”. However, max-min
correlation is extremely imprecise since embed values from −0.0643 (no correlation) to
0.7635 (very strong (+)), and so it is compatible with 4 linguistic levels in a truth level above
0.5. Those levels vary from “negligible (+) correlation” to “very strong (+) correlation”.
On the other hand, the correlation [34] is clearly less uncertain and allows a better balance
between maintaining all the information in the sample, which is not made by conventional
PCC and providing a useful value to obtain conclusions.



Mathematics 2021, 9, 128 12 of 25

Table 8. Qualitative interpretation of max-min, max- Tw-conorm and crisp correlation between SER and relative reduction
of poverty in EU 28 countries within the period 2014–2018 by using C(c̃orrX.Y , Ṽk).

Linguistic Label Max–Min Max-Tw Crisp Linguistic Label Max–Min Max-Tw

1 Perfect (−) 0 0 0 8 Negligible (+) 0.42 0 0

2 Very strong (−) 0 0 0 9 Weak (+) 0.58 0 0

3 Strong (−) 0 0 0 10 Moderate (+) 0.78 0.21 0.21

4 Moderate (−) 0 0 0 11 Strong (+) 0.92 0.79 0.79

5 Weak (−) 0.0 0 0 12 Very strong (+) 0.44 0 0

6 Negligible (−) 0.1 0 0 13 Perfect (+) 0 0 0

7 No correlation 0.26 0 0 argmax[C(c̃orrX.Y , Ṽj)] Strong (+) correlation Strong (+) correlation Strong (+) correlation

Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017).

2.5. Literature Revision

Evaluating the productivity of a set of entities (in this case, countries) with a Debreu–
Farrell efficient frontier, as we do in this paper, is very common in standard economic
literature [24], but not at all fuzzy literature. On the other hand, productivity evaluation
has been developed extensively within fuzzy literature by means of fuzzy data envelop-
ment analysis (DEA) methods. Zhou and Xu [36] show that only in year 2018 more than
700 papers on fuzzy DEA were published. Without aim to be extensive, let us point out
some applications in Economics and Finance. Wu et al. [37] deal with the evaluation of
bank efficiency; [38,39] are devoted with the assessment of sustainability in energy and
transportation policies and [40] use fuzzy DEA to examine profits by foreign investment in
transition Economies.

Similar problems as we address in this paper have been analyzed fruitfully by using
fuzzy multiple criteria decision-making (FMCDM). However, usually these methods need
using expert opinions as a input. Our study does not use this information. Fuzzy literature
has provided a great deal of methods on this issue by mixing existing tools to represent
uncertain quantities (fuzzy sets, hesitant fuzzy sets, IFSs . . . ) with well-known Multiple
Criteria Decision-Making schedules (AHP, PROMETHEE, ELECTREE, TOPSIS, . . . ). A
panoramic review on this matter can be consulted in [41]. Some applications in areas linked
with public decision-making are energy policies [41,42], environmental decisions [43,44],
healthcare evaluation [45,46], urbanism [47], public infrastructure management [48,49],
assessment transparency by public organisms [50] or general economic policy analysis [51].

Fuzzy Pearson’s correlation coefficient has been used in several areas of Economics
and Finance. Hence, ref. [52,53] use FPCC to model interactions between asset return in
portfolio management and [31,54,55] apply FPCC in several business administration issues
as, e.g., capital budgeting problems. Likewise, ref. [56,57] analyze the relationship between
variables embedded in education policy. In [35,58] FPCC is used to evaluate attributes of
hotel services. Finally, ref. [59] uses FCCC to state the linkage between price index and
exchange rates in China.

3. Data and Methodology
3.1. Data Description

The data we have used is provided by Eurostat programs EU-SILC and ESSPROS and
embeds EU-28 countries in 2018 (i.e., it is included Great Britain). The data have annual
periodicity and comprise the period 2014–2018. From the database, we directly obtain
observations on the following variables for every country and year. Concretely:

1. ARPR(0)i,t = At-risk-of-poverty rate before social transfers including pensions for the
ith country at year t;

2. ARPR(1)i,t = At-risk-of-poverty rate after social transfers for the ith country at year t;
3. GIi,t = Income inequality (measured as the Gini index) before social transfers for the

ith country at year t;
4. SERi,t = Ratio social expenses/GDP before social transfers for the ith country at year t.
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Likewise, our analysis also needs the observations on the proportion that each kind of
social benefit supposes over whole social expending according to EU-SILC classification.
These items are defined over the basis of eight protection functions linked with a set of
needs [60]:

• Sickness/healthcare benefits (Sicki,t)—Include, for example, medical assistance or the
provision of pharmaceutical products;

• Disability benefits (Disi,t)—Pensions, goods and services for disabled persons;
• Old age benefits (Oldi,t)—Basically retirement pensions;
• Survivors’ benefits (Survi,t)—An example are survivors’ pensions;
• Family/children benefits (Fami,t)—Support programs linked to pregnancy assistance,

childbirth, etc.;
• Unemployment benefits (Unei,t)—Include unemployment in-cash benefits, but also

vocational training services provided by public agencies;
• Housing benefits (Houi,t)—Interventions and programs from public agencies to help

households reaching housing expenses;
• Social exclusion benefits not elsewhere classified (n.e.c.) (SocEi,t)—A miscellanea of

public interventions that may include, e.g., rehabilitation of drug abusers, etc.

From the variables indicated above, we derivate for each country and year the diminu-
tion of poverty and the productivity that SE has reached in such diminution. Following [10],
we measure poverty reduction in relative terms. Hence, for the ith country at year t we
obtain:

RRPi,t =
ARPR(0)i,t − ARPR(1)i,t

ARPR(0)i,t
, i = 1, 2, . . . , 28 (8)

Hence, RRPi,t ranks from 0 (and so ARPR(0)i,t = ARPR(1)i,t), to 1 (if poverty is com-
pletely eliminated).

When analyzing the productivity of SE in reducing poverty risk, we seek to determine
to what extent the diminution of poverty (the assessed output) is adequate to the initial
situation of poverty and SER (inputs). To measure the efficiency of public spending in
achieving poverty reduction for the ith country in a year t we follow [10] that quantifies
efficiency by means of a Debreu–Farrell coefficient, DFi,t. Hence, we consider SE and, more
concretely, its quantification by means of its ratio with GPD (SER) as the main input. We
also use the GI before transfers as second input variable to reflect the social status of the
population before executing the SE. Hence, GI is not strictly an input, but a contextual
variable. Likewise, GI is clearly linked to economic context, social and demographical
structure and public policy priorities of every state. A greater retired people supposes a
larger population that depends on pensions. Likewise, higher unemployment rates imply
a greater number of citizens with small (or null) personal income. The method used to
evaluate the productivity of PPP in [10] is based on fitting the efficient productive frontier
by mixing corrected least-squares method (CLS) and logit regression. Hence, for a year t it
is estimated:

logit(RRPi.t) = β0,t + β1,tSERi,t + β2,tGIi,t + εi,t (9)

where the error term accomplishes εi,t ≥ 0, i = 1, 2, . . . , 28. After adjusting the value of
β0,t, β1,t and β2,t with corrected least squares, βF

0,t, βF
1,t, βF

2,t, the estimate of the productive
frontier value of RRPi.t, RRPF

i,t is:

RRPF
i,t =

1
1 + exp(−βF

0,t − βF
0,tSERi,t − βF

0,tGIi,t)
(10a)

Hence, Debreu–Farrell efficiency measure for ith country in the year t, DFi,t, is the
ratio between its attained RRP (RRPi.t) in (8) and frontier value of RRP in (10a), RRPF

i,t :

DFi,t =
RRPi.t

RRPF
i,t

(10b)
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where 0 ≤ DFi,t ≤ 1. Hence, DFi,t = 1 imply full efficiency and DFi,t = 0, complete
nonefficiency.

Eurostat database provides the values of the variables related to the social protection
benefits and poverty of EU-28 countries with an annual periodicity. Therefore, the variables
RRP and DF are calculated with this periodicity. To evaluate the results of social policies
within a period of more than one year (e.g., a quinquennium), a usual practice consists of
taking for the variables the average of their annual observations [8,10,12]. Other papers
reduce the analysis to a concrete year [7,11]. A complete analysis consists of repeating it in
every year of the period of interest as it is done in Lefevre et al. (2010). Alternatively, we
propose quantifying the variables in a period of multiple years by means of TFNs that are
built up from observed longitudinal point values of those variables.

Our analysis is done by using SER, the proportion that each kind of social expense
suppose over whole SE, the relative reduction of poverty RRP (8) and Debreu–Farrell
efficiency index (10) of all countries throughout 2014–2018. We fit for the ith country
the value of any variable “A” (e.g., SER) for the whole period 2014–2018 as an FN Ãi =(

Ai, lAi , rAi

)
i = 1, 2, . . . , 28. They are fitted from the point observations in each year of

the period that we are analyzing, {a2014, a2015, a2016, a2017, a2018} by following the method in
Section 2.3. Figure 2a summarizes all the process followed to fit TFNs to the observations
on variables embedded in the study. Table 6 shows the fuzzy estimates of SER (S̃ERi), RRP
(R̃RPi) and efficiency index DF, (D̃Fi) in EU-28 countries. Fuzzy values of the proportion
that each item of social spending (Sick, Dis, Old, . . . ) suppose in overall SE are in Table A1
of annex.
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Figure 2. Flowcharts for the analysis of poverty policies in UE-28. (a) Fitting fuzzy estimates of variables for the while
period 2014–2018. (b) Methodology used to rank PPPs. (c) Methodology followed to measure the influence of SER and its
composition in the productivity of public poverty policies (PPPs).

3.2. Methodology

We first rank UE28 states by considering the efficiency of their PPP. To make this
assessment, we defuzzify the values of DF with (1d) and state their hierarchy. Likewise,
we relate our results with those in [7,10]. The flowchart of this analysis is depicted in
Figure 2b.

The second analysis tries to determine the sign of the relation between the eight items
that [60] differentiates in social expending and the efficiency of PPP. Figure 2c shows how
we have implemented this assessment on European PPPs. As it is stated in [16] and also
checked in [7,8,10], despite the clear negative linkage between SER and poverty indexes
in EU-28, it cannot be concluded that a poverty reduction is reached automatically by
increasing SER. Hence, we first measure the intensity of the relation between the effort in
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social policies (i.e., SER) with the results in reducing poverty (RRP) and with PPP efficiency
measured by DF. Subsequently we investigate why two different countries with a similar
SER will obtain different reductions of poverty indexes. Following [7,10] we perform
this analysis with the FPCC of the proportion that each kind of social benefit supposes in
overall social expenditure. Concretely we use FPCC in [34] (Equations (4b) and (6a)–(6i))
instead max-min fuzzy correlation due to the reasons exposed above. We have used the
fuzzy version of PPC instead other correlation measure as, e.g., Spearman correlation by
two reasons. First, we pretend comparing our results with those in [7,10] that evaluate
the PPPs of the same set of countries, and they use Pearson’s correlation coefficient. To
allow our results to be fully comparable, the same correlation measure must be used.
Likewise, calculating Spearman correlation requires an early defuzzification of triangular
observations in order to rank them, e.g., by calculating their expected value. Subsequently
Spearman correlation index is a real valued number since that comes from applying a
conventional PPC on the crisp rank of variables. Therefore, the fuzzy uncertainty of data is
waived in that correlation measure.

Within EU-28, we can differentiate two types of countries whose history and political
evolution from II World War to the end of the 20th century XX has been notably different.
One on hand we have EU-15 countries, basically Western Europe countries, which are
part of European Union from 20th-century. On the other hand, we find former communist
republics plus Cyprus and Malta that belonged progressively in European Union during
the 21st century. Table 9 shows the mean value of S̃Ei, R̃RPi and D̃Fi, i = 1, 2, . . . , 28 in
EU-28, but also, separately, the average value of EU-15 countries and non-EU-15 states.
Those mean values have been obtained by using Max-Tw norm convolution in such a way
that for a variable A, the mean value ÃM is:

ÃM =
(

AM, lAM , rAM

)
=

(
∑n

i=1 Ai

n
,

max
i

lAi

n
,

max
i

rAi

n

)
(11)

Table 9. Mean values of SER, poverty risk index (RRP) and Debreu–Farrell index (DF) in EU-28, EU-15 and non-EU-15 in
the period 2014–2018.

S̃ER
M

R̃RP
M

D̃F
M

SERM lSERM rSERM RRPM lRRPM rRRPM DFM lDFM rDFM

EU-28 23.190 0.088 0.141 34.796 0.292 0.321 0.563 0.004 0.004
Non

EU-15 18.089 0.190 0.131 30.236 0.522 0.691 0.519 0.008 0.008

EU-15 27.612 0.165 0.263 38.748 0.546 0.598 0.601 0.007 0.008

Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017). Variables SER and RRP are expressed
over 100 and E over 1.

In Table 9 it can be checked that the mean value of EU-15 and non-EU-15 in SER, RRP
and efficiency of PPP is completely different. EU-15 countries present a mean value of
SER 10 points above non-EU-15 countries. Likewise, Table 9 shows that whereas EU-15
countries rarely have a value for SER below 25%, non-EU-15 states with SER greater than
20% are an exception. Consequently, the mean reduction of poverty in EU-15 countries is
clearly above non-EU-15 states. It is also remarkable that the mean DF is notably greater in
EU-15 countries than in non-EU-15 countries.

4. Results
4.1. Ranking Public Poverty Policies by the EU-28 States

The results of PPPs efficiency are given in 10a,10b and A2 of the annex A. It can
be checked in Table 10b that all hierarchies in RRP and DF index present a correlation
close to 1. This fact does not depend on the coefficient λ used to defuzzify R̃RPi and
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D̃Fi, i = 1, 2, . . . , 28. Hence, by applying fuzzy linguistic interpretation of correlation
proposed in Section 2.2, we can conclude that all the expected values of RRP and DF
present a perfect(+) correlation.

Table 10a. Ranking social policy in UE-28 countries on the basis of the expected value of RRP and DF
in Table A2 for several values of λ.

Criteria Relative Reduction of Poverty (RRP) Debreu–Farrell Ratio (DF)

Country λ = 1 λ = 0.5 λ = 0 V–F λ = 1 λ = 0.5 λ = 0 V–F

Belgium 12 13 13 13 14 14 13 19
Denmark 3 3 3 5 5 5 5 7
Germany 16 15 15 14 15 15 15 10
Ireland 2 2 2 10 1 1 1 3
Greece 27 27 27 21 26 26 26 21
Spain 20 20 20 25 24 24 23 28
France 7 6 5 4 12 12 14 14
Italy 25 25 24 19 27 27 27 27

Luxembourg 13 12 12 11 7 8 7 5
Netherlands 9 9 9 3 13 13 12 8

Austria 6 7 8 8 11 9 9 16
Portugal 22 21 22 17 21 21 20 18
Finland 1 1 1 6 3 4 4 11
Sweden 5 4 4 12 4 3 3 6
United

Kingdom 10 10 10 15 8 6 6 17

Bulgaria 24 24 25 27 23 23 24 26
Czechia 11 11 11 1 6 7 7 1
Estonia 21 23 23 26 22 22 22 23
Croatia 19 19 19 22 20 20 21 22
Cyprus 14 14 14 20 10 9 10 25
Latvia 26 26 26 28 25 25 25 24

Lithuania 23 22 21 23 19 18 18 15
Hungary 4 5 6 2 2 2 2 2

Malta 17 17 16 18 17 16 16 20
Poland 18 18 18 16 18 19 19 13

Romania 28 28 28 24 28 28 28 12
Slovenia 8 8 7 9 9 11 11 9
Slovakia 15 16 17 7 16 17 17 4

Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017). V–F stands for
the rank in [10] within the period 2007–2015.

Table 10b. Spearman correlations between the expected values of RRP and/or DF for several values of the index of optimism λ.

RRP (λ = 1) RRP (λ = 0.5) RRP (λ = 0) RRP (V–F) DF (λ = 1) DF (λ = 0.5) DF (λ = 0) DF (V–F)

RRP (λ = 1) 1
RRP (λ = 0.5) 0.996 1
RRP (λ = 0) 0.991 0.997 1
RRP (V–F) 0.830 0.831 0.824 1
DF (λ = 1) 0.943 0.947 0.941 0.784 1

DF (λ = 0.5) 0.939 0.944 0.937 0.757 0.994 1
DF (λ = 0) 0.935 0.939 0.932 0.761 0.992 0.997 1
DF (V–F) 0.642 0.652 0.642 0.795 0.718 0.680 0.692 1

Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017). Note: As V–F, we symbolize the value of
RRP and DF obtained by Valls-Fonayet et al. (2020) within the period 2007–2015.

The results that we have obtained are similar to those in [7,9,12]. Better performances
are attained by Anglo-Saxon welfare states (Ireland and Great Britain), Scandinavian
welfare states (Finland, Sweden and Denmark) and some Visegrad pact countries like
Hungary and Czechia. The less efficient PPPs are those from the Mediterranean welfare
states (Italy, Greece, Spain) and some Mediterranean and Baltic former communist republics
as Romania, Bulgaria, Latvia or Estonia. In intermediate positions, we find continental
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welfare states (as, e.g., France, Belgium, etc.) and a heterogeneous set of non-UE-15 as,
e.g., Cyprus, Malta or Slovakia. Table 10b shows that the hierarchies in Valls-Fonayet et al.
in [10] and those in our paper present a Spearman correlation coefficient that Table 2 labels
as very strong (+).

4.2. Fuzzy Assessment of the Relation between Social Expense Effort and Efficiency in Poverty
Reduction

Tables 11 and 12 show the relation of the volume of social expenses with the reduction
of poverty and its efficiency. As we expected, in the whole EU-28, the relation between
SER and RRP is positive (strong (+)). However, the behavior of that relation is completely
different in EU-15 and non-EU 15. In non-EU 15 countries it is very strong (+), i.e., there
is a direct relation between the volume of social expenses and poverty reduction. On the
other hand, in EU-15 countries that relation is negligible. Hence, this result is in accordance
with the statement in [16] that showed that despite there is a strong negative correlation
between SER and poverty rates in several European countries, it cannot be concluded that
increases in SER lead directly to reductions in poverty.

Table 11. Correlations of SER with RRP and DF efficiency index.

EU-28 Non-EU-15 Countries EU-15 Countries

corrX.Y lcorrX.Y rcorrX.Y corrX.Y lcorrX.Y rcorrX.Y corrX.Y lcorrX.Y rcorrX.Y

RRP 0.459 0.039 0.023 0.715 0.100 0.078 0.125 0.075 0.091
DF 0.194 0.062 0.038 0.569 0.086 0.078 −0.204 0.131 0.079

Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017).

Table 12. Value of the compatibility indexes (7b) of the correlations between SER with RRP and DF and the labels of
linguistic variable “correlation coefficient”.

EU-28 Non-EU-15 EU-15

Linguistic Label SER vs. RRP SER vs. DF SER vs. RRP SER vs. DF SER vs. RRP SER vs. DF

Perfect (−) 0 0 0 0 0 0
Very Strong (−) 0 0 0 0 0 0

Strong (−) 0 0 0 0 0 0
Moderate (−) 0 0 0 0 0 0.267

Weak (−) 0 0 0 0 0 0.970
Negligible (−) 0 0 0 0 0 0.207

No corr 0 0 0 0 0 0
Negligible (+) 0 0.065 0 0 0.750 0

Weak (+) 0 0.935 0 0 0.250 0
Moderate (+) 0.207 0 0 0 0 0

Strong (+) 0.793 0 0.283 0.771 0 0
Very Strong (+) 0 0 0.717 0.229 0 0

Perfect (+) 0 0 0 0 0 0
argmax Strong (+) Weak (+) Very strong (+) Strong (+) Negligible (+) Weak (−)

Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017).

Likewise, in whole EU-28 countries, the relation between the volume of social ex-
penditure and its efficiency is weak (+). Again, the relation between these variables in
non-EU-15 countries and EU-15 states is completely different. In EU-15 countries, that
relation is weak (−), whereas in non-EU-15 countries is strong (+). Notice that the value of
SER in non-EU-15 countries is substantially lower than in EU-15 countries. Therefore, its
marginal productivity of SER is clearly positive when social expenses are relatively low,
and so a greater diminution of poverty comes fair from increasing SE. However, when a
critical level of SER is reached, the relationship between increases in SER and diminutions
in RRP is not so direct. This fact motivates a detailed analysis of the influence of the social
expenditure composition over the value of DF reached by every PPP.
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From Tables 13 and 14a, we can state that in overall EU-28, there is not any SE item
with a high positive relation with DF. Hence, the greater positive relation is reached by
the expenses in family/children and social exclusion with a moderate (+) relation. Those
results are in accordance with [19–23] where it is pointed out the limited impact in poverty
reduction of social assistance policies as those for family and children or housing in a great
deal of countries due to its reduced value. To consult those values, see Table A1.

On the other hand, pension expenses (old age and survivors, not disability) are
strong (−) correlated with DF measure. That finding is in accordance with [17], where it is
indicated that benefits for the elderly people generally have a low redistributive impact.
However, Tables 13 and 14b,14c shows that those patterns are not uniform within EU-28.

Table 13. Value of the correlations between DF and the proportion that each kind of social expense
suppose in overall SER.

EU-28 Non-EU-15 EU-15

Item corrX.Y lcorrX.Y rcorrX.Y corrX.Y lcorrX.Y rcorrX.Y corrX.Y lcorrX.Y rcorrX.Y

Sick 0.234 0.038 0.034 −0.008 0.078 0.115 0.443 0.053 0.041
Dis 0.117 0.037 0.026 −0.434 0.133 0.093 0.361 0.022 0.041
Old −0.529 0.039 0.032 −0.128 0.133 0.140 −0.645 0.050 0.051
Surv −0.429 0.032 0.028 0.229 0.097 0.085 −0.811 0.052 0.049
Fam 0.333 0.052 0.063 −0.090 0.166 0.108 0.590 0.058 0.105
Une −0.202 0.133 0.094 −0.202 0.205 0.165 −0.209 0.246 0.176
Hou −0.083 0.041 0.061 −0.068 0.103 0.098 −0.140 0.077 0.113
SocE 0.273 0.053 0.024 0.277 0.052 0.045 0.209 0.116 0.052

Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017).

Table 14a. Value of the compatibility indexes (7b) of the correlations between DF and the proportion that each kind of social
expense suppose in overall SE and the labels of the linguistic variable “correlation coefficient” (EU-28).

Sick Dis Old Surv Fam Une Hou SocH

Perfect (−) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Very strong (−) 0.000 0.000 0.096 0.000 0.000 0.000 0.000 0.000

Strong (−) 0.000 0.000 0.904 0.647 0.000 0.000 0.000 0.000
Moderate (−) 0.000 0.000 0.000 0.353 0.000 0.261 0.000 0.000

Weak (−) 0.000 0.000 0.000 0.000 0.000 0.984 0.000 0.000
Negligible (−) 0.000 0.000 0.000 0.000 0.000 0.230 0.828 0.000

No corr 0.000 0.000 0.000 0.000 0.000 0.000 0.172 0.000
Negligible (+) 0.000 0.830 0.000 0.000 0.000 0.000 0.000 0.000

Weak (+) 0.663 0.170 0.000 0.000 0.000 0.000 0.000 0.265
Moderate (+) 0.337 0.000 0.000 0.000 0.836 0.000 0.000 0.735

Strong (+) 0.000 0.000 0.000 0.000 0.164 0.000 0.000 0.000
Very

strong (+) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Perfect (+) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Argmax Weak
(+)

Negligible
(+)

Strong
(−)

Strong
(−)

Moderate
(+)

Weak
(−)

Negligible
(−)

Moderate
(+)

Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017).
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Table 14b. Value of the compatibility indexes (7b) of the correlations between DF and the proportion that each kind of social
expense suppose in overall SE and the labels of the linguistic variable “correlation coefficient” (Non-EU-15 countries).

Sick Dis Old Surv Fam Une Hou SocH

Perfect (−) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Very strong (−) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Strong (−) 0.000 0.668 0.000 0.000 0.000 0.000 0.000 0.000
Moderate (−) 0.000 0.332 0.000 0.000 0.000 0.520 0.000 0.000

Weak (−) 0.000 0.000 0.461 0.000 0.337 0.992 0.000 0.000
Negligible (−) 0.079 0.000 0.788 0.000 0.940 0.505 0.691 0.000

No corr 0.921 0.000 0.037 0.000 0.456 0.018 0.336 0.000
Negligible (+) 0.063 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Weak (+) 0.000 0.000 0.000 0.705 0.000 0.000 0.000 0.233
Moderate (+) 0.000 0.000 0.000 0.295 0.000 0.000 0.000 0.767

Strong (+) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Very

strong (+) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Perfect (+) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Argmax No corr Strong
(−)

Negligible
(−)

Weak
(+)

Negligible
(−)

Weak
(−)

Negligible
(−)

Moderate
(+)

Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017).

Table 14c. Value of the compatibility indexes (7b) of the correlations between DF and the proportion that each kind of social
expense suppose in overall SE and the labels of the linguistic variable “correlation coefficient” (EU-15 countries).

Sick Dis Old Surv Fam Une Hou SocH

Perfect (−) 0.000 0.000 0.000 0.055 0.000 0.000 0.000 0.000
Very strong (−) 0.000 0.000 0.483 0.945 0.000 0.000 0.000 0.000

Strong (−) 0.000 0.000 0.517 0.000 0.000 0.000 0.000 0.000
Moderate

(−) 0.000 0.000 0.000 0.000 0.000 0.633 0.000 0.000

Weak (−) 0.000 0.000 0.000 0.000 0.000 0.961 0.395 0.000
Negligible (−) 0.000 0.000 0.000 0.000 0.000 0.556 0.605 0.000

No corr 0.000 0.000 0.000 0.000 0.000 0.150 0.000 0.000
Negligible (+) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.062

Weak (+) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.912
Moderate

(+) 0.284 0.694 0.000 0.000 0.000 0.000 0.000 0.088

Strong (+) 0.716 0.306 0.000 0.000 0.700 0.000 0.000 0.000
Very

Strong (+) 0.000 0.000 0.000 0.000 0.300 0.000 0.000 0.000

Perfect (+) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Argmax Strong
(+)

Moderate
(+)

Strong
(−)

Very
Strong

(−)

Strong
(+)

Weak
(−)

Negligible
(−) Weak (+)

Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017).

There are clear differences in the relation between SE items and DF of PPP within
EU-15 with respect to non-EU-15 countries. In non-EU-15 countries, six of eight types
of expenses are low correlated with the productivity measure. Only social exclusion
miscellanea (moderate(+)) and disability benefits (strong (−)) show a significant correlation.
Notice that, in general, non-EU-15 countries present lower levels of SER than EU-15 states.
Hence, it seems that the efficiency of social expenses within non-EU-15 is improved by
simply increasing them. Hence, except in the case of disability benefits, increasing a given
type of social expense may not lead to a greater result in poverty reduction than increasing
any other.

On the other hand, in EU-15, the correlations of each type of social expense and DF is
often more intense. Likewise, we can check that not necessarily a given kind of expense
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has the same sign in its correlation with DF within EU-15 and non-EU-15 countries. That is
the case of Sick, Dis, Old and Surv. As [10] we also obtain that Sick, Fam and Dis expenses
have a significant positive relationship with the efficiency pf PPPs (strong in two first
cases and moderate in the third). Likewise, as [10] we find that benefits due to old age or
survival have a significant negative relation with DF (strong and very strong, respectively).
Likewise, we must point out that in the case of Une, Hou and Soc, the sign and the intensity
of the correlation are essentially the same in EU-15 and non-EU-15 countries. Hence, the
relation of DF with housing benefits is negligible, with unemployment is weak (−) and
lastly, with Soc is weak/moderate(+) in both EU-15 non-EU-15 countries. Notice that
results obtained for the correlation between unemployment benefits and DF are according
with Cantillon [18] who outlines that financial aid for the unemployed has not the desired
effects in reducing poverty.

5. Conclusions

This article evaluates the efficiency of public poverty policies (PPPs) in EU-28 countries
on the basis of their effort measured as social expenditure over GPD (SE). We perform this
analysis for the quinquennium 2014–2018 from annual observations on variables provided
by programs EU-SILC and ESSPROS of Eurostat. To obtain a single observation for the
whole period, 2014–2018 for a given variable and country longitudinal observations are
aggregated by means of triangular fuzzy numbers with the method in [3].

As far as the ranking of PPPs is concerned, we have ordered a set of fuzzy efficiency
indexes by using their expected value. The results that we have obtained are similar to
those in [7,9,10]. Better performances are attained by Anglo-Saxon welfare states (Ire-
land and Great Britain), Scandinavian welfare states (Finland, Sweden and Denmark)
and some Visegrad pact countries like Hungary and Czechia. The less efficient countries
are the Mediterranean welfare states (Italy, Greece, Spain) and some Mediterranean and
Baltic former communist republics as Romania, Bulgaria, Latvia or Estonia. In interme-
diate positions, we find continental welfare states (as, e.g., France, Germany . . . .) and a
heterogeneous set of non-UE-15 states as, e.g., Cyprus, Malta or Slovakia.

To measure the relation between the efficiency of PPP with SER or with the effort done
in a concrete type of social benefit, we have used the fuzzy correlation index in [34] instead
that in [31] since this last may provide too uncertain outputs. Likewise, we interpret the
correlation index qualitatively as a linguistic variable. We have observed that the relation
between the volume of social expending and the poverty diminution despite positive,
is different between EU-15 countries (that have greater SE) and non-EU-15 countries.
Hence, in EU-15 countries the results are in accordance with [16] that showed that in
several European countries increases in social expenses do not lead directly to reductions
in poverty.

The relation between the rate of each item of social benefits with Debreu–Farrell
measure also shows different behavior in EU-15 and non-EU-15 countries. In non-EU-15
countries, six of eight types of expenses are low correlated with the productivity measure.
Only social exclusion miscellanea (moderate(+)) and disability benefits (strong (−)) show a
significant correlation. On the other hand, in EU-15 the correlations of each type of social
expense and DF is often more intense. As [10] we have found that sickness/healthcare,
family/children and disability benefits expenses have a significant positive relation with
the efficiency index. We have also checked that benefits due to old age and survivors have
a negative strong significant relation with the efficiency of PPP.

In the case of unemployment, housing and social exclusion, the sign and the intensity
of the correlation are essentially the same in EU-15 and non-EU-15 countries. Hence, the
relation of DF with housing benefits is negligible, with unemployment weak(−) and lastly
with social exclusion weak/moderate(+).

We have also discussed the application of other tools connected with fuzzy sets as
NFSs, rough sets or GNs to quantify the observations in our problem. Instruments as
IFSs or NFSs provide a more complete capture of uncertainty than FNs. However, their
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adjustment has a greater cost than in the case of FNs. On the other hand, GNs provide
more parsimonious representations of uncertain quantities than FNs. To define a GN, it is
enough to estimate its kernel and a grayness measure. Therefore, in some circumstances it
can be considered that information is too simplified by GNs. Our paper evaluates poverty
policies of EU-28 countries within the quinquennium 2014–2018 in such a way that for
each variable/country we actually have available five annual real valued observations. By
using [29] we aggregate annual observations into one TFN observation that is addressed
to the whole quinquennium. We feel justified the use of TFNs because they let modeling
vague observations as smooth as possible without any loss of information.

We are aware that our study has limitations. First, it is done in a concrete period
with a limited sample of countries. Hence, the conclusions in our paper must be carefully
interpreted since they do not necessarily apply automatically to countries/periods out of
the sample. Likewise, evaluating poverty policies by using exclusively Eurostat database
and performing its analysis by means of fuzzy arithmetic has limitations. It may be of
interesting complementing information in Eurostat database with experts’ opinion that
may be extracted from structured questionnaires and/or interviews. The use of tools to
deal with this kind of information that are beyond fuzzy numbers as, e.g., NFSs or hesitant
fuzzy sets is fully justified. Hence, further research on the evaluation of PPPs by the use of
experts’ opinions and the application of Fuzzy Multicriteria Decision Methods can be a
suitable complement to the methodology presented in this paper.
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Appendix A

Table A1. Proportion that 8 items of social benefits suppose in overall social expenditures (percentage).

Sickness/Healthcare Disability Old Age Survivors Family/Children Unemployment Housing Social Exclusion

Country Center Left Right Center Left Right Center Left Right Center Left Right Center Left Right Center Left Right Center Left Right Center Left Right

Belgium 27.019 0.097 1.07 8.458 1.18 0.755 38.439 4.508 5.208 6.525 0.306 0.206 7.498 0.177 0.22 5.492 1.221 0.939 1.51 0.017 0.037 2.425 0.543 0.371
Denmark 21.282 1.172 0.708 16.181 0.733 0.197 38.731 0.81 1.333 0.783 0.13 0.257 11.139 0.252 0.156 2.625 0.24 0.408 1.345 0.522 0.289 5.165 0.626 0.386
Germany 35.144 0.089 0.166 8.207 0.56 0.986 32.301 0.113 0.174 6.312 0.314 0.505 11.403 0.182 0.246 4.681 1.027 0.766 2.173 0.041 0.021 0.979 0.401 0.262
Ireland 36.908 3.55 2.537 5.443 0.248 0.41 31.465 0.824 1.301 2.723 0.077 0.022 9.053 0.873 0.61 2.792 0.254 0.164 0.335 0.363 0.204 0.769 0.056 0.085
Greece 19.421 0.883 1.824 4.371 0.086 1.028 55.4 0.986 2.994 10.107 0.418 1.121 4.874 1.626 2.953 10.12 5.252 3.744 3.534 0.673 0.99 1.285 1.358 0.538
Spain 26.683 0.711 1.001 7.174 0.071 0.208 41.002 3.669 2.356 9.84 0.049 0.12 5.368 0.162 0.261 3.736 0.197 0.332 0.054 0.148 0.096 0.999 0.028 0.013
France 28.564 0.39 0.258 6.449 0.048 0.021 40.17 0.02 0.194 5.384 0.192 0.262 7.68 0.229 0.368 8.345 2.059 3.276 0.443 0.045 0.027 3.068 0.239 0.347
Italy 23.132 0.086 0.276 5.713 0.2 0.175 48.987 0.093 0.039 9.492 0.123 0.31 4.1 0.192 0.057 2.895 0.45 1.114 0.106 0.032 0.019 2.728 0.967 0.627

Luxembourg 24.977 0.575 0.855 10.857 0.568 0.856 31.362 2.845 1.614 7.743 0.672 0.457 15.439 0.174 0.25 3.581 1.412 0.963 0.396 0.129 0.081 2.257 0.106 0.064
Netherlands 33.766 1.342 1.998 9.16 0.846 0.081 38.346 0.294 0.196 3.933 0.548 0.34 3.977 0.853 0.486 2.61 1.117 0.766 0.858 0.422 0.357 4.941 0.818 0.293

Austria 25.528 0.546 1.059 6.516 0.426 0.644 44.421 0.186 0.263 5.871 0.365 0.507 9.523 0.15 0.094 4.641 2.304 1.592 1.641 0.196 0.1 1.989 0.292 0.698
Portugal 24.994 2.525 1.759 7.223 0.417 0.293 50.339 0.655 0.994 7.6 0.063 0.154 4.834 0.519 0.347 1.235 0.309 0.472 0.224 0.102 0.146 0.905 0.125 0.073
Finland 23.023 1.057 1.958 9.943 0.814 1.393 40.985 3.512 4.921 2.702 0.083 0.135 10.02 0.319 0.52 2.887 0.122 0.073 0.253 0.066 0.109 2.926 0.15 0.404
Sweden 26.145 0.396 0.685 10.241 0.661 1.302 43.582 0.801 1.188 1.091 0.207 0.315 10.386 0.281 0.394 7.816 2.316 1.193 2.452 0.778 1.093 3.278 1.379 1.034
United

Kingdom 32.463 0.775 0.427 6.324 0.762 0.518 42.446 0.469 0.724 0.311 0.023 0.033 9.968 0.399 0.54 3.623 0.238 0.104 1.498 0.126 0.177 2.318 0.217 0.162

Bulgaria 28.053 1.645 2.532 7.451 0.271 0.44 43.932 1.386 0.951 5.422 0.128 0.167 10.631 0.573 0.264 8.919 6.385 4.871 0.847 0.046 0.068 1.47 0.517 0.282
Czechia 32.281 2.131 1.574 6.464 0.323 0.399 43.783 0.265 0.373 3.312 0.277 0.377 8.811 0.102 0.343 3.005 0.309 0.215 0 0 0 1.332 0.705 0.503
Estonia 29.601 1.311 0.65 11.503 0.281 0.525 42.104 2.793 4.276 0.352 0.065 0.098 12.929 2.022 1.362 3.545 0.413 0.579 1.969 0.111 0.046 0.554 0.083 0.202
Croatia 32.987 1.502 0.516 11.046 1.498 2.377 33.636 0.464 0.179 8.981 0.809 1.221 8.79 0.304 0.57 6.132 0.219 0.11 2.55 0.176 0.097 1.498 0.704 0.453
Cyprus 17.912 2.278 1.598 4.116 1.522 1.059 48.577 1.015 1.585 7.227 0.11 0.081 6.816 0.28 0.496 5.723 0.423 0.679 0.13 0.049 0.026 6.696 1.184 0.696
Latvia 25.047 1.514 2.511 9.071 0.255 0.322 48.129 2.182 3.453 1.258 0.049 0.084 10.755 0.88 0.078 6.681 3.123 2.625 1.83 0.351 0.212 0.741 0.099 0.174

Lithuania 30.315 2.63 1.584 9.3 0.336 0.117 43.377 3.021 4.716 2.718 0.54 0.348 8.026 1.122 2.132 4.318 0.693 0.451 0.534 0.19 0.26 2.005 0.616 1.132
Hungary 27.18 2.944 1.617 6.364 1.235 1.77 44.766 0.64 1.243 5.518 0.859 0.604 11.949 0.114 0.174 5.949 1.157 1.669 1.585 0.501 0.342 0.565 0.109 0.169

Malta 33.927 2.388 1.649 3.647 0.235 0.34 43.323 1.827 1.161 8.274 0.107 0.19 5.963 1.002 1.743 1.785 0.198 0.341 1.894 1.02 1.514 1.302 0.318 0.558
Poland 22.952 0.65 1.455 7.553 1.217 0.845 47.42 4.599 1.978 9.328 1.08 1.8 11.102 8.806 5.041 5.668 0.101 0.245 0.379 0.149 0.082 0.623 0.158 0.219

Romania 27.116 0.806 1.307 6.907 1.606 1.212 50.284 0.694 0.065 4.467 0.319 0.526 9.513 2.525 1.649 3.954 1.788 2.842 0 0 0 1.056 0.466 0.248
Slovenia 33.015 3.168 1.867 5.309 1.698 1.314 41.847 0.631 0.486 6.169 0.9 0.614 7.963 0.667 1.008 0.591 0.396 0.615 0.103 0.039 0.05 3.103 0.157 0.253
Slovakia 31.739 0.838 2.036 8.809 0.282 0.189 40.67 0.362 0.477 4.996 0.238 0.356 9.088 0.374 0.14 2.598 0.432 0.664 0.107 0.016 0.005 1.56 0.54 0.808

Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017).
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Table A2. Expected value of fuzzy RRP (over 100) and E (over 1) for several values of the index of λ.

Relative Reduction of Poverty (RRP) Debreu–Farrell Ratio (DF)

Country λ = 1 λ = 0.5 λ = 0 λ = 1 λ = 0.5 λ = 0

Belgium 39.91 38.62 37.34 0.577 0.576 0.575
Denmark 50.88 49.93 48.99 0.722 0.713 0.705
Germany 33.54 33.39 33.25 0.53 0.52 0.51
Ireland 54.58 53.10 51.62 1 1 1
Greece 17.20 16.61 16.02 0.318 0.302 0.287
Spain 26.29 24.78 23.28 0.398 0.391 0.384
France 43.38 43.14 42.91 0.629 0.600 0.570
Italy 20.91 20.88 20.86 0.299 0.291 0.283

Luxembourg 39.41 39.03 38.66 0.669 0.653 0.637
Netherlands 43.21 41.57 39.92 0.608 0.594 0.581

Austria 43.59 42.92 42.25 0.641 0.627 0.614
Portugal 25.54 24.27 23.00 0.469 0.456 0.444
Finland 55.99 54.87 53.75 0.764 0.741 0.719
Sweden 45.26 44.72 44.17 0.748 0.745 0.741

United Kingdom 41.03 40.44 39.85 0.669 0.659 0.650
Bulgaria 22.51 20.92 19.32 0.423 0.396 0.370
Czechia 40.38 40.01 39.65 0.672 0.654 0.637
Estonia 25.64 24.14 22.63 0.433 0.428 0.424
Croatia 30.37 28.45 26.53 0.488 0.464 0.440
Cyprus 37.70 37.06 36.42 0.645 0.627 0.610
Latvia 19.35 18.68 18.01 0.365 0.351 0.337

Lithuania 25.13 24.14 23.15 0.501 0.481 0.461
Hungary 46.10 44.38 42.66 0.824 0.804 0.785

Malta 31.25 30.82 30.40 0.505 0.493 0.481
Poland 31.05 28.80 26.56 0.504 0.477 0.449

Romania 15.35 14.13 12.90 0.288 0.268 0.249
Slovenia 43.25 42.75 42.26 0.652 0.625 0.598
Slovakia 33.92 31.83 29.75 0.508 0.486 0.464

Source: own elaboration from data provided by EU-SILC (2008–2018) and ESSPROS (2008–2017).
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