
mathematics

Article

A Comparative Study of Swarm Intelligence Algorithms for
UCAV Path-Planning Problems

Haoran Zhu 1,†,‡, Yunhe Wang 2,*,‡ , Zhiqiang Ma 2 and Xiangtao Li 1,*

����������
�������

Citation: Zhu, H.; Wang, Y.; Ma, Z.;

Li, X. A Comparative Study of Swarm

Intelligence Algorithms for UCAV

Path-Planning Problems. Mathematics

2021, 9, 171. https://doi.org/

10.3390/math9020171

Received: 11 November 2020

Accepted: 12 January 2021

Published: 15 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Artificial Intelligence, Jilin University, Changchun 130012, China; zhuhr20@mails.jlu.edu.cn
2 School of Computer Science and Technology, Northeast Normal University, Changchun 130117, China;

mazqnenu@126.com
* Correspondence: wangyh082@nenu.edu.cn (Y.W.); lixt314@jlu.edu.cn (X.L.)
† Current address: School of Artificial Intelligence, Jilin University, Changchun 130012, China.
‡ These authors contributed equally to this work.

Abstract: Path-planning for uninhabited combat air vehicles (UCAV) is a typically complicated global
optimization problem. It seeks a superior flight path in a complex battlefield environment, taking
into various constraints. Many swarm intelligence (SI) algorithms have recently gained remarkable
attention due to their capability to address complex optimization problems. However, different SI
algorithms present various performances for UCAV path-planning since each algorithm has its own
strengths and weaknesses. Therefore, this study provides an overview of different SI algorithms for
UCAV path-planning research. In the experiment, twelve algorithms that published in major journals
and conference proceedings are surveyed and then applied to UCAV path-planning. Moreover, to
demonstrate the performance of different algorithms in further, we design different scales of problem
cases for those comparative algorithms. The experimental results show that UCAV can find the safe
path to avoid the threats efficiently based on most SI algorithms. In particular, the Spider Monkey
Optimization is more effective and robust than other algorithms in handling the UCAV path-planning
problem. The analysis from different perspectives contributes to highlight trends and open issues in
the field of UCAVs.

Keywords: swarm intelligence; UCAV path-planning; optimization

1. Introduction

Path-planning for uninhabited combat air vehicle (UCAV) task is one of the key
problems in the UCAV system, which aims to find a path with the shortest distance
while ensuring safety. A safe path denotes that the aircraft can reach the destination
without hitting an obstacle or being detected by radar. The development of the UCAV
system has been receiving increasing attention since it can accomplish difficult tasks in a
complicated environment. In the previous study, many models have been taken to simulate
the intelligent behavior that the aircraft might find a suitable path automatically [1,2].
Under that model, a series of methods to produce an optimal path have been proposed [3].
The angle, velocity, and height and many other factors should be involved in those methods.
In [4], You et al., proposed a three-dimensional (3D) path-planning approach based on
the situational space to provide the tactical requirements of UCAVs for tracking targets
and avoiding collisions. In [5], a two-stage method for solving the terrain-following
(TF)/terrain-avoidance (TA) path-planning problem for UCAV is presented, where the first
stage of planning takes an optimization approach for generating a 2D path on a horizontal
plane with no collision with the terrain, and in the second stage of planning, an optimal
control approach is adopted to generate a 3D flyable path for the UCAV that is as close
as possible to the terrain. In [6], the online collaborative path-planning method based on
dynamic task allocation is proposed. However, they always suffer from the weakness of
UCAVs’ real-time response capability due to the high complexity.

Mathematics 2021, 9, 171. https://doi.org/10.3390/math9020171 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0013-4530
https://doi.org/10.3390/math9020171
https://doi.org/10.3390/math9020171
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9020171
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/2/171?type=check_update&version=2

Mathematics 2021, 9, 171 2 of 31

Swarm intelligence algorithms with a new simple model for the path-planning task
have been widely proposed to overcome the complexity. For example, Pehlivanoglu et al. [7]
proposed a multi-frequency vibrational genetic algorithm to address the path-planning
of UCAV. A new mutation application strategy and diversity variety are designed. In [8],
Zhang et al. used the grey wolf optimizer to deal with UCAV path-planning using the
traditional cost function model. In [9], an improved bat algorithm is employed for three-
dimensional UCAV path-planning by Wang et al., in which BA is combined with differential
evolution. Recently, Yi et al. proposed a quantum-inspired monarch butterfly optimisa-
tion [10] for the UCAV path-planning navigation problem. The worst individuals are
updated by quantum operators to prevent being trapped in local optima, enhancing the
search efficiency. In [11], Pan et al. proposed CIJADE to deal with the UCAV path-planning
problem. It is a hybrid differential evolution algorithm that taking advantages of the modi-
fied CIPDE (MCIPDE) and modified JADE (MJADE) with great searchability. Moreover,
Huang et al. [12] applied the SI algorithms to multi-model cooperative task assignment
and path-planning of multiple UCAV formation, where the task assignment model of the
UCAV formation is developed based on the flight characteristics of the UCAV formation
and constraints in the battlefield. Dewangan et al. [13] applied the grey wolf optimiza-
tion to the multi-UCAV path-planning problem in the three-dimensional environment.
It expresses the trajectory of UCAV in the real 3D battlefield more vividly. Even more,
in [14], Paszkiel et al. discussed the use of brain–computer interface to control unmanned
aerial vehicles. A novel method is proposed to control the UCAV with a microcomputer
connected with the human brain.

All those SI algorithms in solving such complex problems have common specific char-
acteristics [15], such as sharing information between individuals to enhance the population
quality [16,17]. However, each swarm intelligence algorithm has its own strengths and
weaknesses [18]; different swarm intelligence algorithms provide various performance for
cases with different UCAV scales. It is hardly believed that a single swarm intelligence
algorithm can address all complex problems without detailed analysis from multiple per-
spectives [19]. Therefore, we provide a comprehensive comparison by studying similarities
and differences between the twelve SI algorithms in UCAV path-planning. Particularly, a
recently swarm intelligence algorithm called Spider monkey optimization [20] is applied
to address the UCAV path-planning under the self-organization and division of labor.
Moreover, we design thirty UCAV path-planning cases with different scales to demonstrate
the performance of each algorithm. The effectiveness and robustness of each algorithm are
further analyzed from different perspectives on those thirty different cases. Experimental
results demonstrate that Spider monkey optimization can provide better performance over
other state-of-the-art algorithms with good robustness.

The rest of this paper is organized as follows. Section 2 gives overviews of SI
algorithms and Section 3 presents the model of path-planning and the probability density
model. Performance comparisons are summarised in Section 4, and Section 5 presents
conclusions and directions for future research.

2. Problem Formulation

Path-planning of Uninhabited Combat Air Vehicles (UCAV) is a numerical problem
where emergencies should be considered. It aims to arrive at the destination safely by
finding a superior path to avoid any threat, which accounts for artificial threats and natural
constraints. The UCAV path-planning problem is usually represented by the classic 2D
model, as shown in Figure 1. As depicted in this figure, we can clearly see that a path can be
found to link up the starting point and the terminal end, and threats presented in circles are
avoided. In the first, a segment ST that directly connected the starting and terminal point
is drawn, then it is divided into (D + 1) equal parts by D perpendicular lines. After that,
these D lines are taken as a new axis, onto which a series of points are set and connected
one by one to form a path. Under this model, the whole path is divided into D + 1 steps
represented by a vector Xi = (xi1, xi2, ..., xiD), where xij is the jth dimension of the ith

Mathematics 2021, 9, 171 3 of 31

solution vector, and it indicates a discrete position of each step in the vertical axis. The way
of representing the path (a solution) is using a vector in the form of Xi = (xi1, xi2, ..., xiD).
For example, considering the coordinate (0, 0) is the starting point and (T, 0) is the terminal
point, then the distance between the starting and the terminal point is T. A path with D
steps can be performed by that vector Xi = (xi1, xi2, ..., xiD), thus the coordinate of the first
step is (T

D , xi1), the coordinate of the second step is (T
D × 2, xi2), and so on. With all the

steps linked up, the whole path can be formed. Since the paths can not be away from the
battle area, the restriction of each solution path on each case can be set manually related to
the size of the battlefield.

Figure 1. The schematic diagram for combat field modeling. The X and Y axles are the length and width of the horizontal
battlefield. Note that all nodes are linked up to form a feasible path. During the flight, all threats are supposed to be avoid.

To measure those paths, a probability density model is formulated as Equation (1).
Unlike the traditional cost function model, there is no distinct boundary where the damage
risk remains zero. As distance increases, the probability of being attacked by a threat
regularly decreases, but it’s going to in no way be zero. ||Dkj|| indicates the distance
between the jth step and the kth threat center, δ is a parameter to control the shape of the
density function:

CostTI =
n

∑
k=1

exp(−
∑D

j=1 ||Dkj||
.

δ) (1)

Indeed, the UCAV speed and the entire distance of a path should be taken into
consideration. Simplify, it is assumed that the UCAV maintains a constant speed, and
then the fuel consumption corresponds with the total distance of the path. Under that, the
complete cost function can be described as:

CostTI = γ ·
n

∑
k=1

exp(−
∑D

j=1 ||Dkj||
δ

) + (1− γ) ·
∑D

j=1 dij

||ST|| (2)

where γ is the weighting factor ranging in [0,1], and γ is set to 0.5. ||ST|| is the length of
the segment ST. ∑D

j=1 dij refers to the length of the whole flight path, and dij is the length

Mathematics 2021, 9, 171 4 of 31

of the jth step of the ith solution. Since each step is connected directly as a segment, dij can
be calculated by the pythagorean theorem:

dij =
√

a2
ij + b2

ij (3)

where aij and bij are the horizontal and vertical projection of each step. In this study,
Equation (2) is adopted as the objective function, a solution with smaller objective value
denotes a path with better quality.

3. Methodology

Many computational methods have been proposed for addressing path-planning of
UCAV [1–3]. Unfortunately, those computational methods often suffer from numerical
instability and premature convergence due to their inefficient search capabilities and
high complexity. Recently, swarm intelligence (SI) algorithms have been proven to be a
competitive approach to deal with such difficult problems [21–24]. Generally speaking,
SI algorithms are inspired by nature or population-based. They are heuristic methods
that exchange information among the entire population iteratively. However, each swarm
intelligence algorithm has its own strengths and weaknesses; different swarm intelligence
algorithms provide various performance on different UCAV scales due to their algorithmic
parameters based on the problem characteristics. To demonstrate the performance of
different swarm intelligence algorithms in the UCAV path-planning problem, a comparison
of 12 SI algorithms is studied. The mechanical characteristics and parameters of each
algorithm for the UCAV path-planning problem are listed in Table 1. Moreover, four
algorithms including Grey Wolf Optimizer, Firefly Algorithm, Harmony Search, Spider
Monkey Optimization are introduced.

Table 1. An algorithmic parameter summary of twelve swarm intelligence (SI) algorithms.

Algorithm Biological Motivation Parameter Exploration Mechanism

ABC [25]
Honey Collecting
Behavior of Bee

Colony
trial = 0.1·FEs An employed bee denotes a feasible solution, the

unemployed bees do local search.

BA [26] Echolocation of bats

Fmin = 1
Fmax = 4
A = 2.5
r0 = 1

alpha = 0.97
gamma = 2.5

Bats fly randomly with a velocity at a position
with a fixed frequency, varying wavelength and

loudness to search for prey.

CS [27] brood parasitism beta = 1.5 Eggs with better quality have more chances to
survive.

DE [28] Mutation and crossover
of chromosome

F = 0.5
CR = 0.1

All the individuals conduct the mutation and
crossover operators

FA [29] The blinking behavior
of fireflies

alpha = 0.5
beta = 1

gamma = 0.01
theta = 10(−5/FEs)

A firefly can be attracted by others that are
brighter than it.

GCMBO [30] The migration behavior
of monarch butterflies

p = 0.5
peri = 0.5
beta = 1.5
Smax = 1
BAR = 0.8

The monarch butterflies in Land 1 and Land 2
are composed of the whole population, and

the worse subgroup moves to the better
one randomly.

GWO [31] Encircling and hunting
behavior of gray wolves None Take average of the three leader wolves.

Mathematics 2021, 9, 171 5 of 31

Table 1. Cont.

Algorithm Biological Motivation Parameter Exploration Mechanism

HS [32] Search for better
harmony

HMCR = 0.9
PAR = 0.2

BAR = L·0.01

A random dimension of the solution vector
is picked for updating.

MSA [33] Phototropism of moths
Smax = 1
beta = 0.5

phy = (1 +
√

5)/2

A moth can be attracted by lights. When it’s far
away, it will fly straight, or it will do random fly.

PSO [25] Bird migration
c1 = 1.4962
c2 = 1.4962
w = 0.7298

Individuals update their positions by their
velocity and current positions.

SMO [20] Fission-fusion system of
spider monkey

MG = N/4
GLL = N

LLL = D·N
pr = 0.375

Divide the group into
a certain number of

subgroups if stagnated.

WOA [34] Encircling and preying
behavior of whales

a = 5 -iter·/FEs
b = 1.5

A = 2·a·rand-a
C = 2·rand

I = rand·2-1 p = rand

Do exploration by spiral updating.

3.1. Grey Wolf Optimizer

Grey wolf optimizer was inspired by the special predatory behavior of grey wolves,
which has a hierarchy system in the population and encircles their prey in a clear labor
division. The leaders are called the alphas. They are mostly responsible for making
decisions about hunting, sleeping place and so on. The second level in the hierarchy is beta,
which helps the alpha make decisions, like the military adviser. The lowest level, omega,
plays the role of the scapegoat. They submit to all the other dominant wolves. If a wolf is
not an alpha, beta or omega, it’s called a delta. Delta wolves have to submit to alphas and
betas, but they dominate the omega.

In GWO, it considers the best solution as the alpha (α), then the second and the third
best solutions are named beta (β) and delta (δ) respectively. The rest individuals in the
population are omegas (ω), which are guided by α, β and δ during the hunting process. In
each iteration, each individual is updated by:

Dα = |C1 · Xα − Xt|, Dβ = |C2 · Xβ − Xt|, Dδ = |C3 · Xδ − Xt|
X1 = Xα − A1 · (Dα), X2 = Xβ − A2 · (Dβ), X3 = Xδ − A3 · (Dδ)

Xt+1 =
X1 + X2 + X3

3

(4)

where t indicates the current iteration. Ai and Ci are coefficient vectors, Xα, Xβ, Xδ are the
three leader wolves’ vectors, and X is the position vector of a grey wolf. Ai and Ci are
calculated as follows:

A = 2a · r1 − a

C = 2 · r2
(5)

where a is linearly decreased from 2 to 0 over iterations, r1 and r2 are random vectors
in [0,1]. Equation (4) mathematically models the behaviour of encircling and hunting.

3.2. Firefly Algorithm

Firefly algorithm is an effective swarm intelligence method based on the behavior of
fireflies that brighter fireflies would attract other fireflies. As observed from the natural
world, a group of fireflies would always fly towards the brightest one. Brightness measures

Mathematics 2021, 9, 171 6 of 31

the quality of fireflies, therefore the brightness or light intensity in the algorithm can be
represented by the objective function. To simplify, all fireflies are set unisex so that one
firefly is attracted to other fireflies regardless of their sex. Attractiveness is related to their
distance, which can be calculated by the equation below:

attr = β0 · exp(−gamma · dist2) (6)

where β0 is to control the size of attractiveness, and β0 is set to 1 for the UCAV path-
planning problem. gamma is the consumption factor and set to 0.01. dist is the cartesian
distance of two fireflies. For firefly i, it checks every firefly in the whole group. If it finds a
brighter or better firefly j, firefly i is attracted and moves towards firefly j with a random
walk in all dimensions by:

Xi = Xi + attr · (Xj − Xi) + step;

step = alpha · (rand(1, D)− 0.5) · L
(7)

where step is the randomization walk for local searching. alpha is a coefficient decreasing
with iterations, rand(1, D) is a random vector with D dimensions ranging in [0,1] and L is
the difference between the upper and lower bounds.

3.3. Harmony Search

Harmony search algorithm is a heuristic algorithm derived from an artificial phe-
nomenon found in music performance to search for better harmony. A harmony is com-
posed of many different kinds of instruments, and only the same instruments can adjust
from each other. For instance, the piano part of harmony is subpar, and the piano part can
only improve itself from the experience of pianos in other similar harmonies. Aesthetic
estimation measures the quality of a harmony. Practice by practice makes a fantastic har-
mony, just as the values for better objective function evaluation can be improved iteration
by iteration.

In Harmony Search (HS), a new harmony is improvised from the population in
each iteration. The way each dimension updates depends on a probability HMCR. If a
random number rand is smaller than HMCR, the certain dimension of a randomly selected
harmony is used for the newly generated harmony. Or it is generated randomly. For
example, suppose there are a total of ten vectors in the population. For the jth dimension
of the new harmony, the third vector in the population is selected randomly for the new
harmony. After that, a further adjustment is executed by probability PAR. If rand < PAR,
the adjustment proceeds as equation below:

X j
i = X j

i + 2 · rand(0, 1) · BAR− BA, R (8)

where BAR is the difference between the upper and lower bounds. Or no change is made.
This step guarantees the global search ability of HS. If the newly created harmony is better
than the worst harmony in the population, it will replace the worst one. An overview of
HS is summarized in [35].

3.4. Spider Monkey Optimization

Spider Monkey Optimization (SMO) is a novel optimization algorithm that is inspired
by the fission-fusion social system of the spider monkey. These smart creatures have an
impressive mechanism to find the best food source: the leader of the population, usually
a female monkey, leads the group. However, if she can’t find a sufficient target for the
whole group, she divides the whole group into smaller subgroups that explore respectively.
Each subgroup has a leader. Communications are made among the individuals in every
subgroup and with other subgroup individuals as follows:

Xi = Xi + rand · (XLL − Xi) + (rand− 0.5) · 2 · (Xk − Xi) (9)

Mathematics 2021, 9, 171 7 of 31

where rand is a random number in the range [0,1] and XLL is the local leader in the
subgroup. Xk is a randomly selected individual in the entire group.

If the global leader does not update herself in a certain number of iterations, namely
GlobalLeaderLimit, the whole group breaks into certain numbers of subgroups. If a local
leader remains the same for a certain number of iterations, namely LocalLeaderLimit, the
subgroup is re-generated randomly or simply attracted by the global leader by:

Xi = Xi + rand · (XGL − Xi) + (rand− 0.5) · 2 · (Xk − Xi) (10)

where XGL is the global leader. The number of subgroups has a limitation MG. If MG is
reached, all the subgroups reunion into an entire group.

3.5. Proposed Framework for UCAV Path-Planning Problem

In this study, the UCAV path-planning task is a numerical problem, where a superior
path with the lowest objective value needs to be found. It has been proven that SI methods
are effective approaches to deal with optimal problems. First, the population composed
of some individuals is randomly initialized, and the probability density model evaluates
each individual. Then the process of different search strategies proceeds to optimize
the population after the iterations. The SMO algorithm is used to address the UCAV
path-planning problem.

3.5.1. Initialization

In Section 2, the 2D model transforms the battlefield to the top view of the map, and a
path divided by several steps is linked up from the starting point and the terminal ending.
Thus, the path can be represented by a vector Xi = (Xi,1, Xi,2, ..., Xi,D), where i = 1, 2, ..., N
and D denotes the number of steps in each path, and xi,j indicates the position of the jth
step of the ith individual in the whole population.

The population consists of a certain number of individuals (N). The initial population
covers the entire battlefield as much as possible by randomizing the paths within the upper
and lower bounds Xmax

i,j and Xmin
i,j of the map. Therefore, the population is initialized

as follows:

Xi,j = Xmin
i,j + rand(0, 1)× (Xmax

i,j − Xmin
i,j),

j = 1, 2, ..., D, i =1, 2, ..., N
(11)

3.5.2. Local Leader Phase

After initialization, each path in every subgroup updates its current position based on
the experience of its local leader and local group paths in local lea, by:

Xnewi,j = Xi,j + U(0, 1)× (XLL,j − Xi,j) + U(−1, 1)× (Xr,j − Xi,j) (12)

where XLL,j is the jth step of the local leader under the current subgroup. Xrj is a randomly
chosen path among the subgroup and r 6= i, and U(a, b) is a random number ranging
in [a,b] that obeys uniform distribution. Algorithm 1 summarised the local leader phase
of SMO for UCAV path-planning problem. pr ∈ [0.1, 0.8] is the perturbation rate which
controls the frequency of perturbation in the current position. After that, the objective
value is calculated by the probability density model, and the lower the objective value of a
path is, the more qualified the path is. According to the greedy rule, if the newly updated
path is better than the old one, the path is replaced with the new one.

Mathematics 2021, 9, 171 8 of 31

Algorithm 1 Local leader phase

for each path Xi ∈ kth subgroup do

for each j ∈ 1,2,...,D do

if U(0, 1) ≥ pr then

update Xnewij by Xnewi,j = Xi,j + U(0, 1)× (XLL,j − Xi,j) + U(−1, 1)× (Xr,j −
Xi,j)

else

Xnewij = Xij

end if

end for

end for

3.5.3. Global Leader Phase

After the local leader phase, all the paths update their positions using the experience of
the global leader and local group members by probi. The global leader phase is summarized
in Algorithm 2, from which we can see that the better paths with higher probi are more
likely further to update themselves. If U(0, 1) < probi, the evolutionary search strategy
proceeds and can be described as follows:

Xnewi,j = Xi,j + U(0, 1)× (XGL,j − Xi,j) + U(−1, 1)× (Xr,j − Xi,j) (13)

where XGL,j is the jth step of the global leader and j ∈ {1, 2, ..., D} is a randomly chosen
step. The probi could be calculated by:

probi =
f itnessi

∑N
i=1 f itnessi

, (14)

where f itnessi is the f itness value of the ith path. probi can be calculated by anyway related
to the objective value of the paths.

Algorithm 2 Global leader phase

count = 0

while count < groupsize do

for each member Xi ∈ group do

if U(0, 1) < probi then

count = count + 1

Randomly choose j and r and r 6= i

Update Xnewi,j by Xnewi,j = Xi,j +U(0, 1)× (XGL,j − Xi,j) +U(−1, 1)× (Xr,j −
Xi,j)

end if

end for

end while

Further, the objective of the newly generated path is compared with the old one and
the better one is adopted.

3.5.4. Local Leader Decision Phase

In order to prevent stagnation, the local leader decision phase is proposed. The
local leader is the best path in the current subgroup, and if any newly updated paths are

Mathematics 2021, 9, 171 9 of 31

found better than the local leader, the better path is maintained. If any local leader is not
optimized for a threshold called LocalLeaderLimit, then all paths in this subgroup update
their positions by either rerandom generation or by using combined information from
the global leader and the local leader in this group, which depends on the probability pr.
In this way, any paths have chances to move closer to the best path in the whole group,
which guarantees the search capability. The local leader decision phase is summarized in
Algorithm 3.

Algorithm 3 Local leader decision phase

if Locallimitcount > Localleaderlimit then

Locallimitcount = 0

for each path in this subgroup do

if U(0, 1) ≥ pr then

re-generate Xi,j

else

Xnewi,j = Xi,j + U(0, 1)× (XGL,j − Xi,j) + U(0, 1)× (Xi,j − XLL,j)

end if

end for

end if

3.5.5. Global Leader Decision Phase

The global leader decision phase is another method to prevent stagnation. The global
leader is the best path in the entire population; thus, it has the lowest objective value and
the smoothest route. Similar to the local leader decision phase, if any newly updated paths
are better than the global leader, it will replace the global leader. Therefore, there might
be a situation where the global leader is trapped in stagnation. The global leader decision
phase is summarised in Algorithm 4. If the global leader is not updated after a certain
number of iterations, namely GlobalLeaderLimit, the global leader divides the population
into smaller subgroups, or simply reunion all the subgroups into a single group and start a
new round of search, which depends on the current number of subgroups MG. The global
leader decision phase guarantees the ability of local search, which can prevent the path
from trapping into local optimum, and that’s the reason why paths provided by SMO are
always smoother than others’.

Algorithm 4 Global leader decision phase

if Globallimitcount > Globalleaderlimit then

Globallimitcount = 0

if Numbero f groups < MG then

Divide the population into smaller subgroups

else

Reunion all the subgroups into a single group

end if

Update Local and Global leaders position

end if

3.5.6. Time Complexity Analysis

In this section, we analyze the time complexity of SMO for addressing UCAV path-
planning problem. Each individual in the population needs to be traversed in local leader

Mathematics 2021, 9, 171 10 of 31

phase, and N of individuals are further updated, therefore the time complexity is O(2ND).
After that, the population needs to be evaluated with all probability density model threats,
as shown in Equation (2). The time complexity of the objective function evaluation is
O(KD), where K is the number of threats. To sum up, the overall time complexity is
O(t(2ND + NKD)), where t is the number of iterations, N is the population size, D is the
number of dimensions.

4. Experimental Results and Discussion

Twelve algorithms are used for comparison in this work, including artificial bee colony
algorithm (ABC), bat algorithm (BA), cuckoo search (CS), differential evolution (DE), firefly
algorithm (FA), monarch butterfly optimization with greedy strategy (GCMBO), grey
wolf optimization (GWO), harmony search (HS), moth search algorithm (MSA), particle
swarm optimization (PSO), spider monkey optimization (SMO), and whale optimization
algorithm (WOA).

4.1. Cases Design

We have adopted 30 different cases including 10 small-scale (D = 20), 10 medium-scale
(D = 30), and 10 large-scale cases (D = 60). Each case contains a certain number of threats
represented by circles, as shown in Figure 2, and an outstanding path should avoid the
threats and arrives at the terminal ending safely.

Figure 2. A case with ten threats. The horizontal axis is the length of the battlefield and the vertical axis is the width of the
battlefield. The unit can be any unit that represents the length.

Moreover, we intentionally design some cases where some of the threats in the map
are at an intersection to demonstrate the robustness of our proposed model.

Mathematics 2021, 9, 171 11 of 31

4.2. Parameter Setting

The comparisons are made for thirty cases with the probability density model to
optimize the objective function. For all swarm intelligence algorithms, the number of
population N is set to 20 for small-scale and 30 for medium-scale and large-scale cases.
Other parameters of different SI algorithms are listed in Table 1. In SMO, it can be noticed
that pr ∈ [0.1, 0.8] is the perturbation rate, which controls the frequency of perturbation
in the current position. If the value of pr is too large, the result might be converged
after a certain number of iterations. Conversely, if pr is too small, the results can get
converged after a less number of iterations with worse value. Therefore, we selected pr
from [0.2, 0.375, 0.5, 0.625, 0.8]. By conducting lots of prior experiments, the best result
for SMO is obtained when pr = 0.375. Thus we set pr to 0.375 in SMO. The number of
fitness evaluations depends on the operators and the population update model. Different
operators of the algorithms can lead to very different numbers of fitness evaluations per
iteration. Therefore, the number of fitness evaluations is adopted as the stopping criteria
instead of the number of iterations [22]. In our study, we set the FEs = 120× N. To make
statistical analysis, each algorithm runs twenty-five times independently. The average and
standard deviation results over 25 independent runs are calculated.

4.3. Performance Comparison on Small-Scale Cases

In this section, ten small-scale cases for D = 20 are employed to demonstrate the
effectiveness of each SI algorithm for the UCAV path-planning problem. We take Case 8
in those cases for an example to show the best paths provided by each method over 25
independent runs. The comparative performance of each algorithm on Case 8 is visualized
in Figures 3–5. The horizontal axis is the length of the battlefield and the vertical axis is the
width of the battlefield. The unit can be any unit that represents the length. As shown in
Figures 3–5, it demonstrates that most SI algorithms can successfully avoid the obstacles
and reach the terminal ending safely. For each case, the best value, the worst value, average
value, and standard deviation are summarized in Table 2. From Table 2, it is observed
that SMO can obtain better result (on average, worst) than the other algorithms on all the
cases. For Case 2, BA and FA can provide the similar best values with SMO. For Case 3, FA
and SMO achieve the similar best values. In particular, SMO shows its strong robustness
for four cases including Cases 3, 4, 7, and 8 since its std deviation is zero over multiple
runs. For Case 9, HS can reach a slightly smaller std deviation than SMO. However, SMO
performs better on best, worst, and average value than HS across 25 times. In terms of
those 10 small-scale cases, SMO reaches the best average result for Case 2 and the worst
average result for Case1 when multiple runs are made. Moreover, SMO can reach the
best value to 1.47449 for Case 2 while WOA can only achieve to 1.73079. Based on those
analysis, we can conclude that paths made by SMO have the best performance and the
least standard deviation, which reflects that SMO has the best optimization stability for
UCAV path-planning problems.

Mathematics 2021, 9, 171 12 of 31

Figure 3. The comparison performance of different swarm intelligence algorithms including artificial bee colony algorithm
(ABC), bat algorithm (BA), cuckoo search (CS), differential evolution (DE) for Case 8 with D = 20, N = 40.

Mathematics 2021, 9, 171 13 of 31

Figure 4. The comparison performance of different swarm intelligence algorithms including firefly algorithm (FA), monarch
butterfly optimization with greedy strategy (GCMBO), grey wolf optimization (GWO), harmony search (HS) for Case 8
with D = 20, N = 40.

Mathematics 2021, 9, 171 14 of 31

Figure 5. The comparison performance of different swarm intelligence algorithms including moth search algorithm (MSA),
particle swarm optimization (PSO), spider monkey optimization (SMO), and whale optimization algorithm (WOA) for Case
8 with D = 20, N = 40.

Mathematics 2021, 9, 171 15 of 31

Table 2. Performance comparison of different swarm intelligence algorithms for small-scale uninhabited combat air vehicle (UCAV) path-planning. The best, worst, average and standard
deviation over 25 runs of each algorithm for ten cases are provided. The best values are in bold.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

ABC

4.02419
4.22836
4.14491
0.05401

1.55182
1.71690
1.61041
0.03998

1.69836
1.87450
1.75736
0.04304

2.00564
2.34539
2.15096
0.08755

2.10935
2.37855
2.25920
0.06807

2.08304
2.39144
2.22037
0.07445

3.17832
3.53045
3.32170
0.09690

3.40311
3.69164
3.57828
0.07010

3.03541
3.45004
3.22825
0.10477

2.78953
3.15891
2.96556
0.09753

Best
Worst

Average
Std deviation

BA

4.06832
4.55974
4.26404
0.13025

1.47449
1.81447
1.64581
0.09027

1.69652
2.28030
1.96575
0.15832

2.08734
2.82178
2.36674
0.22850

2.10935
2.37855
2.25920
0.06807

2.22917
2.85678
2.51155
0.14218

3.08888
3.97422
3.60318
0.25250

3.46535
4.36706
3.91960
0.25231

2.98014
4.85309
3.84687
0.36851

2.92027
3.67888
3.36492
0.19427

Best
Worst

Average
Std deviation

CS

4.03220
4.18388
4.09087
0.04843

1.49796
1.59921
1.54096
0.02967

1.64508
1.69286
1.66259
0.01233

1.96107
2.09279
1.99728
0.02792

2.10634
2.27114
2.16817
0.03341

1.99048
2.29661
2.10217
0.06515

3.11039
3.17957
3.15049
0.01860

3.40549
3.52887
3.44878
0.03094

2.95024
3.13843
3.02180
0.04584

2.79610
2.98839
2.85613
0.03932

Best
Worst

Average
Std deviation

DE

4.02880
4.12530
4.07083
0.02170

1.50325
1.61329
1.53355
0.02514

1.63592
1.65845
1.64587
0.00658

1.94842
1.98861
1.96551
0.01144

2.08429
2.17788
2.12827
0.02312

2.11028
2.27987
2.19684
0.05239

3.09575
3.11684
3.10590
0.00563

3.38597
3.44025
3.40691
0.01165

2.93400
3.03077
2.97620
0.02309

2.78577
2.85924
2.81632
0.02036

Best
Worst

Average
Std deviation

FA

3.98033
4.41767
4.18981
0.12989

1.47449
1.68793
1.57556
0.05752

1.61806
1.87802
1.66160
0.09639

1.95343
2.38280
2.10564
0.11432

2.08232
2.16536
2.08971
0.01857

1.97192
2.37051
2.15159
0.11398

3.11165
3.91961
3.62811
0.17178

3.47924
3.94338
3.60082
0.09872

2.91277
3.48155
3.31600
0.16063

2.77118
2.90343
2.85962
0.05177

Best
Worst

Average
Std deviation

GCMBO

4.09861
4.61633
4.35093
0.13047

1.67749
1.96159
1.81784
0.07070

1.85437
2.40352
2.06054
0.14633

2.18445
2.85107
2.50667
0.16969

2.36318
3.94095
2.82242
0.32262

2.30052
2.84723
2.61433
0.13625

3.41527
4.20496
3.69809
0.23585

3.66108
4.46385
4.03578
0.16473

3.41110
4.13645
3.78223
0.25659

3.14582
3.76983
3.44099
0.18228

Best
Worst

Average
Std deviation

GWO

3.99392
4.30288
4.11663
0.08042

1.51986
1.68710
1.59373
0.04810

1.61942
2.04082
1.69373
0.11241

1.93603
2.44024
2.06802
0.11212

2.03664
2.29864
2.10303
0.07381

1.94153
2.33305
2.07372
0.10230

3.13821
3.86821
3.43738
0.18621

3.43052
4.04737
3.64063
0.17303

2.92174
3.79556
3.18509
0.29254

2.76177
3.19019
2.90663
0.12241

Best
Worst

Average
Std deviation

Mathematics 2021, 9, 171 16 of 31

Table 2. Cont.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

HS

3.96302
4.08843
4.02537
0.04445

1.47787
1.64180
1.51918
0.05018

1.62287
1.66543
1.63472
0.00879

1.91028
1.95335
1.93401
0.01022

2.04462
2.13986
2.08287
0.02929

1.94352
2.09013
2.00332
0.05375

3.09337
3.11112
3.09912
0.00433

3.37481
3.49135
3.38584
0.02250

2.91970
2.97966
2.94064
0.01508

2.76248
2.95445
2.84744
0.05337

Best
Worst

Average
Std deviation

MSA

4.04798
4.50929
4.22686
0.10797

1.53099
1.84316
1.67300
0.08239

1.62493
1.95150
1.75042
0.12822

1.97107
2.69312
2.24537
0.18634

2.05623
2.71180
2.18386
0.16910

1.99782
2.40953
2.21390
0.12837

3.17287
4.12896
3.59242
0.28264

3.41803
4.54438
3.68847
0.25160

2.97542
3.83439
3.40229
0.23950

2.85214
3.39389
3.09557
0.16223

Best
Worst

Average
Std deviation

PSO

4.20501
4.46044
4.34820
0.07488

1.51803
1.73712
1.61448
0.05803

1.65574
1.88085
1.71962
0.05977

2.04092
2.37730
2.24712
0.10038

2.11362
2.48445
2.20476
0.08953

2.07533
2.37978
2.25161
0.08583

3.27830
3.93095
3.56903
0.14681

3.41937
3.74395
3.58126
0.08585

3.04995
3.47818
3.19644
0.11082

2.91570
3.34519
3.05964
0.10172

Best
Worst

Average
Std deviation

WOA

4.62953
5.20931
4.89909
0.15727

1.73079
2.31805
2.05008
0.14920

2.13197
2.62385
2.35926
0.15173

2.74961
3.41324
3.04231
0.17118

2.57314
3.68988
3.16261
0.34023

2.50992
3.31362
2.89391
0.18900

3.89892
4.74324
4.32977
0.23192

4.27351
5.32713
4.75819
0.27605

3.85183
5.07037
4.45843
0.32343

3.48746
4.47647
4.00377
0.26026

Best
Worst

Average
Std deviation

SMO

3.95556
3.98066
3.95903
0.00708

1.47449
1.50205
1.47564
0.00550

1.61806
1.61807
1.61806
0.00000

1.91451
1.91451
1.91451
0.00000

2.03334
2.03753
2.03366
0.00084

1.93365
1.97235
1.94550
0.01591

3.08887
3.08887
3.08887
0.00000

3.36897
3.36897
3.36897
0.00000

2.82486
2.90891
2.86160
0.03739

2.71818
2.77118
2.74048
0.01317

Best
Worst

Average
Std deviation

Mathematics 2021, 9, 171 17 of 31

4.4. Performance Comparison on Medium-Scale Cases

This section is devoted to show the comparative performance of each algorithm on
ten medium-scale cases (D = 30). Case 8 of those ten cases is taken as an example to
present the best paths gained by each algorithm over 25 runs. The path results are shown
in Figures 6–8. As depicted in Figures 6–8, there is a noticeable difference between each
path. ABC, BA, CS, GCMBO, and PSO generate less smooth path than those made by the
other algorithms. Some paths of them can be trapped in local optimum. It can be noted that
SMO can perform the smoothest path among all the comparative algorithms. To further
demonstrate the effectiveness of each algorithm, Table 3 summarizes the cost objective
values of each algorithm on each case. From Table 3, we can find that SMO has the best
performance while WOA performs the worst. Across all those ten cases, SMO provides
the best results on average, best, and worst with the least std deviation. FA can obtain the
similar result on Case 3 with SMO. For HS, it achieves the similar std deviation with SMO
on Case 6. In terms of Cases 7 and 8, SMO can always produce the best results over 25 times.
The average results for Cases 7 and 8 gained by SMO are 4.04452 and 4.42171 respectively
while WOA only reaches to 6.41485 and 6.93741 on Cases 7 and 8. It demonstrates that
SMO can enhance the performance may due to the division characteristic of SMO. Besides,
the minimum and maximum best result are 1.6787 and 5.2963 generated by SMO on Cases
2 and 1 with different threat conditions. In conclusion, it can be summarized that SMO
is more effective than other algorithms and suitable for solving the UCAV path-planning
problem in medium-scale with high stability.

Figure 6. The comparison performance of different swarm intelligence algorithms including ABC, BA, CS and DE for Case
8 with D = 30, N = 60.

Mathematics 2021, 9, 171 18 of 31

Figure 7. The comparison performance of different swarm intelligence algorithms including FA, GCMBO, GWO and HS for
Case 8 with D = 30, N = 60.

Mathematics 2021, 9, 171 19 of 31

Figure 8. The comparison performance of different swarm intelligence algorithms including MSA, PSO, SMO and WOA for
Case 8 with D = 30, N = 60.

Mathematics 2021, 9, 171 20 of 31

Table 3. Performance comparison of different swarm intelligence algorithms for medium-scale UCAV path-planning. The best, worst, average and standard deviation over 25 runs of each
algorithm for ten cases are provided. The best values are in bold.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

ABC

5.65076
6.08632
5.91296
0.11717

1.81274
2.21838
2.06146
0.09269

2.21308
2.66935
2.43436
0.11428

2.61850
3.34486
3.04549
0.15528

3.07183
3.81704
3.42027
0.19154

2.99558
3.50178
3.20440
0.15197

4.69979
5.23968
4.96524
0.14500

5.00439
5.64008
5.37282
0.16854

4.15122
5.21948
4.74236
0.30034

3.92333
4.66747
4.39441
0.18788

Best
Worst

Average
Std deviation

BA

5.48759
6.34582
5.88167
0.21399

1.77326
2.15701
1.92546
0.09885

1.90156
2.66515
2.32488
0.22482

2.46398
3.86547
3.01165
0.36855

3.04086
4.76201
3.64501
0.40921

2.98142
3.93330
3.27451
0.22400

4.29104
5.56908
5.07498
0.34054

4.80065
6.15390
5.46074
0.34729

4.46421
5.82402
5.16717
0.35195

4.01242
5.00900
4.43730
0.27593

Best
Worst

Average
Std deviation

CS

5.65665
5.92436
5.77357
0.08256

1.84557
2.08908
1.96735
0.05361

2.06679
2.20753
2.14125
0.04085

2.52672
2.74825
2.62565
0.06282

2.83356
3.07316
2.96140
0.07160

2.76835
3.16608
2.95712
0.10896

4.26268
4.53927
4.41239
0.08635

4.66472
4.98162
4.80506
0.08756

4.09219
4.42214
4.23083
0.08683

3.78004
4.13001
3.99211
0.10191

Best
Worst

Average
Std deviation

DE

5.59849
5.80682
5.72977
0.05331

1.85658
1.99903
1.92201
0.03472

1.98665
2.11889
2.05332
0.02914

2.47533
2.65453
2.53862
0.05005

2.75406
2.95975
2.85785
0.05363

2.92717
3.25458
3.06828
0.08813

4.14844
4.31031
4.22782
0.04530

4.58752
4.76395
4.68243
0.05005

3.98125
4.22699
4.08003
0.05506

3.69402
3.92693
3.81012
0.06165

Best
Worst

Average
Std deviation

FA

5.33925
5.96082
5.69696
0.16364

1.69999
1.97332
1.81607
0.06355

1.88776
2.37488
2.09590
0.19622

2.40394
3.09543
2.67013
0.23080

2.55200
2.68846
2.56051
0.02813

2.48963
3.02501
2.73860
0.16406

4.68407
5.22605
4.98621
0.11673

4.57875
5.16279
4.78427
0.15727

3.84686
4.65075
4.42518
0.18589

3.51198
4.40823
3.76076
0.18211

Best
Worst

Average
Std deviation

GCMBO

5.78657
6.30673
6.06380
0.13623

2.01830
2.48651
2.21077
0.12100

2.39372
3.22922
2.66618
0.18939

2.90994
3.62314
3.19552
0.19989

3.14760
4.24778
3.67160
0.28268

3.12060
4.16561
3.49270
0.23986

4.54533
5.70627
5.02587
0.26947

5.18538
6.44745
5.63362
0.30288

4.54210
5.75663
5.02665
0.35624

4.21660
5.02060
4.63974
0.22564

Best
Worst

Average
Std deviation

GWO

5.34573
5.73215
5.56816
0.09551

1.73384
2.09779
1.89774
0.08944

1.91593
2.31262
2.05335
0.14233

2.31796
3.11416
2.59894
0.23897

2.52626
2.94557
2.70787
0.11710

2.34983
3.13474
2.69087
0.21214

4.36972
5.11318
4.69397
0.21956

4.55366
5.39305
4.92003
0.22447

3.78445
5.13422
4.18506
0.34129

3.52735
4.56521
3.92667
0.25907

Best
Worst

Average
Std deviation

Mathematics 2021, 9, 171 21 of 31

Table 3. Cont.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

HS

5.35354
5.54654
5.45640
0.06811

1.72596
1.95107
1.80369
0.06155

1.94628
2.03262
1.98097
0.02289

2.30948
2.42990
2.35934
0.02769

2.56904
2.73681
2.67809
0.04163

2.38619
2.56015
2.48170
0.03772

4.09788
4.20235
4.12535
0.02180

4.49091
4.63989
4.53653
0.04085

3.78557
3.96182
3.86109
0.04647

3.57972
3.93696
3.74365
0.10070

Best
Worst

Average
Std deviation

MSA

5.60787
6.19402
5.83312
0.14906

1.83507
2.12393
1.97181
0.08224

1.93295
2.55960
2.16728
0.19211

2.36184
3.59325
2.74959
0.30554

2.47755
3.04907
2.68769
0.11633

2.45798
3.55619
2.87685
0.27158

4.22888
5.45793
4.86628
0.31305

4.54239
5.54283
5.01900
0.27074

3.78452
5.21095
4.38520
0.43944

3.86997
4.43788
4.17755
0.15929

Best
Worst

Average
Std deviation

PSO

5.98899
6.47456
6.22912
0.14031

1.88923
2.23412
2.00588
0.07914

2.07140
2.49609
2.24133
0.12277

2.84528
3.81686
3.19410
0.22559

2.70623
3.13978
2.87739
0.11863

2.75534
3.33932
3.08111
0.14866

4.63766
5.53994
5.07385
0.23081

4.64379
5.27142
4.93601
0.16315

4.04411
4.95748
4.40160
0.20275

3.92172
4.57736
4.22134
0.15953

Best
Worst

Average
Std deviation

WOA

6.61783
7.61292
7.17790
0.26680

2.39543
3.10127
2.74974
0.21759

2.77779
3.69120
3.23990
0.26836

4.11051
4.91711
4.42680
0.23448

3.97166
5.72925
4.67329
0.41286

3.43633
4.62582
4.20823
0.26723

5.56872
7.04486
6.41485
0.32993

5.94858
7.96494
6.93741
0.52289

5.55131
7.38154
6.33971
0.42879

5.47799
6.84366
5.97577
0.35668

Best
Worst

Average
Std deviation

SMO

5.29633
5.31442
5.29896
0.00504

1.67871
1.70088
1.68123
0.00606

1.88776
1.88782
1.88779
0.00001

2.24303
2.24332
2.24308
0.00006

2.45917
2.55200
2.46334
0.01848

2.29663
2.39585
2.32247
0.03772

4.04452
4.04452
4.04452
0.00000

4.42171
4.42171
4.42171
0.00000

3.60465
3.69517
3.66045
0.03406

3.46036
3.47025
3.46117
0.00207

Best
Worst

Average
Std deviation

Mathematics 2021, 9, 171 22 of 31

4.5. Performance Comparison on Large-Scale Problems

In this section, the performance of each algorithm on ten large-scale cases (D = 60) are
investigated. Figures 9–11 show the paths performed by different algorithms on Case 8
in large-scale. We can observe that as the dimension increases, all the algorithms perform
much worse except SMO. As depicted in Figures 9–11, we can notice that three algorithms
including BA, FA, and SMO can provide the smooth paths. Compared with the paths in
Figures 3–5 and Figures 6–8, it can be seen that the performance decreases significantly with
the increasing dimension. Most algorithms cannot generate the successful paths since the
search ability decreases with the increasing dimension. The best, worst, average objective
values and the standard deviation of each algorithm on each case are tabulated in Table 4.
From Table 4, we can conclude the following observations. (a) SMO provides the best
path among all those twelve algorithms while the path provided by WOA has the worst
performance. Moreover, the path provided by SMO has scarcely changed when compared
with the cases in small-scale and medium-scale. (b) Although FA can present the acceptable
paths, FA made different steps from SMO. That’s the reason why the objective value of
FA is larger than that of SMO. (c) Based on the std deviation, it reveals that SMO can
provide the most stable paths over multiple independent runs among all the algorithms.
Moreover, the convergence rate of Case 8 under the large-scale problems is presented in
Figure 12. We can observe that most algorithms can obtain the best results within less than
150 fitness evaluations. SMO can perform the best paths. However, ABC, DE and WOA
cannot reach the convergence point due to the scant number of fitness evaluations of the
large scale. It can be concluded that SMO has superiority over other compared algorithms
with good robustness.

Mathematics 2021, 9, 171 23 of 31

Figure 9. The comparison performance of different swarm intelligence algorithms including ABC, BA, CS and DE for Case
8 with D = 60, N = 120.

Mathematics 2021, 9, 171 24 of 31

Figure 10. The comparison performance of different swarm intelligence algorithms FA, GCMBO, GWO and HS for Case 8
with D = 60, N = 120.

Mathematics 2021, 9, 171 25 of 31

Figure 11. The comparison performance of different swarm intelligence algorithms MSA, PSO, SMO and WOA for Case 8
with D = 60, N = 120.

Mathematics 2021, 9, 171 26 of 31

Table 4. Performance comparison of different swarm intelligence algorithms for large-scale UCAV path-planning. The best, worst, average and standard deviation over 25 runs of each algorithm for
ten cases are provided. The best values are in bold.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

ABC

11.28948
12.45483
11.82839
0.26937

3.52370
4.23379
3.88755
0.19687

4.62416
5.74213
5.20526
0.28801

5.27874
7.18993
6.61427
0.40836

6.57170
8.43326
7.70273
0.53493

6.29494
7.31052
6.85397
0.30889

9.21089
11.21872
10.35821
0.51347

10.40403
11.79650
11.20326
0.37926

8.69186
11.61452
10.48508
0.64202

8.05864
10.06662
9.33420
0.43498

Best
Worst

Average
Std deviation

BA

10.07523
11.34526
10.84208
0.30431

2.36412
3.25754
2.86006
0.21337

3.03078
4.03706
3.49477
0.28616

3.56815
5.66683
4.62838
0.56681

4.98585
7.15262
5.88189
0.49289

4.56774
6.17443
5.38978
0.40968

7.93291
9.93842
9.25137
0.47881

8.14325
10.89560
9.66495
0.63872

7.42097
10.30115
8.97254
0.71529

6.66584
9.39240
7.80731
0.62308

Best
Worst

Average
Std deviation

CS

11.02470
11.97790
11.56665
0.23127

3.27712
3.75498
3.48136
0.11770

4.05966
4.62767
4.32548
0.15375

5.11979
5.84504
5.50343
0.19957

6.08151
6.84316
6.41659
0.20786

5.68708
6.76414
6.35895
0.25384

8.80291
9.59481
9.22561
0.21309

9.36732
10.38349
9.85457
0.26566

8.60296
9.52930
9.02512
0.25167

7.74665
8.67339
8.33623
0.24913

Best
Worst

Average
Std deviation

DE

10.81923
11.41790
11.17581
0.12184

3.05663
3.39874
3.26770
0.07760

3.65372
4.03394
3.84818
0.09269

4.48336
5.17994
4.83894
0.13693

5.54172
6.05136
5.80331
0.12447

6.41216
6.83525
6.62057
0.13182

8.09821
8.57801
8.35366
0.12208

8.91476
9.62494
9.24848
0.19508

7.88400
8.58606
8.23071
0.15882

7.28692
8.06260
7.66489
0.18647

Best
Worst

Average
Std deviation

FA

9.74002
10.93901
10.27844
0.28866

2.35975
3.00926
2.55646
0.16495

2.68280
3.65493
3.31374
0.25383

4.03736
5.25249
4.56729
0.28831

3.92864
4.06381
3.94498
0.03587

3.73500
4.81286
4.39317
0.27751

8.34560
9.54978
8.81935
0.24707

7.93882
8.82559
8.34753
0.26402

7.17874
8.26742
7.64827
0.25245

6.13161
6.50968
6.20375
0.08006

Best
Worst

Average
Std deviation

GCMBO

10.75231
11.98840
11.22760
0.26693

3.06132
3.82188
3.47342
0.19764

3.86643
5.00522
4.55553
0.29868

5.03095
6.57505
5.67516
0.42072

6.12203
7.82037
6.86026
0.43076

5.80826
6.81993
6.34602
0.28311

8.74677
10.11920
9.21887
0.33034

9.14391
11.09870
10.39141
0.46456

8.46155
10.22534
9.27781
0.55259

7.92789
9.64340
8.66641
0.40073

Best
Worst

Average
Std deviation

GWO

9.78014
10.95061
10.29231
0.26782

2.47045
2.98815
2.77026
0.13709

2.89594
4.12009
3.45772
0.33983

3.53668
5.12438
4.15567
0.40610

3.97649
5.22502
4.45868
0.27546

3.78132
5.29693
4.44264
0.35927

8.09615
9.59289
8.78866
0.35898

8.55144
10.66260
9.48210
0.55005

7.10976
8.88337
8.00236
0.55676

6.40047
7.86799
7.11720
0.36556

Best
Worst

Average
Std deviation

Mathematics 2021, 9, 171 27 of 31

Table 4. Cont.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

HS

9.82004
10.34328
10.13713
0.13847

2.64062
2.94563
2.79976
0.08645

3.32102
3.69148
3.47388
0.08576

4.00540
4.17452
4.08885
0.05438

4.88691
5.32263
5.09346
0.12405

4.03190
4.61613
4.36115
0.12310

7.48906
7.83730
7.65542
0.10100

8.37265
8.71449
8.54144
0.07568

6.83698
7.54559
7.17944
0.16236

6.75239
7.42808
7.06739
0.15036

Best
Worst

Average
Std deviation

MSA

10.32344
11.86800
10.94214
0.38142

2.87248
3.90167
3.18777
0.25169

2.96156
4.12512
3.66284
0.29124

4.22400
5.86799
4.91878
0.53616

4.16115
5.36838
4.67980
0.33062

4.57433
5.89082
5.17434
0.33019

8.64102
10.12286
9.40588
0.40917

8.68919
10.38032
9.43296
0.45564

6.70786
9.10212
7.89441
0.62966

7.00489
8.67775
7.82829
0.52474

Best
Worst

Average
Std deviation

PSO

11.50878
12.60180
12.04514
0.31066

3.03016
3.99445
3.51718
0.23999

3.37450
4.32213
3.87036
0.26719

5.62018
6.85294
6.14793
0.30718

4.83580
6.22815
5.39061
0.30680

5.43883
6.66681
5.97327
0.29597

9.65874
11.35977
10.45275
0.45541

9.08948
10.23278
9.68565
0.31336

7.99124
9.50469
8.88687
0.39625

7.12936
8.94442
8.07835
0.41303

Best
Worst

Average
Std deviation

WOA

13.07540
14.99135
14.15923
0.45608

4.35528
5.95417
5.32378
0.34832

5.29230
7.10852
6.13517
0.44914

7.27906
9.70345
8.50375
0.59170

8.05213
10.45468
9.09167
0.71228

6.75522
9.73888
8.24215
0.75644

11.90830
14.05014
12.90899
0.62665

12.14199
15.23174
14.05722
0.73750

11.27253
14.75277
12.75595
0.76187

11.16476
13.14390
11.96014
0.46090

Best
Worst

Average
Std deviation

SMO

9.18336
9.23077
9.19360
0.01229

2.23828
2.25006
2.24292
0.00351

2.68036
2.68237
2.68106
0.00051

3.16685
3.16958
3.16777
0.00070

3.70875
3.93383
3.72058
0.04451

3.36677
3.64994
3.43767
0.10010

6.88067
6.88070
6.88068
0.00001

7.55502
7.55514
7.55506
0.00003

5.98846
5.99026
5.98890
0.00037

5.54869
5.59005
5.55364
0.00895

Best
Worst

Average
Std deviation

Mathematics 2021, 9, 171 28 of 31

Figure 12. The convergence rate of different SI algorithm for Case 8 with large-scale. The horizontal axis denotes the number
of fitness evaluations divided by the size of the population N, which is the iteration times. The vertical axle is the average
objective value over 25 runs.

4.6. Stability of the Number of Fitness Evaluations

Generally, the number of iterations is often used for the criteria of termination. How-
ever, the number of fitness evaluations depends on the unique feature of each algorithm.
The different procedure of each algorithm causes the different number of fitness evaluations
in an iteration. Therefore, it is common to use the number of fitness evaluations as the
termination threshold instead of the number of iterations [22]. Selecting a proper number
of fitness evaluations is a challenging task. If the number of fitness evaluations is not
enough, the optimal results can not be obtained. Otherwise, it would be wasted if the
number of fitness evaluations is too big because the best result has been found very early.

Tables 2–4 show that SMO obtains the best paths among all the algorithms for UCAV
path-planning problem. To discuss the stability of FEs for SMO, a convergence analysis
based on the number of fitness evaluations is conducted on Case 8 under the large-scale
problems. As depicted in Figure 13, we can observe that the best result has been obtained at
50× N times, which is far less than 150× N. This indicates that SMO has great optimizing
capabilities for the UCAV path-planning problems.

Mathematics 2021, 9, 171 29 of 31

Figure 13. Convergence behavior of SMO. The horizontal axis denotes the number of fitness evaluations divided by N,
which is the iteration times, and the vertical axis denotes the average objective value.

5. Conclusions

This study provides a comparison of twelve SI algorithms for the UCAV path-planning
problem. We survey twelve algorithms from relevant studies and apply them to UCAV
path-planning. In the experiment, thirty UCAV path-planning cases are employed to verify
the performance of each algorithm. The experimental results demonstrate that SMO is
superior to other algorithms from different perspectives. The main contributions of this
study are as follows:

• Twelve SI algorithms including ABC, BA, CS, DE, FA, GCMBO, GWO, HS, MSA, PSO,
SMO, and WOA, are applied to UCAV path-planning problem by reviewing a number
of papers.

• Thirty cases in different scales including ten small-scale cases with D = 20, ten medium-
scale cases with D = 30, and ten large-scale cases with D = 60 are designed to demon-
strate the effectiveness of each algorithm.

• A comprehensive analysis of each algorithm to address the UCAV path-planning prob-
lem is conducted from the perspective of path quality, stability, and convergence. The
experimental results demonstrate that SMO exhibits better performance in discovering
the safe path than the other SI algorithms.

For the UCAV path-planning problems in different scales, SMO performs the best in
average while WOA delivers an obvious inferiority in obtaining good average results. In
particular, SMO can provide the best average results over 25 independent runs on Case 2 in
small-scale, medium-scale, and large-scale. The std deviation of SMO on each case is equal
or very close to zero, which demonstrates the strong robustness of SMO. However, SMO
still might get trapped into local optimum in some cases. There are two main reasons for
this phenomenon: only the terminal point of each step is considered in the path-planning
model, resulting in a phenomenon that a path that goes through the center of the threat
has a lower objective value than that detours the threat. Another reason is that it is not
necessary to generate a high-dimensional solution depending on the reality.

In the future, SMO-based algorithms should be developed based on the analysis of
SMO by exploring other special strategies to enhance the efficiency. They can be applied to

Mathematics 2021, 9, 171 30 of 31

other route planning problems. Moreover, we will focus on designing effective methods to
construct UCAV path-planning models in three-dimension.

Author Contributions: Methodology, H.Z.; supervision, X.L.; validation, Y.W.; visualization, Y.W.;
writing—original draft, H.Z.; writing—review & editing, Z.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research is supported by the National Natural Science Foundation of China under
Grant No. 62076109, and funded by the Natural Science Foundation of Jilin Province under Grant No.
20190103006JH. Health and Medical Research Fund, the Food and Health Bureau, the Government
of the Hong Kong Special Administrative Region [07181426], and the funding from Hong Kong
Institute for Data Science (HKIDS) at City University of Hong Kong. The work described in this
paper was partially supported by two grants from City University of Hong Kong (CityU 11202219,
CityU 11203520), National Natural Science Foundation of China under Grant No. 32000464.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kabamba, P.T.; Meerkov, S.M.; Zeitz, F.H., III. Optimal path planning for unmanned combat aerial vehicles to defeat radar

tracking. J. Guid. Control Dyn. 2006, 29, 279–288. [CrossRef]
2. Sud, A.; Andersen, E.; Curtis, S.; Lin, M.; Manocha, D. Real-time path planning for virtual agents in dynamic environments.

In Proceedings of the 2007 IEEE Virtual Reality Conference, Charlotte, NC, USA, 10–14 March 2007; pp. 91–98.
3. Xin, H.; Chen, Q.; Wang, Y.; Jia, G.; Hou, Z. An Optimal Path Planning Method for UCAV in Terminal of Target Strike.

In Proceedings of the 2019 Chinese Control and Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 3672–3676.
4. You, S.; Gao, L.; Diao, M. Real-time path planning based on the situation space of UCAVS in a dynamic environment. Microgravity

Sci. Technol. 2018, 30, 899–910. [CrossRef]
5. Chen, H.X.; Nan, Y.; Yang, Y. A two-stage method for UCAV TF/TA path planning based on approximate dynamic programming.

Math. Probl. Eng. 2018, 2018, 1092092. [CrossRef]
6. Wei, Z.; Huang, C.; Han, T.; Dong, K.; Li, Y. UCAVs online collaborative path planning method based on dynamic task allocation.

In Proceedings of the 2018 Chinese Control and Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 872–877.
7. Pehlivanoglu, Y.V. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV.

Aerosp. Sci. Technol. 2012, 16, 47–55. [CrossRef]
8. Zhang, S.; Zhou, Y.; Li, Z.; Pan, W. Grey wolf optimizer for unmanned combat aerial vehicle path planning. Adv. Eng. Softw. 2016,

99, 121–136. [CrossRef]
9. Wang, G.G.; Chu, H.E.; Mirjalili, S. Three-dimensional path planning for UCAV using an improved bat algorithm. Aerosp. Sci.

Technol. 2016, 49, 231–238. [CrossRef]
10. Yi, J.H.; Lu, M.; Zhao, X.J. Quantum inspired monarch butterfly optimisation for UCAV path planning navigation problem. Int. J.

Bio-Inspired Comput. 2020, 15, 75–89. [CrossRef]
11. Pan, J.S.; Liu, N.; Chu, S.C. A hybrid differential evolution algorithm and its application in unmanned combat aerial vehicle path

planning. IEEE Access 2020, 8, 17691–17712. [CrossRef]
12. Huang, H.; Zhuo, T. Multi-model cooperative task assignment and path planning of multiple UCAV formation. Multimed. Tools

Appl. 2019, 78, 415–436. [CrossRef]
13. Dewangan, R.K.; Shukla, A.; Godfrey, W.W. Three dimensional path planning using Grey wolf optimizer for UAVs. Appl. Intell.

2019, 49, 2201–2217. [CrossRef]
14. Paszkiel, S.; Sikora, M. The Use of Brain-Computer Interface to Control Unmanned Aerial Vehicle. In Proceedings of the

Conference on Automation, Warsaw, Poland, 27–29 March 2019; pp. 583–598.
15. Parpinelli, R.S.; Lopes, H.S. New inspirations in swarm intelligence: A survey. Int. J. Bio-Inspired Comput. 2011, 3, 1–16. [CrossRef]
16. Yang, X.S.; Cui, Z.; Xiao, R.; Gandomi, A.H.; Karamanoglu, M. Swarm Intelligence and Bio-Inspired Computation: Theory and

Applications; Elsevier: Waltham, MA, USA, 2013.
17. Blum, C.; Li, X. Swarm intelligence in optimization. In Swarm Intelligence; Springer: Berlin/Heidelberg, Germany, 2008; pp. 43–85.
18. Chakraborty, A.; Kar, A.K. Swarm intelligence: A review of algorithms. In Nature-Inspired Computing and Optimization; Springer:

Berlin/Heidelberg, Germany, 2017; pp. 475–494.
19. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
20. Bansal, J.C.; Sharma, H.; Jadon, S.S.; Clerc, M. Spider monkey optimization algorithm for numerical optimization. Memetic

Comput. 2014, 6, 31–47. [CrossRef]
21. Ma, H.; Ye, S.; Simon, D.; Fei, M. Conceptual and numerical comparisons of swarm intelligence optimization algorithms. Soft

Comput. 2017, 21, 3081–3100. [CrossRef]

http://doi.org/10.2514/1.14303
http://dx.doi.org/10.1007/s12217-018-9650-5
http://dx.doi.org/10.1155/2018/1092092
http://dx.doi.org/10.1016/j.ast.2011.02.006
http://dx.doi.org/10.1016/j.advengsoft.2016.05.015
http://dx.doi.org/10.1016/j.ast.2015.11.040
http://dx.doi.org/10.1504/IJBIC.2020.106428
http://dx.doi.org/10.1109/ACCESS.2020.2968119
http://dx.doi.org/10.1007/s11042-017-4956-7
http://dx.doi.org/10.1007/s10489-018-1384-y
http://dx.doi.org/10.1504/IJBIC.2011.038700
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1007/s12293-013-0128-0
http://dx.doi.org/10.1007/s00500-015-1993-x

Mathematics 2021, 9, 171 31 of 31

22. Li, X.; Wong, K.C. A comparative study for identifying the chromosome-wide spatial clusters from high-throughput chromatin
conformation capture data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 15, 774–787. [CrossRef]

23. Gunavathi, C.; Premalatha, K. A comparative analysis of swarm intelligence techniques for feature selection in cancer classification.
Sci. World J. 2014, 2014, 693831. [CrossRef] [PubMed]

24. Parpinelli, R.S.; Teodoro, F.R.; Lopes, H.S. A comparison of swarm intelligence algorithms for structural engineering optimization.
Int. J. Numer. Methods Eng. 2012, 91, 666–684. [CrossRef]

25. Li, B.; Gong, L.; Zhao, C. Unmanned combat aerial vehicles path planning using a novel probability density model based
on Artificial Bee Colony algorithm. In Proceedings of the 2013 Fourth International Conference on Intelligent Control and
Information Processing (ICICIP), Beijing, China, 9–11 June 2013; pp. 620–625. [CrossRef]

26. Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010);
Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74.

27. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired
Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.

28. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]

29. Yang, X.S. Firefly algorithm, Levy flights and global optimization. In Research and Development in Intelligent Systems XXVI;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 209–218.

30. Wang, G.G.; Zhao, X.; Deb, S. A novel monarch butterfly optimization with greedy strategy and self-adaptive. In Proceedings
of the 2015 Second International Conference on Soft Computing and Machine Intelligence (ISCMI), Hong Kong, China, 23–24
November 2015; pp. 45–50.

31. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
32. Omran, M.G.; Mahdavi, M. Global-best harmony search. Appl. Math. Comput. 2008, 198, 643–656. [CrossRef]
33. Wang, G.G. Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput.

2018, 10, 151–164. [CrossRef]
34. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
35. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.

[CrossRef]

http://dx.doi.org/10.1109/TCBB.2017.2684800
http://dx.doi.org/10.1155/2014/693831
http://www.ncbi.nlm.nih.gov/pubmed/25157377
http://dx.doi.org/10.1002/nme.4295
http://dx.doi.org/10.1109/ICICIP.2013.6568149
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.amc.2007.09.004
http://dx.doi.org/10.1007/s12293-016-0212-3
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1177/003754970107600201

	Introduction
	Problem Formulation
	Methodology
	Grey Wolf Optimizer
	Firefly Algorithm
	Harmony Search
	Spider Monkey Optimization
	Proposed Framework for UCAV Path-Planning Problem
	Initialization
	Local Leader Phase
	Global Leader Phase
	Local Leader Decision Phase
	Global Leader Decision Phase
	Time Complexity Analysis

	Experimental Results and Discussion
	Cases Design
	Parameter Setting
	Performance Comparison on Small-Scale Cases
	Performance Comparison on Medium-Scale Cases
	Performance Comparison on Large-Scale Problems
	Stability of the Number of Fitness Evaluations

	Conclusions
	References

