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Abstract: At present it is claimed that all electrical energy systems operate with high values of
efficiency and reliability. In electric power systems (EPS), electrical power and distribution trans-
formers are responsible for transferring the electrical energy from power stations up to the load
centers. Consequently, it is mandatory to design transformers that possess the highest efficiency
and reliability possible. Considerable power losses and hotspots may exist in the bushing region
of a transformer, where conductors pass through the tank. Most transformer tanks are made of
low-carbon steel, for economical reasons, causing the induction of high eddy currents in the bushing
regions. Using a non-magnetic insert in the transformer tank can reduce the eddy currents in the
region and as a consequence avoid overheating. In this work, analytical formulations were developed
to calculate the magnetic field distribution and the stray losses in the transformer region where
bushings are mounted, considering a stainless steel insert (SSI) in the transformer tank. Previously,
this problem had only been tackled with numerical models. Several cases were analyzed considering
different non-magnetic insert sizes. Additionally, a numerical study using a two dimensional (2D)
finite element (FE) axisymmetric model was carried out in order to validate the analytical results.
The solved cases show a great concordance between models, obtaining relative errors between the
solutions of less than two percent.

Keywords: power transformer; stray losses; analytical methods; finite element method

1. Introduction

Nowadays, electric power systems (EPS) are constantly changing. The use of new
technologies such as smart-grids, micro-grids and renewable energy systems demand
high flexibility, performance and efficiency in the EPS. The transformer is a fundamental
component in these systems, which is present in different stages of the EPS, such as at
the generation, transmission and distribution stages [1,2]. Losses in transformers appear
in their different components, such as: windings, insulation, core and tank. These losses
depend on the operating conditions of the transformer (nominal values, DC bias, presence
of harmonics, etc.) and the electrical and magnetic properties of the materials. The study of
transformer losses is an active area of investigation because there is a compromise between
design and cost. Power losses in transformers can be separated into two types: no-load
and load losses; the no-load losses originate in the transformer core and the load losses
are composed by the ohmic losses in the windings and the stray losses. As the rated
power increases in transformers, the stray losses increase significantly. The stray losses
in structural components, such as the tank, decrement the efficiency of the transformer
considerably [3]. Losses in structural components in power transformers are due to stray
fluxes; when a time varying flux impinges on a conductive element it induces a current in
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it, generating Joule losses. Besides power losses, hotspots in structural components caused
by this phenomenon may appear. For these reasons, there are diverse techniques to reduce
losses without unduly increasing the final cost. A crucial structural part of a transformer is
the tank region where the bushings are mounted. The field concentration and overheating
in this zone can cause damage to the device [4].

Analytical and numerical models can be employed for the design of the transformer
taking into account the well-known advantages of each one: analytic models provide
accuracy, less calculation time and simplicity once the model has been developed, whereas
numeric models allow one to solve complex geometries and deal with nonlinear materials.
Several research works, analyzing the magnetic field distribution and the eddy current
power losses in the bushing transformer region, using either numerical or analytical models,
have been carried out previously [1,4–15].

An analytical model is proposed in [4,5] to determine the power losses based on
Poynting’s theorem. To obtain the solution some semi-empirical coefficients are required.
Analytical expressions were developed in [1] to calculate the magnetic field and the stray
losses in the transformer tank near the bushing. The configuration is modeled with a
finite disk and a conductor in the center. It is considered that the axial component of the
induced current density has only a small contribution to the power losses, and therefore it is
disregarded. This automatically implies that the solution obtained will be an approximation.
A study to reduce stray losses in a pad mounted transformer wall using an insert plate is
presented in [6,7]. These studies were carried out using two dimensional (2D) and three
dimensional (3D) finite element (FE) analysis. The results were validated with experimental
tests in different combinations. Additionally, numerical results were compared with
empirical formulas. In these works, it was verified that the use of non-magnetic inserts in
the transformer tank reduce eddy current losses. A transient analysis was carried out in [8]
to compute the power losses in the low-carbon steel tank of a current transformer, taking
into account different insert configurations and materials. The analyses were done using a
3D FE model. It was also concluded that using non-magnetic inserts reduce power losses
in the tank. In [9,11] the temperature distribution on transformer covers is considered.
The stray losses in the tank were analytically calculated using Turowski’s formula [4].
Maximov et al. [10] presented a study of eddy current losses in the tank of a transformer.
Numerical results and analytical formulas were obtained for the losses as a function of
the current. However, in the solution to this problem only two materials were considered:
the tank and the air. In [12,13], the determination of eddy current losses and temperature
distribution in the zone of the transformers bushing are presented. The study was carried
out with the finite difference method. An analytical solution for the bushing regions, using
the same model geometry of [10], is proposed in [14]. However in this research the presence
of harmonics in the current is considered. Oliveira et al. [15] developed a time domain
model to determine the eddy currents in the transformer tank walls considering different
types of excitations. The results obtained with the proposed model were validated with a
3D FE solution. The tank wall was considered to be made of a single magnetic material.

As can be appreciated from the literature reviewed above, in previous research where
a stainless steel insert (SSI) is added to reduce the power losses in the tank, a numerical
model is employed in the analysis, whereas analytical models are developed only for the
cases where the tank in the bushing region is made from a single material. In this paper
a mathematical model is proposed to determine the magnetic field distribution in the
tank wall bushing regions, considering a tank wall composed of two different materials, a
stainless steel section representing the insert and a low-carbon steel section modeling the
rest of the tank. An analytical calculation is also developed to determine the stray losses in
the bushing region.

2. Model

The bushing transformer region is considered through an idealized model. Consider
an infinite conductor that passes the transformer tank wall at a right angle across a circular
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hole. The tank is considered to have an annular shape with thickness h and inner and
outer radii c and b, respectively. A SSI is also considered in the tank, with a radial length
c− a. Figure 1 shows the geometry of the model. The analysis domain is divided into
four regions: Ω1 is the region existing between the conductor and the tank wall, namely,
the circular hole; Ω1 is defined by r0 ≤ r ≤ a, −h/2 ≤ z ≤ h/2, where r0 is the radius
of the conductor. Region Ω2 represents the carbon steel tank wall, that is, c ≤ r ≤ b,
−h/2 ≤ z ≤ h/2. Region Ω3 is the SSI, a ≤ r ≤ c, −h/2 ≤ z ≤ h/2. Finally, region Ω4 is
the medium at both sides of the tank wall, considered as air, r ≥ r0 , |z| > h/2.

W1

I

W4a

b

c

W2W3

r

a
I

c
b

W1

W2

W3

Figure 1. Geometry and parameters of the model.

A conductor passing through the hole transports alternating electric current of the form:

I(t) = Iejωt,

where I is the current amplitude. Maxwell’s equations in the frequency domain, in each
region Ωk, have the following form:

∇× Ek = −jωµ0µkHk, ∇ ·Hk = 0,
∇×Hk = σkEk, ∇ · Ek = 0,

(1)

where k = 1 corresponds to air and the hole (region Ω1), k = 2 corresponds to the carbon
steel (region Ω2) and k = 3 is associated with the stainless insert (region Ω3). Additionally,
σ1 = 0 and µ1 = µ3 = 1. Because of the axial symmetry of the system and the symmetry
with respect to the plane z = 0, the solution to the system of Equations (1) can be sought
as follows:

Hk = Hk ϕ(r, z)eϕ, Ek = Ekr(r, z)er + Ek ϕ(r, z)eϕ, (2)

where Hk ϕ(r, z) is an even function with respect to the variable z; i.e.,

Hk ϕ(r,−z) = Hk ϕ(r, z). (3)

Due to Ampère’s circuital law and axial symmetry, the magnetic field in air and the
hole is:

H1 ϕ(r) =
I

2πr
. (4)
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Boundary conditions between regions Ω1 and Ω2,3 after taking into account
Equation (4) assume the following form (see [10,14]):

H3 ϕ

∣∣∣
r=a

=
I

2πa
, H2 ϕ

∣∣∣
r=b

=
I

2πb
,

1
r

∂
(

rH3 ϕ

)
∂r

∣∣∣∣∣∣
z=h/2

= 0,
1
r

∂
(

rH2 ϕ

)
∂r

∣∣∣∣∣∣
z=h/2

= 0,

H3 ϕ

∣∣∣
z=h/2

=
I

2πr
, H2 ϕ

∣∣∣
z=h/2

=
I

2πr
.

(5)

Additionally, on the boundary that separates regions Ω2 and Ω3 we have:

H3 ϕ

∣∣∣
r=c

= H2 ϕ

∣∣∣
r=c

, (6)

1
σ3

1
r

∂
(

rH3 ϕ

)
∂r

∣∣∣∣∣∣
r=c

=
1
σ2

1
r

∂
(

rH2 ϕ

)
∂r

∣∣∣∣∣∣
r=c

, (7)

3. Analytical Solution

Maxwell’s equations in regions Ω2 and Ω3 reduce to:

1
r

∂

∂r

(
r

∂Hk ϕ

∂r

)
+

∂2Hk ϕ

∂z2 −
Hk ϕ

r2 − jωσkµ0µk Hk ϕ = 0. (8)

Equation (8) has been previously solved [10,14]. The solution of this equation has the
following form [14]:

Hk ϕ(r, z) =
(

Ak
r

+ Bkr
)

cosh(βkz)

+
∞

∑
n=0

{
Ck,n I1(λk,nr) + Dk,nK1(λk,nr)

}
cos(κnz), (9)

where I1(λk,nr) and K1(λk,nr) are the modified Bessel functions of the first order,

β2
k = jωσkµ0µk, κn =

(2n + 1)π
h

λ2
k,n = κ2

n + β2
k k = 2, 3, n ∈ Z+.

Constants Ak, Bk, Ck,n and Dk,n are to be obtained from boundary conditions (5)–(7).
Substitution of solution (9) into the last boundary conditions of (5) yields:

Bk = 0, Ak =
I

2π cosh(βkh/2)
.

As a result,

Hk ϕ(r, z) =
I

2πr
cosh(βkz)

cosh(βkh/2)

+
∞

∑
n=0

{
Ck,n I1(λk,nr) + Dk,nK1(λk,nr)

}
cos(κnz), (10)

The convergence of the generalized Fourier-series (10) is provided by the general
theory of linear partial differential equations, with Hermitian differential operators and
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boundary conditions (5)–(7). However, the convergence can be also proved explicitly,
which has been done, for instance, in the Appendix section of [10].

At the same time, since function cosh(βkz)/ cosh(βkh/2) can be expanded in a Fourier
series as follows [10]:

cosh(βkz)
cosh(βkh/2)

=
∞

∑
n=0

4(−1)nκn

λ2
k,nh

cos(κnz),

then, Equation (10) takes the form:

Hk ϕ(r, z) =
∞

∑
n=0

{
Ck,n I1(λk,nr) + Dk,nK1(λk,nr)

+
2I
πr

(−1)nκn

λ2
k,nh

}
cos(κnz), (11)

Let us substitute general solution (11) for H3 ϕ(r, z) into boundary condition H3 ϕ

∣∣∣
r=a

=

I/2πa. We obtain within the interval −h/2 ≤ z ≤ h/2:

∞

∑
n=0

{
C3,n I1(λ3,na) + D3,nK1(λ3,na) +

2I
πa

(−1)nκn

λ2
3,nh

}
cos(κnz) =

I
2πa

. (12)

On the other hand, within the same interval, we can write (see [10]):

∞

∑
n=0

4(−1)n

κnh
cos(κnz) = 1.

After substituting this result into (12) we come to the following equation:

∞

∑
n=0

{
C3,n I1(λ3,na)+D3,nK1(λ3,na)

+
2I
πa

(−1)nκn

λ2
3,nh

}
cos(κnz) =

∞

∑
n=0

2I
πa

(−1)n

κnh
cos(κnz), (13)

which, in turn, leads to the following:

C3,n I1(λ3,na) + D3,nK1(λ3,na) +
2I
πa

(−1)nκn

λ2
3,nh

=
2I
πa

(−1)n

κnh
.

This equation, after some simple algebraic operations, becomes:

C3,n I1(λ3,na) + D3,nK1(λ3,na) =
2I
πa

(−1)nβ2
3

λ2
3,nκnh

. (14)

A similar result can be obtained from boundary condition H2 ϕ

∣∣∣
r=b

= I/2πb:

C2,n I1(λ2,nb) + D2,nK1(λ2,nb) =
2I
πb

(−1)nβ2
2

λ2
2,nκnh

. (15)
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Boundary conditions (6) and (7) result in the following equations:

C2,n I1(λ2,nc) + D2,nK1(λ2,nc) +
2I
πc

(−1)nκn

λ2
2,nh

= C3,n I1(λ3,nc) + D3,nK1(λ3,nc) +
2I
πc

(−1)nκn

λ2
3,nh

(16)

λ2,n

σ2

{
C2,n I0(λ2,nc)− D2,nK0(λ2,nc)

}
=

λ3,n

σ3

{
C3,n I0(λ3,nc)− D3,nK0(λ3,nc)

}
(17)

The system of linear Equations (14)–(17), with respect to the constants Ck,n and Dk,n,
k = 1, n, is easy to solve. However, there is no necessity to solve this system of equations
exactly, since the magnetic field rapidly decays for an increasing outer radius b. This princi-
ple can be formally taken into account in the system of Equations (14)–(17) by considering
radius b to be sufficiently high (formally, b→ ∞). The validity of this assumption for the
calculation of transformer tanks losses has been shown previously in [10,14]. By applying
the limit to Equation (15) when b→ ∞ and taking into account the asymptotic behavior of
the modified Bessel functions I1(x) and K1(x), namely,

I1(x) ∝
ex
√

2πx

(
1 +O

(
x−1)),

K1(x) ∝
√

π

2x
e−x
(

1 +O
(
x−1)),

it follows that C2,n = 0. Through substitution of the result into Equations (14)–(17) and
solving this system of equations with respect to C3,n, D3,n and D2,n, we obtain:

C3,n =
2I
π∆

(−1)n

λ2
3,nh

{
β2

3
κna

[
λ2,n

σ2
K0
(
λ2,nc

)
K1
(
λ3,nc

)
− λ3,n

σ3
K1
(
λ2,nc

)
K0
(
λ3,nc

)]

−
κn(β2

3 − β2
2)

λ2,nσ2c
K0
(
λ2,nc

)
K1
(
λ3,na

)}
, (18)

D3,n = − 2I
π∆

(−1)n

λ2
3,nh

{
β2

3
κna

[
λ2,n

σ2
K0
(
λ2,nc

)
I1
(
λ3,nc

)
+

λ3,n

σ3
K1
(
λ2,nc

)
I0
(
λ3,nc

)]

−
κn(β2

3 − β2
2)

λ2,nσ2c
K0
(
λ2,nc

)
I1
(
λ3,na

)}
(19)

and

D2,n =
2I

π∆c
(−1)n

λ3,nσ3h

{
κn

β2
3 − β2

2
λ2

2,n

[
K1
(
λ3,na

)
I0
(
λ3,nc

)
+ I1

(
λ3,na

)
K0
(
λ3,nc

)]
−

β2
3

κnλ3,na

}
, (20)

where

∆ =

[
λ2,n

σ2
K0
(
λ2,nc

)
K1
(
λ3,nc

)
− λ3,n

σ3
K1
(
λ2,nc

)
K0
(
λ3,nc

)]
I1
(
λ3,na

)
−
[

λ2,n

σ2
K0
(
λ2,nc

)
I1
(
λ3,nc

)
+

λ3,n

σ3
K1
(
λ2,nc

)
I0
(
λ3,nc

)]
K1
(
λ3,na

)
. (21)



Mathematics 2021, 9, 184 7 of 14

Then, constant C2,n can be approximately calculated from Equation (15) as follows:

C2,n =
1

I1(λ2,nb)

{
2I
πb

(−1)nβ2
2

λ2
2,nκnh

− D2,nK1(λ2,nb)
}

. (22)

Solution (10) is an infinite sum that can be truncated at a term with number N− 1 and
by introducing the Lanczos sigma factor (see [16,17]):

ςn =
sin
(
πn/N

)
πn/N

(23)

to suppress Gibbs’ oscillations. Then, solution (11) takes the following form:

Hk ϕ(r, z) =
I

2πr
cosh(βkz)

cosh(βkh/2)

+
N−1

∑
n=0

ςn

{
Ck,n I1(λk,nr) + Dk,nK1(λk,nr)

}
cos(κnz), (24)

4. Electric Field and Eddy Current Losses

Eddy current losses in the transformer tank wall have an ohmic nature. The averaged
power loss density over a period is as follows [10,14]:

P(r, z) =
1
T

∫ T

0
σ(r, z)|E(r, z, t)|2dt =

|j(r, z)|2
2σ(r, z)

, (25)

where T = 2π/ω is the period. The tank wall conductivity σ(r, z) is a function of the
coordinates due to the insert in the tank wall, and j(r, z) is the current density in the
frequency domain. Then, the total losses in the tank wall are [10]:

Ptot =

2π∫
0

dϕ

b∫
a

rdr
h/2∫
−h/2

dz P(r, z) = π

b∫
a

rdr
h/2∫
−h/2

dz
|j(r, z)|2
σ(r, z)

=
π

σ3

c∫
a

rdr
h/2∫
−h/2

dz
(
|j3,r(r, z)|2 + |j3,z(r, z)|2

)

+
π

σ2

b∫
c

rdr
h/2∫
−h/2

dz
(
|j2,r(r, z)|2 + |j2,z(r, z)|2

)
. (26)

The current density can be obtained from Maxwell’s Equations (1) as follows:

jk = ∇×Hk = jk,r(r, z)er + jk,z(r, z)ez, (27)

where

jk,r(r, z) = − Iβk
2πr

sinh(βkz)
cosh(βkh/2)

+
N−1

∑
n=0

ςnκn

{
Ck,n I1(λk,nr) + Dk,nK1(λk,nr)

}
sin(κnz) (28)

and

jk,z(r, z) =
N−1

∑
n=0

ςnλk,n

{
Ck,n I0(λk,nr)− Dk,nK0(λk,nr)

}
cos(κnz) (29)
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5. Study Cases and Discussion

Several study cases are carried out in this section with different SSI sizes in the tank
wall. In order to compare the results obtained with our analytical formulas, the solution in
each case is also computed with a 2D FE model [18]. The low-carbon steel has the following
properties: a relative permeability µr = 100, a conductivity σ = 7.0 × 106 S/m and a
relative permittivity εr = 1. The SSI has a relative permeability µr = 1.0, a conductivity
σ = 1.1× 106 S/m and a relative permittivity εr = 1. The model dimensions in all the
cases are a = 8.5 cm, b = 34 cm and h = 12.7 mm. The current I carried by the conductor is
5000 A at frequency f = 60 Hz. Various radial distances of the insert (c− a) are considered,
which are obtained by varying the percentage of the tank wall volume that corresponds
to the SSI. This means that if the insert volume is 0 %, the tank wall is made only of
low-carbon steel and therefore c = a. On other hand, if the insert volume is 100%, the tank
wall would be made exclusively of the stainless steel and its radial distance would be given
by c− a = b− a = 255 mm.

The numerical solution is obtained with a time-harmonic 2D eddy current axisymmet-
ric FE model. A special 2D formulation is applied considering that field configuration is
such that the magnetic field has only one component normal to the plane and the current
density has its components in the plane, which matches with our problem. This formula-
tion is incorporated into our FE code FLD and has been compared with analytical and 3D
FE solutions, obtaining great accuracy in all cases [18]. FLD is a set of computer programs
and routines, developed by the authors, for the analysis of electromagnetic problems using
the FE method, which is programmed in Fortran 95 [19]. Using a 2D FE model permits a
large number of simulations in a much shorter time and without the computational cost of
a 3D model. Moreover, the geometry of the proposed model is represented faithfully by a
2D axisymmetric model.

The analysis domain considered in the FE axisymmetric model is composed by regions
Ω3 and Ω4. A Dirichlet boundary condition, obtained by applying Ampère’s circuital
law (4), is assigned to nodes located at the periphery of the model. Figure 2 shows the FE
meshes used to solve two different cases. Figure 2a is the mesh used for the case where the
tank wall of the transformer lacks an SSI. Figure 2b shows a case where an insert exists,
modeled by the left blue region. The mesh used for each case results from an automatic
mesh adaptation procedure; regions with a rapid variation of the field, after the iterative
procedure, will contain a higher density of elements. In all cases second order elements
were employed. Details of the implementation of the automatic mesh adaptation are
reported in [18]. In both cases, most of the elements are in the periphery of the region Ω2,
consisting of low-carbon steel, due to the skin effect in this material.

(a)

(b)
Figure 2. Mesh of the 2D FE axisymmetric model. (a) Tank wall without insert, case c = a. (b) Tank wall considering an
insert, case c− a = 85.0 mm.

In Figure 3 the magnetic field distribution of Hϕ(r, z), obtained with (4) and (24), is
presented for different radii of the SSI. Observe how the magnetic field penetrates the tank
wall according with the SSI size. Since the low-carbon steel possesses greater permeability
and conductivity than the stainless steel, it has a smaller depth of penetration (δ). Hence,
the magnetic field decays rapidly in region Ω2, whereas the magnetic field penetrates easily
to region Ω3.
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Figure 3. Magnetic field distribution inside the tank wall. (a) Case c = a. (b) Case c− a = 11.914 mm. (c) Case c− a = 85 mm.
(d) Case c− a = 183.89 mm. (e) Case c− a = 238.67 mm.

Figure 4 shows two cases of the magnetic field penetration in the tank wall and the
eddy current density obtained with 2D FE simulation. Figure 4a is the case where there
is no insert. In this solution the skin effect phenomena in the tank wall can also be seen,
producing the greater magnitude of Hϕ in the inner radius, the nearest region to the
conductor. Figure 4b presents the case in which the radial distance of the stainless insert is
c− a = 85 mm. In this case, the closed path of the eddy currents in the tank can be seen.
The magnitude of the eddy current density is greater in the low-carbon steel.
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(a)

(b)
Figure 4. Magnitude of Hϕ (color) and eddy current density (arrows) in the tank wall. (a) Case c = a. (b) Case
c− a = 85.0 mm.

Figure 5 shows the magnetic field Hϕ evaluated at the center of the tank wall (z = 0)
for different insert radii. For all cases, the analytical solution, developed in this work and
the numerical one obtained with the 2D FE model are compared. It can be seen that for all
the cases, the values of Hϕ calculated analytically match very closely the values obtained
numerically, demonstrating the validity of the analytical formula (24). In these graphs, the
behavior of the magnetic field inside the tank wall can be noticed more clearly: when Hϕ

penetrates in the low-carbon steel, it decreases rapidly, having a greater variation at the
edges of the tank. The magnetic field outside of the tank wall decreases according to the
distance to the conductor, as established in (4). Table 1 shows the relative error between
the analytical solution and numerical solutions calculated for these cases. The maximum
relative error obtained is 1.71%, which demonstrates the validity of the solutions.

Table 1. Relative error between solutions.

Case Relative
c − a Error
(mm) (%)

0 0.52
11.914 1.37

85 0.83
183.79 1.71
238.67 0.45

The relative error is calculated with

relative error =
max
i=1, n

| fi − gi|

max
i=1, n

|gi|
100%

where fi and gi are the numerical and analytical solutions respectively, evaluated at point i,
while n is the total number of points considered.

The eddy current losses Pe in the bushing region were calculated for several cases using
the analytic expressions (26), (28) and (29), and were compared with the losses estimated
using 2D FE simulations. Table 2 presents the eddy current power losses obtained for
thirteen different configurations of the tank wall, varying the volume occupied by the
stainless insert. In each case, the corresponding radial distance of the insert is shown. It can
be observed that the losses calculated in all cases differ by less than 3%, which confirms
the correctness of the analytical expressions presented previously. Figure 6 presents also
the power losses in the tank wall, calculated with the two approaches, in a graphical way.
This graph shows the reduction of the total power losses in the tank wall according to the
increment of the radial distance c− a, as expected. Although these results could point to the
use of transformer tanks made exclusively with stainless steel, at least in the bushing region,
this material is more expensive than the low-carbon steel, meaning a greater investment to
manufacture the transformer.
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Figure 5. Magnetic field Hϕ evaluated at z = 0 and z = h/2. (a) Case c = a. (b) Case c − a = 11.914 mm. (c) Case
c− a = 85 mm. (d) Case c− a = 183.89 mm. (e) Case c− a = 238.67 mm.
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Table 2. Eddy current losses in the tank wall.

Insert Radial Distance Pe Pe Relative
Case Volume Insert c − a (W) (W) Error

(%) (mm) Analytical Numerical (%)

1 0 0 334.345 333.313 0.308
2 1 6.152 317.872 316.813 0.333
3 2 11.914 303.079 302.003 0.355
4 5 27.444 267.309 266.387 0.344
5 10 49.396 224.551 223.852 0.311
6 20 85.000 168.447 168.018 0.254
7 30 114.34 130.565 130.330 0.18
8 40 139.88 101.941 101.836 0.103
9 50 162.81 78.918 78.965 0.059

10 60 183.89 59.669 59.799 0.217
11 70 203.24 43.135 43.380 0.568
12 80 221.47 28.630 28.975 1.205
13 90 238.67 15.724 16.142 2.658

Insert radius, [m]
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P
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 l
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ss
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300
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Figure 6. Power losses for different SSI dimensions.

6. Limits and Applicability of the Analytical Solution

Solution (24) was obtained under the assumption of axial symmetry. The edge effect
on the external border was neglected by formally taking the limit: b→ ∞. This approach
(axial symmetry) is expected to be applicable to other cases such as when the conductor
crosses the covering plate not at the plate centre, but closer to the border of the transformer
cover. This is due to the skin effect, making the magnetic field decay exponentially from
the hole border (see Figure 7). However, in a layer near the external border, the mag-
netic field increases exponentially up to values of the magnetic field outside the plate
(Figure 7). Therefore, if the conductor is situated too close to the border, the edge effect
may become considerable.

Nevertheless, there is a case where this effect could become considerable. Just near
the external border, the magnetic field increases exponentially up to values of the magnetic
field outside the plate (see Figure 7). If the conductor is far away from the external border,
the magnetic field quantity near the plate border is small enough so that the external border
effect can be neglected. In the case of the conductor crossing the plate nearby the plate
border, the edge effect becomes considerable. However, this effect is presented only in
a small region shown in Figure 8, so that its contribution to the complete value of eddy
current losses is small. Therefore, the only restriction of our analytical solution is δ1 � d,
which is normally accomplished in actual transformers.
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Figure 7. Magnetic field behaviour in the insert and the neighbouring plate material.

Figure 8. Limiting case of a conductor close to the plate border.

7. Conclusions

A new analytical model to determine the magnetic field distribution around the
bushing region in the transformer tank, and considering the existence of a SSI, has been
developed. The results obtained with the proposed model were validated with detailed
2D FE simulations. All the cases considered show great concordance between analytical
and numerical solutions. A relative error was calculated in order to compare quantitatively
the analytical model with the numerical one. This way, it was shown that the solutions
differed by less than 2% in all the simulated cases. A formula to calculate the eddy current
losses was also developed. The power losses were calculated for a total of thirteen different
cases varying the radial distance of the insert, and again the analytical results were very
close to the numerical ones. The results show that stray losses in the tank are reduced with
increases in the SSI dimensions. The relative errors between stray losses, calculated with
the analytical and the FE models, for all cases were less than 3%.

These equations can serve as a basis to develop a thermal analysis in the bushing
regions or an economical analysis of the insert cost against the savings due to the power
loss reduction. Therefore, the new analytical model can be a useful tool for transformer
designers who are interested in obtaining the optimal size of non-magnetic inserts in the
tank wall, according to the rated values and dimensions of the transformer.
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