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Abstract: Steganalysis is a method to detect whether the objects contain secret messages. With the
popularity of deep learning, using convolutional neural networks (CNNs), steganalytic schemes have
become the chief method of combating steganography in recent years. However, the diversity of filters
has not been fully utilized in the current research. This paper constructs a new effective network with
diverse filter modules (DFMs) and squeeze-and-excitation modules (SEMs), which can better capture
the embedding artifacts. As the essential parts, combining three different scale convolution filters,
DFMs can process information diversely, and the SEMs can enhance the effective channels out from
DFMs. The experiments presented that our CNN is effective against content-adaptive steganographic
schemes with different payloads, such as S-UNIWARD and WOW algorithms. Moreover, some state-
of-the-art methods are compared with our approach to demonstrate the outstanding performance.

Keywords: steganalysis; convolutional neural network; diverse filter module; squeeze-and-excitation
module

1. Introduction

With the rapid development of information technology, covert communication meth-
ods using steganography have attracted increasing attention in recent years. With the
improvement of steganography, it is more difficult to find out the embedding traces in
objects, as the secret information is hidden in the texture area of the image with content-
adaptive steganographic algorithms, such as HUGO [1], S-UNIWARD [2], WOW [3],
HILL [4], MiPoD [5], JUNIWARD [6], UERD [7], ASO [8] and so on [9–11]. The core idea of
these adaptive image steganography algorithms is to design the embedded distortion cost
function, so as to separately measure the impact of each pixel modification in an image for
the steganography security. It means that the security issues of steganography have been
transformed into the issues of optimizing the distortion cost, which can guide the embed-
ding operation of steganography by calculating the minimized embedding distortion to
maximize the security of the steganography. As every coin has two sides, steganography
could be easily exploited by criminals, so it is an important task to detect steganography.

The aim of steganography is to hide secret information in objects to covert communi-
cation. In contrast, steganalysis is to detect the hidden messages. However, steganalysis is
a relatively challenging task as the changes of cover objects are almost impossible to be
recognized by human eyes.

The traditional steganalytic schemes are usually based on well-designed hand-crafted
features by expert experience matching with different machine-learning classifiers [12–16],
for instance, the Subtractive Pixel Adjacency Matrix (SPAM) [13], the Spatial Rich Model
(SRM) [14], ccPEV [17], DCTR [15] and their variants. In recent years, the popularity of
Convolutional Neural Network (CNN) has promoted the study of steganalysis. The CNN
schemes have shown great performance in image steganalysis. The spatial schemes for
the current study include: Qian-Net [18], Xu-Net [19], Ye-Net [20], Yedroudj-Net [16],
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ReST-Net [21], SRNet [22], Yedroudj-Net [23] and so on. All the above-mentioned CNN
approaches can effectively distinguish steganographic images, and some even have better
performances than the traditional approaches. After the analysis of the above-mentioned
network structures, we can see that a typical steganalytic architecture mainly combines two
elements of a feature extraction step and a classification step. One is to extract the noise
residuals from the input image pairs as the features. The other is to classify the input image
pairs into two classifications of covers and stegos. Although such approaches based on
CNN have achieved a good performance in image steganalysis, the common thread in all
these methods is that they use only one pipeline or do not combine the filters sufficiently.

In order to make full use of the diversity of filters, we propose an effective CNN
architecture for steganalysis. There are two contributions of our method: the design of
a diverse filter module (DFM) and squeeze-and-excitation module (SEM). Inspired by
the Inception Network [24], which increases the width of the CNN structure, we use the
DFMs to get more varied residual features. Similarly, we utilize the SEMs from learning
the Squeeze-and-Excitation Network [25] to strengthen the key channels. Therefore, we
named our CNN as “DFSE-Net” for steganalysis. The input image pairs can extract more
features through multiple convolution kernels, at the same time the important feature
maps can be highlighted. Therefore, the final fusion can obtain a better representation,
and the experimental data set is BOSSBase1.01 [26]. Meanwhile, the experimental results
demonstrate the outstanding performance of our convolutional network.

The rest of this paper is organized as follows. In Section 2, we review several related
approaches of image steganalysis. Our CNN structure with DFMs and SEMs is presented in
Section 3. In Section 4, the experimental results are reported. Section 5 concludes this paper.

2. Related Work

The first study of image steganalysis considering deep learning architecture was done
by Tan and Li in 2014 with convolutional autoencoders [27], although the method was
almost not effective, it was very innov ative at that time. In 2015, Qian et al. [18] proposed
their GNCNN architecture and first imported a KV kernel as the image preprocessing
layer. The design architecture could effectively improve the detection accuracy, but it was
still not as good as traditional methods. A real breakthrough was achieved in 2016 by
Xu et al. [19]. The performance of Xu-Net can be comparable with the traditional well-
designed method consisting of SRM [14] and an ensemble classifier (EC) [28] for the first
time. By analyzing its architecture of Xu-Net, we can know that they innovatively intro-
duced the absolute activation (ABS) layer in the feature maps to facilitate the statistical
modeling in the following layers; to prevent overfitting, they utilized the TanH function
to limit the range of data values at early stages of their network, and used a 1 × 1 convo-
lutional layer to construct a deeper network. In 2017, Ye et al. [20] presented their CNN
architecture with a preprocessing layer containing thirty high-pass filters of SRM and de-
signed an efficient activation function of truncated linear unit (TLU) that can better reveal
the embedding artifacts. In 2018, Li et al. [21] firstly proposed a wide CNN architecture
ReST-Net with diverse activation modules and parallel subnets. While the network only
used one type of convolution kernel 3 × 3. In 2019, Zeng et al. [29] proposed a separate-
then-reunion network for steganalysis of color images. These architectures have proven
that the wider CNN can improve the detection performances. However, the architectures
of parallel subnets with different sizes of combined kernels have not been extensively
explored in steganalysis so far. This motivates us to design a wider CNN with different
sizes of kernel units.

3. The Proposed Method
3.1. Architecture Overview

In order to make full use of the diversity of filters, DFSE-Net was designed and the
overall structure is presented in Figure 1.
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Figure 1. The architecture of DFSE-Net. For each convolutional layer, the data sizes are shown on the
right side of each box and the types and parameters are displayed inside boxes.

Since DFMs can extract more diverse feature maps and SEMs can make our network
focus on analyzing effective feature maps, the combination of two different modules can
improve the detection effectiveness. The experimental results demonstrate our conclusion.
In Figure 1, DFSE-Net consists of one image preprocessing layer, seven convolutional
layers, with six convolutional layers in DFSE Modules, one fully-connected layer and one
softmax layer. Due to the limitations of computing power, the size of the input image is
256 × 256.

The layer types and parameters are displayed inside boxes in Figure 1. Conv(x1, a × a, x2)
inside boxes means that the kernel size of the convolution layer is a × a and the number of
input feature maps is x1, the number of output feature maps is x2. The full name of ABS
is absolute activation, similarly, BN is batch normalization, TLU is truncated linear unit,
ReLU is a rectified linear unit. The data sizes (x × (a × a)) denote the number and size of
output feature maps, which are shown on the right side of each box.

The whole DFSE-Net can be simply divided into three steps. The first step is an image
preprocessing layer with thirty high-pass filters of SRM [14], which can make our CNN
concentrate on the embedding areas rather than the contents of images. Feature extraction
is the second step, which consists of three DFMs and SEMs with seven convolutional layers.
In this step, the feature maps are transformed into a 240-D feature vector. The third step is
a linear classification module with one fully-connected layer and one softmax layer. In this
step, the feature vectors are transformed into the output probabilities for each class. Each
basic element is made of the following different layer types:

3.1.1. Convolution Layer

In our proposed architecture, we use three different convolution kernels instead of
using only one type of 3 × 3 convolution kernel to extract local features of different sizes.
In addition, the 3 × 3 and 5 × 5 kernels are parallelly computed in each DFM to capture
more features. For the first convolution layer, the kernel size is 5 × 5, as to obtain a larger
view of the local features. The 1 × 1 kernel is used after each SEM to integrate the rich
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feature sets. The number of channels in each convolution layer is a comprehensive balance
of computational complexity with network performance.

3.1.2. ABS Layer

The ABS layer [19] is only used after the first convolution layer. It discards the signs
of the elements in the noise residuals, so that the statistical features of sign symmetry are
forced to be considered in the feature maps. To show the performance of the ABS layer
for image steganalysis, the comparisons are conducted based on the DFSE-Net with and
without the ABS layer in the first convolution layer. Both models are trained for the WOW
steganography algorithm at the payload of 0.2 bpp and 0.4 bpp. From Table 1, the DFSE-Net
with ABS layer has a lower error rate of detecting the WOW steganography algorithm, and
the ABS layer also accelerates the convergence and shows better performance, as shown in
Figure 2.

Table 1. Steganalysis error rates comparisons of DFSE-Net with the absolute activation (ABS) layer
and DFSE-Net without the ABS layer against the WOW steganography algorithm at 0.2 and 0.4 bpp.
Both models are trained and tested on the BOSS dataset.

Algorithm DFSE-Net with ABS Layer DFSE-Net without ABS Layer

WOW (0.2 bpp) 0.247 0.275
WOW (0.4 bpp) 0.149 0.177

Figure 2. Comparing convergence performances of DFSE-Net with the ABS layer and DFSE-Net
without the ABS layer against the WOW steganography algorithm at 0.4 bpp. Both models are
trained and tested on the BOSS dataset.

3.1.3. BN Layer

The BN layer [30] is essentially a normalized network layer. It normalizes the distribu-
tion of each mini-batch to a zero-mean and a unit-variance. There are several advantages to
using a BN layer. First, it can translate the distribution of the input feature maps. Second, it
allows using a larger learning rate to speed up the learning, as it can desensitize networks
to the initialization parameters. Third, it also can effectively prevent the gradient vanishing
or exploding and overfitting in the training phase [30]. Hence, we choose to use the BN
layer after each convolution layer in our proposed network.

3.1.4. Nonlinear Activation Layer

The activation layer introduces the nonlinearity into CNN networks, which can
prevent gradient vanishing or exploding, increase the capability of feature representation
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and so on. There are various types of activation functions that can be chosen, such as the
conventional sigmoid function, ReLU (Rectified Linear Unit) function, hyperbolic tangent
function, Truncated Linear Unit (TLU) function and so on. Among all of them, the ReLU
function is commonly used in CNN and it can be formulated as Equation (1).

f (x) =
{

0, x < 0
x, x ≥ 0

(1)

Except for the first layer in DFSE-Net, we apply the classical ReLU as the activation
function in other blocks. Using the ReLU function after the conventional layer can make
networks selectively respond to embedded signals among the input feature maps and
conduct more efficient features. To a certain extent, the steganographic embedding pro-
cedure can be viewed as adding low-amplitude additive noises to cover images, and the
embedding signals are usually in the range of [−1,1]. Therefore, we select the TLU, which
is slightly modified from ReLU, in the first layer. As it contributes to the suppression of
image contents and extraction of embedding signals more effectively. It can be defined as
Equation (2).

Trunc(x) =


T, x > T
x, T ≥ x ≥ −T
−T, x < −T

(2)

where T > 0 is the threshold determined by experiments. In this paper, the value of T is
set to 3, the same as the value in Ye-Net [20].

To compare the performance of TLU with the ReLU function for image steganalysis,
we conducted the comparisons based on the network shown in Figure 1. The DFSE-Net
with TLU is trained in which the value of T is set to 3 in the first layer. The DFSE-Net with
ReLU (replacing TLU) in the first layer is trained for comparison. Both models are also
trained against the WOW steganography algorithm at the payload of 0.2 and 0.4 bpp. From
Table 2, DFSE-Net with TLU has a lower error rate of detecting the WOW steganography
algorithm, and the TLU function can also accelerate the convergence and show better
performance, as shown in Figure 3.

Figure 3. Comparing convergence performances of DFSE-Net with TLU and DFSE-Net without TLU
(replaced with ReLU) against the WOW steganography algorithm at 0.4 bpp. Both models are trained
and tested on the BOSS dataset.
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Table 2. Steganalysis error rates comparison of DFSE-Net with truncated linear unit (TLU) and
DFSE-Net with TeLU against the WOW steganography algorithm at 0.2 and 0.4 bpp. Both models are
trained and tested on the BOSS dataset.

Algorithm DFSE-Net with TLU DFSE-Net with ReLU

WOW (0.2 bpp) 0.247 0.269
WOW (0.4 bpp) 0.149 0.171

3.1.5. Average Pooling Layer

The average pooling layer is used in each DFM. It calculates the average value of a
certain area of the feature maps. It can reduce the size of feature maps according to the
stride, reduce the parameters and calculation amount while retaining the main features.
Furthermore, the average pooling layer can prevent over-fitting in training. Note that there
is no pooling layer in the first block to avoid the loss of information as reported in [31].
Hence, we do not use the pooling layer after the first convolution layer.

3.2. Diverse Filter Module

As the Inception Network [24] in CNN gains a series of excellent results, it has been
widely accepted that wider convolutional networks can capture more information of the
images. Inspired by this, we designed the diverse filter modules called DFMs. They
consisted of three different size convolutional kernels, as shown in Figure 4. As we can see,
the types of kernel filters are 3× 3, 5× 5 and 1× 1. The 3× 3 and 5× 5 convolutional kernels
process the output of the previous layer parallelly. Then the outputs are concatenated
together and sent to 1 × 1 convolutional layer. The 1 × 1 convolutional layer can effectively
integrate the feature maps from above. In order to improve the performance, we take
advantage of Xu-Net and Ye-Net to form DFMs using BN and ReLU layers. To further
improve the effect, we design the SEMs to cooperate with DFMs.

Conv(  ,3╳3,  ),BN,ReLU
Average Pooling(5╳5,stride 2)

Concat

Conv(   ,1╳1,   ),BN,ReLU

1
x

2
x Conv(  ,5╳5,  ),BN,ReLU

Average Pooling(5╳5,stride 2)
1
x

2
x

1
2x

2
2x

DFM

Previous layer

Figure 4. The design of the diverse filter module. The types and parameters are displayed inside boxes.

3.3. Squeeze-and-Excitation Module

The Squeeze-and-Excitation (SE) Module is not a complete network structure. It is
a substructure that can be located in other classification or detection networks. In our
architecture, each SEM is followed by the concatenated layer in the DFM, as shown in
Figure 4. The core idea of SEM is to learn feature weights according to the loss in the
training, so that the trained model can achieve better results in the way of effective feature
maps with significant weights, invalid or ineffective feature maps with small weights.
Therefore, the network can pay more attention to key channels. The overall design of SEM
is presented in Figure 5.
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Concat layer

W╳H╳C
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Full connection layer
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W╳H╳C
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1╳1╳C
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1╳1╳C/r
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Conv(   ,1╳1,   ),BN,ReLUɶ
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ɶ
2x

Squeeze
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SEM(Squeeze and Excitation Module)

Figure 5. The design of the Squeeze-and-Excitation Module. The types of the layer are presented
inside boxes and parameters are displayed outside boxes.

According to [25], the module can be divided into two steps: global information and
recalibrated filter responses, also known as Squeeze-and-Excitation. In Figure 5, we know
the main operations are global average pool (GAP)-full connection (FC)-ReLU-FC-Sigmoid.
For the first step of squeeze, through the first global average pool layer, each output channel
becomes a scalar. Therefore, the C channels will get the C scalars. As for the next step of
excitation, by a set of operations of FC-ReLU-FC-Sigmoid, the C scalars will be normalized
into [0, 1], as the channel weights. Finally, the operation of the scale rescales each channel
by multiplying the weight, respectively.

To demonstrate the performance of SEM in image steganalysis, we compared them
based on the DFSE network and without SEM after each DFM. Both models are also trained
for the WOW steganography algorithm at 0.2 and 0.4 bpp. From Table 3, we can see DFSE-
Net with SEM has a lower error rate of detecting the WOW steganography algorithm. SEM
can also accelerate the convergence and show better performance, as shown in Figure 6.

Table 3. Steganalysis error rates comparison of DFSE-Net with SEM and DFSE-Net without SEM
against the WOW steganography algorithm at 0.2 and 0.4 bpp. Both models are trained and tested
on the BOSS dataset.

Algorithm DFSE-Net with TLU DFSE-Net with ReLU

WOW (0.2 bpp) 0.247 0.273
WOW (0.4 bpp) 0.149 0.170
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Figure 6. Comparing convergence performances of DFSE-Net with SEM and DFSE-Net without
SEM against WOW steganography algorithm at 0.4 bpp. Both models are trained and tested on the
BOSS dataset.

3.3.1. Squeeze

In order to exploit the channel dependencies, we consider each channel in the output
features, as each convolutional filter operates with a small region and each unit of the
output is also unable to utilize contextual information outside of this field. To exploit the
channel dependencies, we use a global average pooling layer to squeeze global spatial
information into a channel scalar. Formally, the statistic scalar z is generated by squeezing
the input features U through its spatial dimensions H × W, such that the c-th element of z
is calculated by Equation (3):

zc = Fsq(uc) =
1

H × W

H

∑
i=1

W

∑
j=1

uc(i, j) (3)

3.3.2. Excitation

To make full use of the information aggregated in the squeeze step, the excitation step
is followed, which can capture channel-wise dependencies. To achieve this objective, the
excitation step has to meet the following criteria. First, it must be able to learn the nonlinear
interaction between channels. Second, it must learn a non-mutually-exclusive relationship.
To meet these criteria, the sigmoid activation is employed. The operations of the excitation
step can be formulated as Equation (4):

xc = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (4)

where W1 refers to the first FC operation, δ refers to the ReLU function [32], W2 refers to
the second FC operation and σ refers to the sigmoid function.

To limit the complexity of the module, there is a parameter of reduction ratio r in the
first FC layer to reduce the dimension of the input. Then the dimensionality is increased to
the original channel dimension after the second FC layer. The final output x̂ of the module
is rescaled with the sigmoid activations s. The operation of the scale step can be formulated
as Equation (5):

x̂c = Fscale(uc, sc) = scuc (5)

where Fscale(uc; sc) refers to the multiplication operation between the scalar sc and the
corresponding feature map uc and x̂c is one of the channels of outputs X̂.
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To investigate the impact of parameter r in our network, we conduct several experiments
with DFSE-Net for a range of different r values. The comparison results in Table 4 show
the performance at each reduction ratio. There is only a slight difference in the detection
accuracy. The set of r = 6 achieves a good balance between complexity and accuracy.

Table 4. Steganalysis error rates comparison of DFSE-Net against WOW steganography algorithm at
0.4 bpp at different reduction ratios. Both models are trained and tested on the BOSS dataset.

Ratio r 1 2 4 6 8 15

DFSE-Net 0.149 0.148 0.148 0.147 0.148 0.153

4. Experiments

In this section, several experiments are carried out to demonstrate the feasibility and
effectiveness of DFSE-Net. For fair comparison, all methods are trained and tested on the
same data sets.

4.1. The Steganographic Schemes and Datasets

In this paper, two content-adaptive image steganographic algorithms in the spatial
domain of SUNIWARD and WOW were employed to product standard data sets. The
two steganographic schemes were implemented with an STC simulator and the code files
are available at http://dde.binghamton.edu/download/. In addition, the image sources
of BOSSbase 1.01 can be found at the same URL. The image source is widely used in
research fields, such as information hiding, forensics and steganalysis. It contains 10,000
8-bit grayscale images with a size of 512 × 512.

In consideration of the GPU computing power in our lab, the experiments on cover
images with a size of 512× 512 can be extremely time-consuming. Therefore, we decided to
evaluate the effectiveness of all methods on the images with a size of 256 × 256. To this end,
we refer to other models [20,23,33] and adopt the same approach. Therefore, we resampled
all the images from 512 × 512 to 256 × 256 using the Matlab function of imresize() with
default parameters.

Then, all 256 × 256 BOSSBase 1.01 images were embedded with messages using
SUNIWARD and WOW steganographic algorithms, respectively, with the payload of 0.1,
0.2, 0.3, 0.4 and 0.5 bpp to generate the stego data sets. Therefore, we were able to generate
10 different steganographic data sets. Finally, all data sets including the cover set were split
into three different sets randomly, 40% of the cover/stego pairs were split into the training
set, 10% were split into the validation set, the rest were split into the testing set, and the
testing set was untouched during all of the training phase.

4.2. Hyper-Parameters

We used Keras v2.24 with the backend of Tensorflow v1.15.3 for implementation.
The optimizer of stochastic gradient descent (SGD) was applied to train our model. The
momentum was set to 0.9 and the weight decay was fixed to 0.0001. No regularization and
dropout were used. The batch size was fixed to 50 with 25 cover/stego pairs in the training
procedure. For the preprocessing layer, thirty high-pass SRM filters were used without
normalization. As the first layer, the TLU activation function was used and the threshold
was set to three. All convolutional layers used the ‘glorot_normal’ normal distribution
initializer, also called the Xavier method. The fully-connected and softmax layers were
initialized with the ‘RandomNormal’ method of zero mean and standard deviation 0.01 and
the initial bias was set to be zero. In addition to the above settings, the loss of our network
was to minimize the cross-entropy. During the training phase, we set the maximum epoch
of 500. Nevertheless, we usually cut short the training phase most of the time when the
over-fitting phenomenon appeared. The learning rate (lr) was initialized to 0.01 and when
the val_loss failed to improve after 10 epochs, the lr dropped by 10%. The minimum value
of lr is 0.00001.

http://dde.binghamton.edu/download/


Mathematics 2021, 9, 189 10 of 13

The performance was measured with the whole classification error probability on
the same testing set using the formula PE = minPFA 1/2(PFA + PMD), where PFA and PMD
represent the probabilities of false-alarm and missed-detection.

4.3. Results

In this subsection, the experimental results are presented to verify the feasibility
and demonstrate the effectiveness of our method. For fair comparison, we conducted all
the experiments on the same data sets generated in Section 4.1, and the data sets in this
paper are divided as follows. The 10,000 256 × 256 BOSSBase images were randomly split
into three sets. The training set contains 4000 cover/stego image pairs, the validation set
contains 1000 image pairs, and the testing set contains the remaining 5000 image pairs.

4.3.1. Feasibility

We have proved the validity of DFSE-Net on the data sets generated in Section 4.1, and
the experimental results are shown in Figure 7 and Table 5. In Figure 7, we can see the DFSE-
Net converges quickly on the two steganographic algorithms of WOW and S-UNIWARD
at 0.4 bpp payload. According to Table 5, we can know the detection performance of DFSE-
Net with different steganography methods at different payloads, and the experimental
results show that it can detect stego images effectively.

Figure 7. Comparing convergence performances of DFSE-Net against WOW and S-UNIWARD
steganography algorithms at 0.4 bpp. Both models are trained and tested on the BOSS dataset.

Table 5. Steganalysis error rates of our method against WOW and S-UNIWARD algorithms at a
range of different payloads from 0.1 to 0.5 bpp.

Algorithms WOW S-UNIWARN

0.1 0.342 0.422
0.2 0.247 0.341
0.3 0.193 0.284
0.4 0.149 0.215
0.5 0.124 0.189

4.3.2. Comparison with Existing Methods

To verify the superiority of our method, we conducted experiments to compare with
the state-of-the-art approaches of the traditional classical method with the Spatial-Rich-
Model (SRM) [13] combinined of Ensemble Classifier (EC), Xu-Net [20] and Ye-Net [18]
without the selection-channel information (also called TLU-CNN), and Yedroudj-Net [20].
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As the methods above are the current typical approaches. All methods have been trained
and tested on the same datasets and run on a Nvidia P5000 GPU card.

In Table 6, we recorded the PE compared with other state-of-the-art steganalyzers,
and all the methods are compared against the steganographic algorithms WOW and
S-UNIWARD, respectively, with the payload of 0.2 and 0.4 bpp.

Table 6. Steganalysis error rates comparison of the five steganalysis methods against two WOW and
S-UNIWARD algorithms at 0.2 and 0.4 bpp.

WOW S-UNIWARD

0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp

SRM+EC 0.332 0.241 0.346 0.234
Xu-Net 0.345 0.245 0.389 0.277
Ye-Net 0.306 0.218 0.383 0.273

Yedroudj-Net 0.332 0.202 0.362 0.247
DFSE-Net 0.247 0.149 0.341 0.215

From Table 6, we can see that our method has better detection performance than other
methods in terms of the steganographic algorithms WOW and S-UNIWARD, respectively,
at payloads of 0.2 and 0.4 bpp. Since we have well designed DFSE-Net with DFMs and
SEMs, the error rate of our proposed architecture is reduced by 8.5% compared with the
traditional method of SRM+EC, by 6.7% compared with the Xu-Net, by 3.9% compared
with the Ye-Net and by 3% compared with the Yedroudj-Net against WOW at 0.2 bpp.
The results in Table 6 also show that our proposed network can effectively extract image
features and classify input images.

As shown in Figure 8, we can see more intuitively that our proposed network has
better performance than other methods on different steganographic algorithms at different
payloads. The good performance also demonstrates the effectiveness of the network
structure of DFMs and SEMs.

Steganographic schemes and payload

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
E

SRM+EC

Xu-Net

Ye-Net

Yedroudj-Net

DFSE-Net

WOW(0.4) WOW(0.2)S-UNIWARD(0.4) S-UNIWARD(0.2)

Figure 8. PE comparison of the five steganalysis methods against WOW and S-UNIWARD algorithms
with the payload of 0.2 and 0.4 bpp.

5. Conclusions

This paper presents the architecture of DFSE-Net with a carefully designed modules of
diverse filters and Squeeze-and-Excitation for image steganalysis. DFSE-Net has gathered
several latest design propositions, such as ABS, BN, TLU to build an efficient architecture
beating the state-of-the-art methods. The experiments show that the PE has reduced by
8.5% compared with the traditional method of SRM+EC, by 6.7% compared with the
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Xu-Net, by 3.9% compared with the Ye-Net and by 3% compared with the Yedroudj-Net
against WOW at 0.2 bpp. To summarize, the contributions of our method are reflected
in two aspects: (i) proposing DFMs to capture more steganographic traces in a diverse
way; (ii) proposing SEMs to enhance the effective features obtained from DFMs. Several
experiments demonstrate the effectiveness and better performance of our method. There
are also some limitations to our work. For example, our network can only deal with input
images of the same size, while the images are in all sizes in real life. In the future, we
consider adding more diverse structures to improve the detection efficiency and adding
new modules to handle multi-size images.

Author Contributions: Conceptualization, F.L. and X.Y.; Data curation, X.Z. and Y.L.; Writing—
review & editing, S.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (Grant
Number: 61602491).

Acknowledgments: The authors would like to thank the editor and the anonymous reviewers for
their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
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