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1. Introduction

The fractional calculus (the theory of integrals and derivatives of non-integer order)
has attracted considerable interest of researchers and has many applications in physics,
chemistry, rheology, geology, hydrology, medicine, engineering, finance, etc. (see, for ex-
ample, West–Bologna–Grigolini [1], Magin [2], Povstenko [3], Tarasov [4], Povstenko [5],
Uchaikin [6], Atanacković–Pilipović–Stanković–Zorica [7], Herrmann [8], Povstenko [9],
Datsko–Gafiychuk–Podlubny [10], West [11], Skiadas [12], Tarasov [13], Kumar–Singh [14],
Su [15] and references therein). The Mittag–Leffler functions and the Wright function
appear in solutions of various types of equations with fractional operators. The Mittag–
Leffler function in one parameter Eα(z) was introduced in [16,17]. The generalized Mittag–
Leffler function in two parameters Eα,β(z) was considered in [18,19]. A comprehensive
treatment of properties of the Mittag–Leffler functions can be found in Erdélyi–Magnus–
Oberhettinger–Tricomi [20], Gorenflo–Mainardi [21], Podlubny [22], Kilbas–Srivastava–
Trujillo [23], Gorenflo–Kilbas–Mainardi–Rogosin [24]. Numerical algorithms for calcula-
tion of the Mittag–Leffler functions were proposed in [25] and implemented in [26]. The
Wright function was presented in [27,28] and later on discussed by Erdélyi–Magnus–
Oberhettinger–Tricomi [20], Gorenflo–Mainardi [21], Podlubny [22], Kilbas–Srivastava–
Trujillo [23], Gorenflo–Kilbas–Mainardi–Rogosin [24], Luchko [29], among others. Numeri-
cal algorithms for calculating the Wright function were suggested in [30].

In 1996, Mainardi [31,32] solved the diffusion-wave equation with the Caputo frac-
tional derivative of the order α

∂αT
∂tα

= a
∂2T
∂x2 , 0 < α ≤ 2, (1)

on a real line (the Cauchy problem) and a half-line (the signaling problem). The solutions
were obtained in terms of the Mainardi function M

(
z; α

2
)

[33], where

z =
|x|√
atα/2 (2)
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is the similarity variable, a can be treated as the generalized thermal diffusivity coefficient.
Equation (1) in the limiting case α → 0 corresponds to the Helmholtz equation

(localized diffusion); the subdiffusion regime is characterized by the values 0 < α < 1. For
1 < α < 2, the diffusion-wave Equation (1) interpolates between the diffusion equation
(α = 1) and the wave equation (α = 2).

Applications of fractional calculus to viscoelasticity have been studied by many
authors. The historical notes and the extensive bibliography on this subject can be found in
the book of Mainardi [34]. According to the Scott–Blair stress-strain law, the dependence
between the stress σ(x, t) and the strain ε(x, t) can be written as [34,35]

σ(x, t) = ρa
∂νε(x, t)

∂tν
, 0 ≤ ν ≤ 1. (3)

The constitutive Equation (3) characterizes a viscoelastic material intermediate between
a perfectly elastic solid (the Hooke law for the value ν = 0) and a perfectly viscous fluid
(the Newton law when ν = 1) with the corresponding interpretations of the coefficient a
in terms of the elasticity constant or the kinematic viscosity. The relation (3) leads to the
evolution Equation (1) with α = 2− ν.

The book [36] presents a picture of the state-of-the-art for solutions of the diffusion-
wave equation with one, two, and three space variables in Cartesian, cylindrical, and
spherical coordinates under different kinds of boundary conditions.

In the present survey article, we briefly discuss the properties of the Mittag–Leffler
functions and Wright function and present the integral relations between the Mittag–
Leffler functions and the Wright function. The applications of the Wright function and the
Mainardi function to the description of diffusion, heat conduction, thermal and diffusive
stresses, and nonlocal elasticity in the framework of fractional calculus are reviewed.

2. Mathematical Preliminaries
2.1. Integrals and Derivatives of Fractional Order

The Riemann–Liouville integral of fractional order α is defined as [21–23]:

Iα f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, α > 0, (4)

where Γ(α) is the gamma function.
The Riemann–Liouville derivative of fractional order α has the form

Dα
RL f (t) =

dn

dtn

[
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1 f (τ)dτ

]
, n− 1 < α < n, (5)

whereas the Caputo fractional derivative is written as

Dα
C f (t) ≡ dα f (t)

dtα
=

1
Γ(n− α)

∫ t

0
(t− τ)n−α−1 dn f (τ)

dτn dτ, n− 1 < α < n. (6)

The fractional operators have the following Laplace transform rules:

L{Iα f (t)} = 1
sα

f ∗(s), (7)

L{ Dα
RL f (t)} = sα f ∗(s)−

n−1

∑
k=0

Dk In−α f (0+)sn−1−k, n− 1 < α < n, (8)

L
{

dα f
dtα

}
= sα f ∗(s)−

n−1

∑
k=0

f (k)(0+)sα−1−k, n− 1 < α < n. (9)

Here, the asterisk denotes the transform, and s is the Laplace transform variable.
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2.2. Mittag–Leffler Functions

The Mittag–Leffler function in one parameter α

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, α > 0, z ∈ C, (10)

can be considered as the extension of the exponential function ez = E1(z), whereas the
generalized Mittag–Leffler function in two parameters α and β is defined by the series
representation

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0, z ∈ C. (11)

In the general case, the parameters α and β can be treated as complex numbers with some
limitations on their real parts [24], but we restrict ourselves to positive values of α and β.

The following recurrence relations [20,24]

Eα,β(z) =
1

Γ(β)
+ zEα,α+β(z). (12)

Eα,β(z) = βEα,β+1(z) + αz
dEα,β+1(z)

dz
(13)

are valid for the Mittag–Leffler functions.
For investigation of the convergence of integrals containing the Mittag–Leffler func-

tions, their asymtotic representations for large negative values of argument are useful. For
x → ∞, we have

Eα(−x) ∼ 1
Γ(1− α)x

, (14)

Eα,2(−x) ∼ 1
Γ(2− α)x

, (15)

Eα,α(−x) ∼ − 1
Γ(−α)x2 , (16)

Eα,β(−x) ∼ 1
Γ(β− α)x

. (17)

The essential role of the Mittag–Leffler functions in fractional calculus is connected
with the formula for the inverse Laplace transform (see Gorenflo–Mainardi [21], Pod-
lubny [22], Kilbas–Srivastava–Trujillo [23], Gorenflo–Kilbas–Mainardi–Rogosin [24]):

L−1
{

sα−β

sα + b

}
= tβ−1 Eα,β(−btα). (18)

2.3. Wright Function and Mainardi Function

The Wright function is a generalization of the exponential function and the Bessel
functions and is defined as [27,28] (see also refs. [20–24,31,32,37–39])

W(α, β; z) =
∞

∑
k=0

zk

k! Γ(αk + β)
, α > −1, β ∈ C, z ∈ C. (19)

The Wright function satisfies the recurrence equations [20]

αzW(α, α + β; z) = W(α, β− 1; z) + (1− β)W(α, β; z), (20)

dW(α, β; z)
dz

= W(α, α + β; z). (21)
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The Mainardi function M(α; z) [22,31–33] is a particular case of the Wright function

M(α; z) = W(−α, 1− α;−z) =
∞

∑
k=0

(−1)kzk

k! Γ[−αk + (1− α)]
, 0 < α < 1, z ∈ C. (22)

The Wright function and the Mainardi function appear in formulae for the inverse
Laplace transform (see Mainardi [31,32], Stanković [40], Gajić–Stanković [41]):

L−1{exp(−λsα)} = αλ

tα+1 M
(
α; λt−α

)
, 0 < α < 1, λ > 0, (23)

L−1
{

sα−1 exp(−λsα)
}
=

1
tα

M
(
α; λt−α

)
, 0 < α < 1, λ > 0, (24)

L−1
{

s−β exp(−λsα)
}
= tβ−1W

(
−α, β;−λt−α

)
, 0 < α < 1, λ > 0. (25)

2.4. The Integral Transform Relations between the Mittag–Leffler Function and Wright Function

The Laplace transform of the Wright function is expressed in terms of the Mittag–
Leffler function [20,22,23]

L{W(α, β; t)} = 1
s

Eα,β

(
1
s

)
, α > 0, β > 0, (26)

and [37]
L{W(α, β;−t)} = E−α,β−α(−s), −1 < α < 0, β > 0, (27)

whereas, for the Mainardi function, the corresponding relation takes the form

L{M(α; t)} = Eα(−s), 0 < α < 1. (28)

The Mittag–Leffler functions and the Wright function are related by the Fourier cosine
transform (Povstenko [36,42]):∫ ∞

0
Eα(−ξ2) cos(xξ)dξ =

π

2
M
(α

2
; x
)

, 0 < α < 2, x > 0, (29)

∫ ∞

0
Eα,2(−ξ2) cos(xξ)dξ =

π

2
W
(
−α

2
, 2− α

2
;−x

)
, 0 < α < 2, x > 0, (30)

∫ ∞

0
Eα,α(−ξ2) cos(xξ)dξ =

π

2
W
(
−α

2
,

α

2
;−x

)
, 0 < α < 2, x > 0, (31)

∫ ∞

0
Eα,β(−ξ2) cos(xξ)dξ =

π

2
W
(
−α

2
, β− α

2
;−x

)
, 0 < α < 2, β > 0, x > 0, (32)

as well as by the Fourier sine transform∫ ∞

0
ξ Eα(−ξ2) sin(xξ)dξ =

π

2
W
(
−α

2
, 1− α;−x

)
, 0 < α < 2, x > 0, (33)

∫ ∞

0
ξ Eα,2(−ξ2) sin(xξ)dξ =

π

2
W
(
−α

2
, 2− α;−x

)
, 0 < α < 2, x > 0, (34)

∫ ∞

0
ξ Eα,α(−ξ2) sin(xξ)dξ =

π

2
W
(
−α

2
, 0;−x

)
=

απ

4
x M

(α

2
; x
)

, 0 < α < 2, x > 0, (35)

∫ ∞

0
ξ Eα,β(−ξ2) sin(xξ)dξ =

π

2
W
(
−α

2
, β− α;−x

)
, 0 < α < 2, β > 0 , x > 0. (36)
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Due to (16), we can also obtain for Eα,α
(
−ξ2)

∫ ∞

0
ξ2 Eα,α(−ξ2) cos(xξ)dξ = −π

2
W
(
−α

2
,−α

2
;−x

)
, 0 < α < 2, x > 0, (37)

∫ ∞

0
ξ3 Eα,α(−ξ2) sin(xξ)dξ = −π

2
W
(
−α

2
,−α;−x

)
, 0 < α < 2, x > 0. (38)

The equations presented above allow us to obtain additional integral relations between
the Mittag–Leffler functions and the Wright function, which can be helpful when solving
problems in polar or cylindrical coordinates using the Hankel transform of order zero.
Taking into account the integral representation of the Bessel function J0(x) (Watson [43],
Abramowitz-Stegun [44])

J0(x) =
1
π

∫ π

0
cos(x sin θ)dθ, (39)

J0(x) =
2
π

∫ ∞

0
sin(x cosh t)dt, x > 0, (40)

J0(x) =
2
π

∫ ∞

1

sin(xt)√
t2 − 1

dt, x > 0, (41)

we get∫ ∞

0
Eα

(
−ξ2

)
J0(rξ)dξ =

1
2

∫ π

0
M
(α

2
; r sin θ

)
dθ, 0 < α ≤ 2, r > 0, (42)

∫ ∞

0
Eα,2

(
−ξ2

)
J0(rξ)dξ =

1
2

∫ π

0
W
(
−α

2
, 2− α

2
;−r sin θ

)
dθ, 0 < α ≤ 2, r > 0, (43)

∫ ∞

0
Eα,α

(
−ξ2

)
J0(rξ)dξ =

1
2

∫ π

0
W
(
−α

2
,

α

2
;−r sin θ

)
dθ, 0 < α ≤ 2, r > 0, (44)

∫ ∞

0
Eα,β

(
−ξ2

)
J0(rξ)dξ =

1
2

∫ π

0
W
(
−α

2
, β− α

2
;−r sin θ

)
dθ, 0 < α ≤ 2, r > 0. (45)

Similarly,∫ ∞

0
Eα

(
−ξ2

)
J0(rξ)ξ dξ =

∫ ∞

0
W
(
−α

2
, 1− α;−r cosh t

)
dt, 0 < α ≤ 2, r > 0, (46)

∫ ∞

0
Eα,2

(
−ξ2

)
J0(rξ)ξ dξ =

∫ ∞

0
W
(
−α

2
, 2− α;−r cosh t

)
dt, 0 < α ≤ 2, r > 0, (47)

∫ ∞

0
Eα,α

(
−ξ2

)
J0(rξ)ξ dξ =

∫ ∞

0
W
(
−α

2
, 0;−r cosh t

)
dt, 0 < α ≤ 2, r > 0, (48)

∫ ∞

0
Eα,β

(
−ξ2

)
J0(rξ)ξ dξ =

∫ ∞

0
W
(
−α

2
, β− α;−r cosh t

)
dt, 0 < α ≤ 2, r > 0, (49)

and∫ ∞

0
Eα

(
−ξ2

)
J0(rξ)ξ dξ =

∫ ∞

1
W
(
−α

2
, 1− α;−rt

) 1√
t2 − 1

dt, 0 < α ≤ 2, r > 0, (50)

∫ ∞

0
Eα,2

(
−ξ2

)
J0(rξ)ξ dξ =

∫ ∞

1
W
(
−α

2
, 2− α;−rt

) 1√
t2 − 1

dt, 0 < α ≤ 2, r > 0, (51)
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∫ ∞

0
Eα,α

(
−ξ2

)
J0(rξ)ξ dξ =

∫ ∞

1
W
(
−α

2
, 0;−rt

) 1√
t2 − 1

dt

=
αr
2

∫ ∞

0
M
(α

2
; r
√

1 + u2
)

du, 0 < α ≤ 2, r > 0,

(52)

∫ ∞

0
Eα,β

(
−ξ2

)
J0(rξ)ξ dξ =

∫ ∞

1
W
(
−α

2
, β− α;−rt

) 1√
t2 − 1

dt, 0 < α ≤ 2, r > 0. (53)

In addition,∫ ∞

0
Eα,α

(
−ξ2

)
J0(rξ)ξ2 dξ = −1

2

∫ π

0
W
(
−α

2
,−α

2
;−r sin θ

)
dθ, 0 < α ≤ 2, r > 0, (54)

∫ ∞

0
Eα,α

(
−ξ2

)
J0(rξ)ξ3 dξ = −

∫ ∞

0
W
(
−α

2
,−α;−r cosh t

)
dt

= −
∫ ∞

1
W
(
−α

2
,−α;−rt

) 1√
t2 − 1

dt, 0 < α ≤ 2, r > 0.

(55)

3. Applications of the Wright Function
3.1. Fractional Heat Conduction in Nonhomogeneous Media under Perfect Thermal Contact

Time-fractional heat conduction in two joint half-lines was considered by
Povstenko [36,45,46]. In the general case, the heat conduction equation with the Caputo
derivative of the order 0 < α ≤ 2 in one half-line

∂αT1

∂tα
= a1

∂2T1

∂x2 , x > 0, (56)

and the corresponding equation with the Caputo derivative of the order 0 < β ≤ 2 in
another half-line

∂βT2

∂tβ
= a2

∂2T2

∂x2 , x < 0, (57)

were treated under the boundary conditions of perfect thermal contact which state that two
bodies must have the same temperature at the contact point and the heat fluxes through
the contact point must be the same:

T1(x, t)
∣∣∣
x=0+

= T2(x, t)
∣∣∣
x=0−

, (58)

k1D1−α
RL

∂T1(x, t)
∂x

∣∣∣∣∣
x=0+

= k2D1−β
RL

∂T2(x, t)
∂x

∣∣∣∣∣
x=0−

, 0 < α ≤ 2, 0 < β ≤ 2. (59)

In the condition (59), k1 and k2 are the generalized thermal conductivities of two bodies;
the Riemann–Liouville fractional derivative of the negative order D−α

RL ( f (t)) is understood
as the Riemann–Liouville fractional integral Iα( f (t).

Here, we present the fundamental solution to the first Cauchy problem with the
initial condition

t = 0 : T1 = p0 δ(x− $), x > 0, $ > 0, (60)

for the case α = β (for details see Povstenko [46]):

T1(x, t) =
p0

2
√

a1tα/2

[
M
(

α

2
;
|x− $|
√

a1tα/2

)
+

ε− 1
ε + 1

M
(

α

2
;

x + $
√

a1tα/2

)]
, x ≥ 0, (61)

T2(x, t) =
εp0

(ε + 1)
√

a1tα/2 M
(

α

2
;
|x|

√
a2tα/2 +

ρ
√

a1tα/2

)
, x ≤ 0, (62)
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where

ε =
k1
√

a2
k2
√

a1
. (63)

For the corresponding problem with uniform initial temperature T0 in one of half-
lines [45], in the particular case α = β, we have:

T1 = T0 −
T0

(1 + ε)
W
(
−α

2
, 1;− x

√
a1tα/2

)
, x > 0, (64)

T2 =
εT0

(1 + ε)
W
(
−α

2
, 1;− |x|

√
a2tα/2

)
, x < 0. (65)

The time-fractional heat conduction equations with the Caputo derivatives in a semi-
infinite medium composed of a region 0 < x < L and a region L < x < ∞ under the
boundary conditions of perfect thermal contact at x = L and the insulated boundary
condition at x = 0 with uniform initial temperature in a layer were investigated in [47].
The approximate solution of the considered problem for small values of time is obtained
based on Tauberian theorems for the Laplace transform. For α = β, this solution reads

T1 ' T0 −
T0

1 + ε
W
(
−α

2
, 1;− L− x

√
a1tα/2

)
, 0 ≤ x ≤ L, (66)

T2 '
εT0

1 + ε
W
(
−α

2
, 1;− x− L

√
a2tα/2

)
, L ≤ x < ∞. (67)

Fractional heat conduction in an infinite medium with a spherical inclusion when a
sphere 0 ≤ r < R is at the initial uniform temperature T0 and a matrix R < r < ∞ is at a
zero initial temperature was considered by Povstenko [36,48]. In the case of perfect thermal
contact at the boundary r = R,

r = R : T1(r, t) = T2(r, t), (68)

k1D1−α
RL

∂T1(r, t)
∂r

= k2D1−β
RL

∂T2(r, t)
∂r

, 0 < α ≤ 2, 0 < β ≤ 2, (69)

the approximate solution for small values of time has the following form (we present only
the solution for α = β):

T1(r, t) ' T0 −
RT0k2

(k2 − k1)r

[
W
(
−α

2
, 1;− R− r

√
a1tα/2

)
−W

(
−α

2
, 1;− R + r

√
a1tα/2

)]

+
cRT0

r

∫ t

0

(t− τ)α/2−1

τα/2

[
M
(

α

2
;

R− r
√

a1τα/2

)
(70)

− M
(

α

2
;

R + r
√

a1τα/2

)]
Eα/2, α/2

[
−b(t− τ)α/2

]
dτ,

T2(r, t) ' − RT0k1

(k2 − k1)r
W
(
−α

2
, 1;− r− R

√
a2tα/2

)
+

cRT0

r

∫ t

0

(t− τ)α/2−1

τα/2

×M
(

α

2
;

r− R
√

a2τα/2

)
Eα/2, α/2

[
−b(t− τ)α/2

]
dτ,

(71)

where

b =
(k2 − k1)

√
a1a2

R(k1
√

a1 + k2
√

a2)
, c =

k1k2(
√

a1 +
√

a2)

(k2 − k1) (k1
√

a1 + k2
√

a2)
. (72)

It should be mentioned that, for the classical heat conduction, the method of analysis
of the solution for small values of time was described by Luikov [49] and Özişik [50]. In the
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case of fractional diffusion equation, the decay rate at large values of time was analyzed
by Sakamoto–Yamamoto [51].

3.2. Fractional Heat Conduction in Nonhomogeneous Media under Nonperfect Thermal Contact

Near the interface between two solids, a transition region arises whose state differs
from the state of contacting media owing to different conditions of material–particle inter-
action. The transition region has its own physical, mechanical, and chemical properties,
and processes occurring in it differ from those in the bulk. Small thickness of the inter-
mediate region between two solids allows us to reduce a three-dimensional problem to
a two-dimensional one for median surface endowed with equivalent physical properties.
There are several approaches to reducing three-dimensional equations to the corresponding
two-dimensional equations for the median surface. For example, introducing the mixed
coordinate system (ξ, η, z), where ξ and η are the curvilinear coordinates in the median
surface and z is the normal coordinate, the linear or polynomial dependence of the consid-
ered functions on the normal coordinate can be assumed. This assumption is often used in
the theory of elastic shells.

For the classical heat conduction equation, which is based on the conventional Fourier
law, the reduction of the three-dimensional problem to the simplified two-dimensional
one was pioneered by Marguerre [52,53] and later on developed by many authors. In
this case, the assumption of linear or polynomial dependence of temperature on the
normal coordinate or more general operator method were used. An extensive literature
on this subject can be found, for example, in [9]. For time-fractional heat conduction,
the reduction of the three-dimensional equation to the two-dimensional one was carried
out by Povstenko [9,54,55].

A solution to the problem (56), (57) with uniform initial temperature in one of half-
lines under conditions of nonperfect thermal contact was obtained in [56]. In the particular
case α = β, the solution reads

T1 = T0 −
T0

(1 + ε)
W
(
−α

2
, 1;− x

√
a1tα/2

)
+

T0(1− ε)

2(1 + ε)

∫ t

0

(t− τ)α/2−1

τα/2

×M
(

α

2
;

x
√

a1τα/2

)
Eα/2,α/2

[
−bΣ(t− τ)α/2

]
dτ, x > 0,

(73)

T2 =
εT0

(1 + ε)
W
(
−α

2
, 1;− |x|

√
a2tα/2

)
+

T0(1− ε)

2(1 + ε)

∫ t

0

(t− τ)α/2−1

τα/2

×M
(

α

2
;
|x|

√
a2τα/2

)
Eα/2, α/2

[
−bΣ(t− τ)α/2

]
dτ, x < 0,

(74)

where ε is defined by (63),

bΣ =
k1
√

a2 + k2
√

a1

CΣ
√

a1a2
, (75)

CΣ is the reduced heat capacity of the median surface of the transition region. When
CΣ → 0, the solutions (73), (74) coincide with the solutions (64), (65).

3.3. Fractional Heat Conduction under Time-Harmonic Impact

Ångström [57] was the first to investigate the standard parabolic heat conduction
equation under time-harmonic impact. An extensive review of literature in this field in the
case of classical diffusion equation can be found in the book by Mandelis [58].

Fractional heat conduction with a source varying harmonically in time was studied by
Povstenko [59]. Equation (1) with a source term

∂αT
∂tα

= a
∂2T
∂x2 + Q0 δ(x)eiωt, 0 < α ≤ 2, (76)
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was solved in the domain −∞ < x < ∞ under zero initial conditions. Temperature is
expressed as

T(x, t) =
Q0

2
√

a

∫ t

0
τα/2−1 W

(
−α

2
,

α

2
;− |x|√

aτα/2

)
eiω(t−τ dτ. (77)

The corresponding problem in the central symmetric case

∂αT
∂tα

= a
(

∂2T
∂r2 +

2
r

∂T
∂r

)
+ Q0

δ(r)
4πr2 eiωt, 0 < r < ∞, 0 < α ≤ 2, (78)

has the solution

T(x, t) =
αQ0

8πa3/2

∫ t

0

1
τ1+α/2 M

(
α

2
;

r√
aτα/2

)
eiω(t−τ dτ. (79)

3.4. Fractional Nonlocal Elasticity

Nonlocal continuum physics assumes integral constitutive equations. In the nonlocal
theory of the continuum mechanics, stresses at the reference point x of an elastic solid at
time t depend not only on the strains at this point at this time, but also on strains at all the
points x′ of a body and all the times prior to and at time t:

t(x, t, εL, εT) =
∫ t

0

∫
V

γ
(
|x− x′|, t− t′, εL, εT

)
σ
(
x′, t′

)
dv(x′)dt′, (80)

σ
(
x′, t′

)
= 2µ e

(
x′, t′

)
+ λ tr e

(
x′, t′

)
I, (81)

where t and σ are the nonlocal and classical stress tensors, x and x′ are the reference
and running points, e the linear strain tensor, λ and µ are Lamé constants, I stands for
the unit tensor. The volume integral in (80) is over the region occupied by the solid.
The time-non-locality describes memory effects, distributed lag (distributed time delay),
and frequency dispersion; the space-non-locality deals with the long-range interaction.
The weight function (the non-locality kernel) γ(|x− x′|, t− t′, εL, εT) depends on two basic
non-locality parameters (see Eringen [60]): the characteristic length ratio

εL =
Internal characteristic length
External characteristic length

and the characteristic time ratio

εT =
Internal characteristic time
External characteristic time

.

When εT → 0, the memory effects are eliminated; for εL → 0 the space-non-locality disappears.
In the pioneering works by Podstrigach [61,62], a new nontraditional thermodynamic

pair (the chemical potential tensor ϕ and the concentration tensor c) was introduced (see
also [63,64]). The tensor character of the chemical potential means that, for solids, the work
of bringing the substance into a point in a body depends on the direction. In this case,
the diffusion equation, split into the mean and deviatoric parts, has the form

ρ
∂(tr c)

∂t
= 3a ∆ (trϕ), (82)

ρ
∂(dev c)

∂t
= 2a1 ∆ (devϕ), (83)

where ρ is the mass density, and a and a1 are the corresponding diffusion coefficients.
Starting from interrelated equations describing elasticity and diffusion, Podstrigach [65]

eliminated the chemical potential tensor from the constitutive equation for the stress tensor
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and obtained the stress–strain relation containing spatial and time derivatives. In the
infinite medium, this relation can be integrated using the Fourier and Laplace integral
transforms, and the final result, written for the mean and deviatoric parts, has the nonlocal
integral form:

tr σ = 3Kc tr e + 3
Kϕ − Kc

p

∫ t

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
γ(p)

(
x− x′, y− y′, z− z′, t− t′

)
× tr e

(
x′, y′, z′, t′

)
dx′ dy′ dz′ dt′, (84)

dev σ = 2µc dev e + 2
µϕ − µc

q

∫ t

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
γ(q)

(
x− x′, y− y′, z− z′, t− t′

)
× dev e

(
x′, y′, z′, t′

)
dx′ dy′ dz′ dt′. (85)

Here, Kc, Kϕ, µc, µϕ, p, and q are material constants (for details, see [42,65]). The
kernel γ(p)(x, y, z, t) has the following form:

γ(p)(x, y, z, t) =
( p

2t

)5/2
(

3− p r2

2t

)
exp

(
− p r2

4t

)
, (86)

where r =
√

x2 + y2 + z2; the kernel γ(q)(x, y, z, t) is obtained from the kernel γ(p)(x, y, z, t)
substituting p by q.

The results of Podstrigach [65] were generalized by Povstenko [42] for the case of
fractional diffusion equations

ρ
∂α(tr c)

∂tα
= 3a ∆ (trϕ), (87)

ρ
∂α(dev c)

∂tα
= 2a1 ∆ (devϕ). (88)

The kernel γ(p)(x, y, z, t) in the fractional generalization of the constitutive Equation (84)
for the mean part of the stress tensor is expressed in terms of the Wright function:

γ(p)(x, y, z, t) = −
√

πp2
√

2 tα+1 r
W
(
−α

2
,−α;−√p

r
tα/2

)
. (89)

The kernel γ(q)(x, y, z, t) in the fractional generalization of the constitutive Equation (85)
for the deviatoric part of the stress tensor is obtained by substituting p with q.

In the case of only space-non-locality, the constitutive equation for the stress ten-
sor reads

t(x, εL) =
∫

V
γ
(
|x− x′|, εL

)
σ
(
x′
)
dv(x′). (90)

The space-nonlocal elasticity reduces to the classical theory of elasticity in the long wave-
length limit and to the atomic lattice theory in the short wave-length limit. Several versions
of nonlocal elasticity based on various assumptions were proposed by different authors
(see, for example, Podstrigach [65], Eringen [66,67], Kunin [68,69] and references therein).

In the case of space-nonlocal constitutive Equation (90), the nonlocal kernel γ(|x− x′|, εL)
is a delta sequence and in the classical elasticity limit εL → 0 becomes the Dirac delta func-
tion. For example, slightly changing the notation, the nonlocal kernel γ(|x− x′|, τ) can be
considered as the Green function of the Cauchy problem for the diffusion operator (see
Eringen [67,70]):

∂γ(x, τ)

∂τ
− a∆ γ(x, τ) = 0, (91)

τ = 0 : γ(x, τ) = δ(x), (92)
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which results in the kernel

γ(x, τ) =
1

(2
√

πaτ)n exp
(
−|x|

2

4aτ

)
(93)

for n = 1, 2, 3 space variables. In this case, the nonlocal stress tensor is a solution of the
corresponding Cauchy problem:

∂t(x, τ)

∂τ
− a∆ t(x, τ) = 0, (94)

τ = 0 : t(x, τ) = σ(x). (95)

It should be emphasized that in, the formal sense, τ in the initial-value problems (91),
(92) and (94), (95) looks like time, but in fact τ is a non-locality parameter related to the
space-non-locality characteristic ratio εL.

In the paper [71], the nonlocal kernel γ(|x− x′|, τ) was considered as the Green
function of the Cauchy problem for the fractional diffusion operator

∂αγ(x, τ)

∂τα
− a∆ γ(x, τ) = 0, 0 < α ≤ 1, (96)

τ = 0 : γ(x, τ) = δ(x). (97)

In the framework of this approach, instead of the Cauchy problem (94)–(95), we obtain

∂αt(x, τ)

∂τα
− a∆ t(x, τ) = 0, 0 < α ≤ 1, (98)

τ = 0 : t(x, τ) = σ(x). (99)

In the case of one spatial coordinate, the nonlocal kernel takes the form

γ(x, τ) =
1

2
√

aτα/2 M
(

α

2
;
|x|√
aτα/2

)
, 0 ≤ α ≤ 1, (100)

and in the central symmetric case

γ(r, τ) =
1

4πaταr
W
(
−α

2
, 1− α;− r√

aτα/2

)
, 0 ≤ α ≤ 1. (101)

4. Conclusions

In this survey, we have reviewed the main applications of the Wright function and
the Mainardi function in continuum physics based essentially on the author’s works. We
have presented the integral relations between the Mittag–Leffler functions and the Wright
function, which can be useful when solving fractional differential equations. We have
restricted ourselves to the standard Mittag–Leffler functions and Wright function. The
interested reader is referred to publications on further generalizations of the Mittag–Leffler
functions [24,72–75] and of the Wright function [24,29,76–78].
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