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Abstract: This paper is related to notions adapted from fuzzy set theory to the field of complex
analysis, namely fuzzy differential subordinations. Using the ideas specific to geometric function
theory from the field of complex analysis, fuzzy differential subordination results are obtained using
a new integral operator introduced in this paper using the well-known confluent hypergeometric
function, also known as the Kummer hypergeometric function. The new hypergeometric integral
operator is defined by choosing particular parameters, having as inspiration the operator studied by
Miller, Mocanu and Reade in 1978. Theorems are stated and proved, which give corollary conditions
such that the newly-defined integral operator is starlike, convex and close-to-convex, respectively.
The example given at the end of the paper proves the applicability of the obtained results.

Keywords: analytic function; univalent function; fuzzy differential subordination; fuzzy best domi-
nant; confluent hypergeometric function; integral operator

1. Introduction

The introduction of the fuzzy set concept by Lotfi A. Zadeh, in the paper “Fuzzy
Sets” [1] in 1965, did not suggest the extraordinary evolution of the concept which followed.
Received with distrust at first, the concept is very popular nowadays, being adapted to
many research topics. Mathematicians were also interested in embedding the concept of
fuzzy set in their research and it was indeed included in many mathematical approaches.
The review paper included in the present special issue, devoted to the celebration of the
100th anniversary of Zadeh’s birth [2], shows how fuzzy set theory has evolved related
to certain branches of science, and points out the contribution of one of Zadeh’s disciples,
Professor I. Dzitac, to the development of soft computing methods connected with fuzzy
set theory. Professor I. Dzitac has celebrated his friendship with the multidisciplinary
scientist, Lotfi A. Zadeh, by writing the introductory paper of a special issue on fuzzy logic
dedicated to the centenary of Zadeh’s birth [3].

As far as complex analysis is concerned, fuzzy set theory has been included in studies
related to geometric function theory in 2011, when the first paper appeared introducing
the notion of subordination in fuzzy set theory [4] which has had its inspiration in the
classical aspects of subordination introduced by Miller and Mocanu [5,6]. The next papers
published followed the line of research set by Miller and Mocanu and referred to fuzzy
differential subordination, adapting notions from the already well-established theory of
differential subordination [7–9]. The idea was soon picked up by researchers in geometric
function theory and all the classical lines of research in this topic were adapted to the new
fuzzy aspects. A review paper published in 2017 [10] included in its references the first
published papers related to this topic, validating its development. The dual notion of fuzzy
differential superordination was also introduced in 2017 [11].

An important topic in geometric function theory is conducting studies which involve
operators. Such studies for obtaining new fuzzy subordination results were published soon
after the notion was introduced, in 2013 [12], continued during the next years [13–16] and
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later added the superordination results [17–19]. During the last years, many papers were
published which show that the research on this topic is in continuous development process
and we mention only a few here [20–24].

Following this line of research, a new hypergeometric integral operator is introduced
in this paper using a confluent (or Kummer) hypergeometric function and having, as
inspiration, the operator studied by Miller, Mocanu and Reade in 1978, by taking specific
values for parameters involved in its definition. Fuzzy differential subordinations are
obtained and the fuzzy best dominants are given, which facilitate obtaining sufficient
conditions for univalence of this operator.

2. Preliminaries

The research presented in this paper is done in the general environment known in the
theory of differential subordination given in the monograph [25] combined with fuzzy set
notions introduced in [4,7].

The unit disc of the complex plane is denoted by U. H(U) stands for the class
of holomorphic functions in U. Consider the subclass, An = { f ∈ H(U) : f (z) =
z + an+1zn+1 + · · · , z ∈ U}, with A1 = A.

For a ∈ C, n ∈ N∗ the following subclass of holomorphic functions is obtained:
H[a, n] = { f ∈ H(U) : f (z) = a + anzn + an+1zn+1 + · · · , z ∈ U}, withH0 = H[0, 1].

For α < 1, let S∗(α) = { f ∈ A : Re
(

z f ′(z)
f (z)

)
> α} denote the class of starlike functions

of order α. For α = 0, the class of starlike functions is denoted by S∗.
For α < 1, let K(α) = { f ∈ A :Re

(
z f ′′(z)
f ′(z) + 1

)
> α} denote the class of convex

functions of order α. For α = 0, the class of convex functions is denoted by K.
The subclass of close-to-convex functions is defined as: C = { f ∈ H(U) : ∃ ϕ ∈ K,

Re
(

f ′(z)
ϕ′(z)

)
> 0, z ∈ U}.

It is also said that function f is close-to-convex with respect to function ϕ.

Definition 1 ([4]). Let D ⊂ C and z0 ∈ D be a fixed point. We take the functions f , g ∈ H(D).
The function f is said to be fuzzy subordinate to g and write f ≺F g or f (z) ≺F g(z), if there
exists a function F : C→ [0, 1], such that

(i) f (z0) = g(z0),
(ii) F( f (z)) ≤ F(g(z)), for all z ∈ D.

Remark 1. (a) Such a function F : C → [0, 1] can be considered F(z) = |z|
1+|z| , F(z) = 1

1+|z| ,

F(z) =
√
|z|

1+
√
|z|

.

(b) Relation (ii) is equivalent to f (D) ⊂ g(D).

Definition 2 ([7], Definition 2.2). Let ψ : C3 × D → C, a ∈ C, and let h be univalent in U,
with h(z0) = a, g be univalent in D, with g(z0) = a, and p be analytic in D, with p(z0) = a.
Likewise, ψ(p(z), zp′(z), z2 p′′(z); z) is analytic in D and F : C → [0, 1], F(z) = |z|

1+|z| . If p is
analytic in D and satisfies the (second-order) fuzzy differential subordination

F
(

ψ(p(z), zp′(z), z2 p′′(z); z)
)
≤ F(h(z)), z ∈ U, (1)

i.e., ψ(p(z), zp′(z), z2 p′′(z); z) ≺F h(z), or∣∣ψ(p(z), zp′(z), z2 p′′(z); z)
∣∣

1 + |ψ(p(z), zp′(z), z2 p′′(z); z)| ≤
|h(z)|

1 + |h(z)| , z ∈ D, (2)

then p is called a fuzzy solution of the fuzzy differential subordination. The univalent function q is
called a fuzzy dominant of fuzzy solutions of the differential subordination, or more simply, a fuzzy
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dominant, if |p(z)|
1+|p(z)| ≤

|q(z)|
1+|q(z)| , or p(z) ≺F q(z), z ∈ D, for all p satisfying (1) or (2). A fuzzy

dominant q̃ that satisfies |q̃(z)|
1+|q̃(z)| ≤

|q(z)|
1+|q(z)| , or q̃(z) ≺F q(z), z ∈ D, for all fuzzy dominants q of

(1) or (2) is said to be the fuzzy best dominant of (1) or (2). Note that the fuzzy best dominant is
unique up to a rotation in D.

Lemma 1 ([25], Theorem 2.2). Let δ, ω ∈ C, ω 6= 0, and h be a convex function in D, and F :
C→ [0, 1], F(z) = |z|

1+|z| , z ∈ D. We suppose that the Briot–Bouquet differential equation

q(z) +
zq′(z)

δ + ωq(z)
= h(z), z ∈ D, q(z0) = h(z0) = a

has a solution q ∈ H(D), which verifies q(z) ≺F h(z), z ∈ D, or |q(z)|
1+|q(z)| ≤

|h(z)|
1+|h(z)| , z ∈ D.

If the function p ∈ H[a, n], ψ : C2×D → C, ψ(p(z), zp′(z)) = p(z) + zp′(z)
δ+ωp(z) is analytic

in D, with ψ(p(z0), z0 p′(z0)) = h(z0), z0 ∈ D, then

ψ
(

p(z), zp′(z)
)
≺F h(z), z ∈ D, (3)

or
|ψ(p(z), zp′(z))|

1 + |ψ(p(z), zp′(z))| ≤
|h(z)|

1 + |h(z)| (4)

implies

p(z) ≺F q(z), or
|p(z)|

1 + |p(z)| ≤
|q(z)|

1 + |q(z)| , z ∈ D,

and q is the fuzzy best dominant of the fuzzy differential subordination (3) or (4).

The confluent (or Kummer) hypergeometric function has been investigated connected
to univalent functions more intensely starting from 1985 when it was used by L. de Branges
in the proof of Bieberbach’s conjecture [26]. The applications of hypergeometric functions in
univalent function theory is very well pointed out in the review paper, recently published
by H.M. Srivastava [27].

Definition 3 ([25]). Let u and v be complex numbers with v 6= 0,−1,−2, . . . , and consider the
function defined by

φ(u, v; z) =
Γ(v)
Γ(u)

∞

∑
k=0

Γ(u + k)
Γ(v + k)

zk

k!
= (5)

1 +
u
v

z
1!

+
u(u + 1)
v(v + 1)

z2

2!
+ · · ·+ u(u + 1) . . . (u + n− 1)

v(v + 1) . . . (v + n− 1)
zn

n!
+ . . . ,

where (e)k = Γ(e+k)
Γ(e) = e(e + 1)(e + 2) . . . (e + k− 1), and (e)0 = 1, called the confluent (or

Kummer) hypergeometric function is analytic in C.

Remark 2. (a) For z = 0, φ(u, v; 0) = 1 and φ(u, v; z) 6= 0, z ∈ U,
(b) For u 6= 0, φ′(u, v; 0) = u

v 6= 0.

The operator used for obtaining the original results presented in this paper was
obtained using a confluent (or Kummer) hypergeometric function and a general operator
studied in 1978 by S.S. Miller, P.T. Mocanu and M.O. Reade [28] by taking specific values
for parameters β, γ, α, δ:

J( f )(z) =
[

β + γ

zγφ(z)

∫ z

0
f α(t)ϕ(t)tδ−1dt

] 1
β

. (6)
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A confluent (or Kummer) hypergeometric function was recently used in many papers
for defining new interesting operators as it can be seen in [29–32].

Two more lemmas from differential subordination theory that are necessary in the
proofs of the original results are listed next:

Lemma 2 ([33], Theorem 4.6.3, p. 84). A necessary and sufficient condition for a function
f ∈ H(U) to be close-to-convex is given by:∫ θ2

θ1

Re
[

1 +
z f ′′(z)
f ′(z)

]
dθ > −π, z0 = r0eiθ0 ,

for all θ1, θ2 with 0 ≤ θ1 < θ2 < 2π, r ∈ (0, 1).

Lemma 3 ([25], Theorem Marx–Strohhäcker, p. 9). If f ∈ K then Re z f ′(z)
f (z) > 1

2 , i.e., f ∈

S∗
(

1
2

)
, for z ∈ U.

3. Main Results

The new hypergeoemtric integral operator is defined using Definition 3 and the
integral operator given by relation (6).

Definition 4. Let β > 1, γ > 0 and the confluent (Kummer) hypergeometric function φ given
by (5).

Let M : H(U)→ H(U) be given by:

M(z) =
β

zβ−1

∫ z

0

[
Γ(v)
Γ(u)

∞

∑
k=0

Γ(u + k)
Γ(v + k)

tk

k!

]
tβ−1dt, z ∈ U. (7)

Remark 3. (a) For β > 1, γ > 0 and φ(u, v; z) = Γ(v)
Γ(u)

∞
∑

k=0

Γ(u+k)
Γ(v+k)

zk

k! = 1 + u
v

z
1! +

u(u+1)
v(v+1)

z2

2! +

. . . , u, v ∈ C, v 6= 0,−1,−2, . . . , we have

M(z) =
β

zβ−1

∫ z

0

[
1 +

u
v

t
1!

+
u(u + 1)
v(v + 1)

t2

2!
+ . . .

]γ

tβ−1dt = (8)

β

zβ−1

∫ z

0

(
1 + γ

u
v

t + p2t2 + . . .
)

tβ−1dt =

β

zβ−1

∫ z

0

[
tβ−1 + γ

u
v

tβ + . . .
]
dt = z + γ

u
v

β

β + 1
z2 + p2

β

β + 2
z3 + . . . ,

which is the analytic expression of the operator M.
(b) For z ∈ U, M′(z) = 1 + 2γ u

v
β

β+1 z + . . . , with M′(0) = 1.

Using the method of differential subordination, next, a theorem is proved, giving the
best dominant of a certain fuzzy differential subordination. Using specific functions as
the fuzzy best dominant, conditions for starlikeness and convexity of the operator M are
obtained as corollaries.

Theorem 1. For β, γ ∈ C, β > 1, γ > 0, let the fuzzy function F : C→ [0, 1] be given by

F(z) =
|z|

1 + |z| , z ∈ U, (9)
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and consider a holomorphic function in U given by the equation

h(z) = q(z) +
zq′(z)

β− 1 + γq(z)
, h(0) = q(0), (10)

when q is a univalent solution in U which satisfies the fuzzy differential subordination:

|q(z)|
1 + |q(z)| ≤

|h(z)|
1 + |h(z)| i.e., q(z) ≺F h(z), z ∈ U. (11)

Consider φ(u, v; z), a confluent (or Kummer) hypergeometric function given by (5) and the
operator M(z) given by (7).

If 1 + γ
zφ′(u,v;z)
φ(u,v;z) is analytic in U, and∣∣∣1 + γ

zφ′(u,v;z)
φ(u,v;z)

∣∣∣
1 +

∣∣∣1 + γ
zφ′(u,v;z)
φ(u,v;z)

∣∣∣ ≤ |h(z)|
1 + |h(z)| i.e., 1 + γ

zφ′(u, v; z)
φ(u, v; z)

≺F h(z), (12)

then ∣∣∣ zM′(z)
M(z)

∣∣∣
1 +

∣∣∣ zM′(z)
M(z)

∣∣∣ ≤ |q(z)|
1 + |q(z)| i.e.,

zM′(z)
M(z)

≺F q(z), z ∈ U,

and q is the fuzzy best dominant.

Proof. Relation (7) is equivalent to

zβ−1M(z) = β
∫ z

0
φγ(u, v; t)tβ−1dt. (13)

Differentiating (13) and after short calculation we obtain

(β− 1)M(z) + zM′(z) = βφγ(u, v; z) · z, (14)

which is equivalent to

M(z)
[

β− 1 +
zM′(z)
M(z)

]
= βφγ(u, v; z) · z. (15)

We let

p(z) =
zM′(z)
M(z)

=
z
(

1 + 2γ u
v

β
β+1 z + . . .

)
z
(

1 + γ u
v

β
β+1 z + . . .

) =
1 + 2γ u

v
β

β+1 z + . . .

1 + γ u
v

β
β+1 z + . . .

, (16)

p(0) = 1.
Using (16) in (15), we get

M(z)[β− 1 + p(z)] = βφγ(u, v; z) · z. (17)

Differentiating (17), we obtain

zM′(z)
M(z)

+
zp′(z)

β− 1 + p(z)
= γ

zφ′(u, v; z)
φ(u, v; z)

+ 1. (18)

Using (16) in (18), we have

p(z) +
zp′(z)

β− 1 + p(z)
= γ

zφ′(u, v; z)
φ(u, v; z)

+ 1. (19)
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Using (19) in (12), we get∣∣∣p(z) + zp′(z)
β−1+p(z)

∣∣∣
1 +

∣∣∣p(z) + zp′(z)
β−1+p(z)

∣∣∣ ≤ |h(z)|
1 + |h(z)| , z ∈ U. (20)

In order to obtain the desired relation, Lemma 1 will be applied. To apply the lemma,
let the function ψ : C2 ×U → C,

ψ(r, s; z) = r +
s

β− 1 + r
, r, s ∈ C. (21)

For r = p(z), s = zp′(z), relation (21) becomes

ψ
(

p(z), zp′(z)
)
= p(z) +

zp′(z)
β− 1 + p(z)

, z ∈ U. (22)

Using (22) in (20), we have

|ψ(p(z), zp′(z))|
1 + |ψ(p(z), zp′(z))| ≤

|h(z)|
1 + |h(z)| , z ∈ U. (23)

Applying Lemma 1, for δ = β− 1, ω = γ 6= 0, we obtain

ψ
(

p(z), zp′(z)
)
≺F h(z), z ∈ U. (24)

Using (22) in (24), we get

p(z) +
zp′(z)

β− 1 + p(z)
≺F h(z), z ∈ U. (25)

According to Lemma 1, relation (25) implies

p(z) ≺F q(z), z ∈ U. (26)

Using (16) in (26) we have

zM′(z)
M(z)

≺F q(z), z ∈ U. (27)

Since q satisfies the differential Equation (10), q is the fuzzy best dominant.

Remark 4. Using particular expressions for the fuzzy best dominant q, sufficient conditions for
starlikeness of the operator M(z) given by (7) can be obtained.

If in Theorem 1, function q(z) = 1−z
1+z is considered the following corollary is obtained.

Corollary 1. For β, γ ∈ C, β > 1, γ > 0, let the fuzzy function F : C→ [0, 1] given by (9) and
consider a holomorphic function in U given by the equation

h(z) =
(β− 1)

(
1− z2)+ 1− 4z + z2

(β− 1)(1 + z)2 + 1− z2
,

h(0) = q(0) = 1, where function q(z) = 1−z
1+z is a univalent solution in U, which satisfies the

fuzzy differential subordination

|1− z|
|1 + z|+ |1− z| ≤

∣∣(β− 1)
(
1− z2)+ 1− 4z + z2

∣∣∣∣∣(β− 1)(1 + z)2 + 1− z2
∣∣∣+ |(β− 1)(1− z2) + 1− 4z + z2|

,
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i.e.,
1− z
1 + z

≺F
(β− 1)

(
1− z2)+ 1− 4z + z2

(β− 1)(1 + z)2 + 1− z2
, z ∈ U.

Consider φ(u, v; z) to be a confluent (or Kummer) hypergeometric operator given by (5),
and the operator M(z) given by (7).

If 1 + γ
zφ′(u,v;z)
φ(u,v;z) is analytic in U, and∣∣∣1 + γ

zφ′(u,v;z)
φ(u,v;z)

∣∣∣
1 +

∣∣∣1 + γ
zφ′(u,v;z)
φ(u,v;z)

∣∣∣ ≤
∣∣(β− 1)

(
1− z2)+ 1− 4z + z2

∣∣∣∣∣(β− 1)(1 + z)2 + 1− z2
∣∣∣+ |(β− 1)(1− z2) + 1− 4z + z2|

i.e., 1 + γ
zφ′(u, v; z)
φ(u, v; z)

≺F
(β− 1)

(
1− z2)+ 1− 4z + z2

(β− 1)(1 + z)2 + 1− z2
,

then ∣∣∣ zM′(z)
M(z)

∣∣∣
1 +

∣∣∣ zM′(z)
M(z)

∣∣∣ ≤
∣∣∣ 1−z

1+z

∣∣∣
1 +

∣∣∣ 1−z
1+z

∣∣∣ i.e.,
zM′(z)
M(z)

≺F
1− z
1 + z

, z ∈ U, or M ∈ S∗

and q(z) = 1−z
1+z is the fuzzy best dominant.

Proof. By using the function q(z) = 1−z
1+z in relation (27) from the proof of Theorem 1,

the following fuzzy subordination is obtained:

zM′(z)
M(z)

≺F q(z) =
1− z
1 + z

, z ∈ U. (28)

Since Re
(

zq′′(z)
q′(z) + 1

)
= 1−ρ2

1+2ρ cos α+ρ2 > 0, 0 < ρ < 1, the q is convex, and Re 1−z
1+z > 0,

z ∈ U, differential subordination (28) is equivalent to

Re
zM′(z)
M(z)

> Re
1− z
1 + z

> 0, z ∈ U, hence M ∈ S∗. (29)

Remark 5. Using the convex function q(z) = 1+z
1−z as the fuzzy best dominant in Theorem 1, suffi-

cient conditions for the convexity of the operator M(z) given by (7) can be obtained as a corollary.

Corollary 2. For β, γ ∈ C, β > 1, γ > 0, let the fuzzy function F : C→ [0, 1] given by (9) and
consider a holomorphic function in U given by the equation

h(z) =
(β− 1)

(
1− z2)+ γ(1 + z)2

(β− 1)(1− z)2 + γ(1− z2)
,

h(0) = q(0) = 1, where function q(z) = 1+z
1−z is a univalent solution in U which satisfies the fuzzy

differential subordination

|1 + z|
|1− z|+ |1 + z| ≤

∣∣∣(β− 1)
(
1− z2)+ γ(1 + z)2

∣∣∣∣∣∣(β− 1)(1− z)2 + γ(1− z2)
∣∣∣+ ∣∣∣(β− 1)(1− z2) + γ(1 + z)2

∣∣∣ ,
i.e.,

1 + z
1− z

≺F
(β− 1)

(
1− z2)+ γ(1 + z)2

(β− 1)(1− z)2 + γ(1− z2)
, z ∈ U.
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Consider φ(u, v; z) the confluent (or Kummer) hypergeometric operator given by (5), and the
operator M(z) given by (7).

If

1 + (γ− 1)
zφ′(u, v; z)
φ(u, v; z)

+
(γ + 1)zφ′(u, v; z) + z2γφ′′(u, v; z)

φ(u, v; z) + γzφ′(u, v; z)
= E(u, v; z)

is analytic in U, and

|E(u, v; z)|
1 + |E(u, v; z)| ≤

∣∣∣(β− 1)
(
1− z2)+ γ(1 + z)2

∣∣∣∣∣∣(β− 1)(1− z)2 + γ(1− z2)
∣∣∣+ ∣∣∣(β− 1)(1− z2) + γ(1 + z)2

∣∣∣ (30)

i.e., E(u, v; z) ≺F
(β− 1)

(
1− z2)+ γ(1 + z)2

(β− 1)(1− z)2 + γ(1− z2)
,

then ∣∣∣1 + zM′′(z)
M′(z)

∣∣∣
1 +

∣∣∣1 + zM′′(z)
M′(z)

∣∣∣ ≤
∣∣∣ 1+z

1−z

∣∣∣
1 +

∣∣∣ 1+z
1−z

∣∣∣ i.e., 1 +
zM′′(z)
M′(z)

≺F
1 + z
1− z

, z ∈ U, or M ∈ K

and q(z) = 1+z
1−z is the fuzzy best dominant.

Proof. Differentiating relation (14), from the proof of Theorem 1, we have

βM′(z) + zM′′(z) = βφγ−1(u, v; z)
[
φ(u, v; z) + γzφ′(u, v; z)

]
,

which is equivalent to

M′(z)
[
(β− 1) + 1 +

zM′′(z)
M′(z)

]
= βφγ−1(u, v; z)

[
φ(u, v; z) + γzφ′(u, v; z)

]
(31)

Let

1 +
zM′′(z)
M′(z)

= p(z), z ∈ U, p(0) = 1. (32)

By replacing (32) in (31) we obtain

M′(z)[(β− 1) + p(z)] = βφγ−1(u, v; z)
[
φ(u, v; z) + γzφ′(u, v; z)

]
. (33)

Differentiating relation (33) we get

zM′′(z)
M′(z)

+
zp′(z)

β− 1 + p(z)
= (γ− 1)

zφ′(u, v; z)
φ(u, v; z)

+
z(γ + 1)φ′(u, v; z) + z2γφ′′(u, v; z)

φ(u, v; z) + γzφ′(u, v; z)
.

After some computations, we have

1 +
zM′′(z)
M′(z)

+
zp′(z)

β− 1 + p(z)
= 1 + (γ− 1)

zφ′(u, v; z)
φ(u, v; z)

+
z(γ + 1)φ′(u, v; z) + z2γφ′′(u, v; z)

φ(u, v; z) + γzφ′(u, v; z)
. (34)

Using relation (32) in (34) we can write

p(z) +
zp′(z)

β− 1 + p(z)
= E(u, v; z), z ∈ U. (35)
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By considering (35) in (30), the following inequality emerges∣∣∣p(z) + zp′(z)
β−1+p(z)

∣∣∣
1 +

∣∣∣p(z) + zp′(z)
β−1+p(z)

∣∣∣ ≤
∣∣∣(β− 1)

(
1− z2)+ γ(1 + z)2

∣∣∣∣∣∣(β− 1)(1− z)2 + γ(1− z2)
∣∣∣+ ∣∣∣(β− 1)(1− z2) + γ(1 + z)2

∣∣∣ . (36)

In order to obtain the expected result, Lemma 1 will be used. For that, let ψ :
C2 ×U → C, given by (21) and for r = p(z) and s = zp′(z) from relation (35), we have

ψ
(

p(z), zp′(z)
)
= E(u, v; z), z ∈ U. (37)

Using (37) in (30), we get

|ψ(p(z), zp′(z))|
1 + |ψ(p(z), zp′(z))| ≤

∣∣∣(β− 1)
(
1− z2)+ γ(1 + z)2

∣∣∣∣∣∣(β− 1)(1− z)2 + γ(1− z2)
∣∣∣+ ∣∣∣(β− 1)(1− z2) + γ(1 + z)2

∣∣∣ . (38)

Using Lemma 1, for δ = β− 1, ω = γ 6= 0, we have

ψ
(

p(z), zp′(z)
)
≺F h(z) =

(β− 1)
(
1− z2)+ γ(1 + z)2

(β− 1)(1− z)2 + γ(1− z2)
, (39)

which, according to Lemma 1, implies

p(z) ≺F q(z) =
1 + z
1− z

, z ∈ U. (40)

Using in (40) relation (32) we have

1 +
zM′′(z)
M′(z)

≺F q(z) =
1 + z
1− z

, z ∈ U. (41)

Since q is convex, relation (41) is equivalent to

Re
(

1 +
zM′′(z)
M′(z)

)
> Re

1 + z
1− z

> 0, z ∈ U, hence M ∈ K. (42)

Remark 6. Using Lemma 3 and the convexity property proved for the operator M(z), the following
corollary can be stated giving the property of the integral operator M(z) given by (7) to be starlike
of order 1

2 .

Corollary 3. Let the operator M(z) be given by (7). Then M(z) ∈ K implies M(z) ∈ S∗
(

1
2

)
.

Proof. Since Re
[
1 + zM′′(z)

M′(z)

]
> 0 using Lemma 3 we obtain Re zM′(z)

M(z) > 1
2 , hence M ∈

S∗
(

1
2

)
.

Remark 7. Using function q(z) = 1−2z
1+z as fuzzy best dominant in Theorem 1, we get the following

corollary, which gives a sufficient condition for the operator M(z) given by (7) to be convex of order(
− 1

2

)
.
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Corollary 4. For β, γ ∈ C, β > 1, γ > 0, let the fuzzy function F : C→ [0, 1] given by (9) and
consider the holomorphic function in U given by the equation

h(z) =
(β− 1)(1 + z)(1− 2z) + (1− 2z)2 − 3z

(β− 1)(1 + z)2 + (1− 2z)(1 + z)
,

h(0) = q(0) = 1, where function q(z) = 1−2z
1+z is a univalent solution in U which satisfies the

fuzzy differential subordination
|1− 2z|

|1 + z|+ |1− 2z| ≤∣∣∣(β− 1)(1 + z)(1− 2z) + (1− 2z)2 − 3z
∣∣∣∣∣∣(β− 1)(1 + z)2 + (1− 2z)(1 + z)

∣∣∣+ ∣∣∣(β− 1)(1 + z)(1− 2z) + (1− 2z)2 − 3z
∣∣∣ ,

i.e.,
1− 2z
1 + z

≺F
(β− 1)(1 + z)(1− 2z) + (1− 2z)2 − 3z

(β− 1)(1 + z)2 + (1− 2z)(1 + z)
, z ∈ U.

Consider the confluent (or Kummer) hypergeometric function φ(u, v; z) given by (5), and the
operator M(z) given by (7).

If

E(u, v; z) = 1 + (γ− 1)
zφ′(u, v; z)
φ(u, v; z)

+
(γ + 1)zφ′(u, v; z) + z2γφ′′(u, v; z)

φ(u, v; z) + γzφ′(u, v; z)

is analytic in U, and
|E(u, v; z)|

1 + |E(u, v; z)| ≤∣∣∣(β− 1)(1 + z)(1− 2z) + (1− 2z)2 − 3z
∣∣∣∣∣∣(β− 1)(1 + z)2 + (1− 2z)(1 + z)

∣∣∣+ ∣∣∣(β− 1)(1 + z)(1− 2z) + (1− 2z)2 − 3z
∣∣∣

i.e., E(u, v; z) ≺F
(β− 1)(1 + z)(1− 2z) + (1− 2z)2 − 3z

(β− 1)(1 + z)2 + (1− 2z)(1 + z)
,

then ∣∣∣1 + zM′′(z)
M′(z)

∣∣∣
1 +

∣∣∣1 + zM′′(z)
M′(z)

∣∣∣ ≤
∣∣∣ 1−2z

1+z

∣∣∣
1 +

∣∣∣ 1−2z
1+z

∣∣∣ i.e., 1 +
zM′′(z)
M′(z)

≺F
1− 2z
1 + z

, z ∈ U, or M ∈ K
(
−1

2

)
,

and q(z) = 1−2z
1+z is the fuzzy best dominant.

Proof. Using in (41) q(z) = 1−2z
1+z , the relation becomes

1 +
zM′′(z)
M′(z)

≺F
1− 2z
1 + z

, z ∈ U. (43)

Since Re
(

zq′′(z)
q′(z) + 1

)
= Re 1−z

1+z > 0, we have that q is convex and Re 1−2z
1+z = − 1

2 . Then
relation (43) is equivalent to

Re
(

1 +
zM′′(z)
M′(z)

)
> Re

1− 2z
1 + z

> −1
2

, z ∈ U, hence M ∈ K
(
−1

2

)
. (44)
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Remark 8. Using Corollary 4 we next prove that the operator M(z) given by (7) is close-to-convex
in U.

Theorem 2. Let M(z) be given by (7) satisfying the condition Re
(

1 + zM′′(z)
M′(z)

)
> − 1

2 , z ∈ U.
Then M(z) is close-to-convex.

Proof. For obtaining the desired result, Lemma 2 is applied. We calculate∫ θ2

θ1

Re
(

1 +
zM′′(z)
M′(z)

)
dθ =

∫ θ2

θ1

−1
2

dθ = −1
2

θ|θ2
θ1
= −1

2
(θ2 − θ1) > −

1
2

2π = −π.

From Lemma 2, this means that M(z) ∈ C.

Example 1. Let u = −1, v = 1
3 , φ

(
−1, 1

3 ; z
)
= 1 + 3iz, and

zφ′(−1, 1
3 ;z)

φ(−1, 1
3 ;z)

= 3iz
1+3iz = 1− 1−3 sin α−3i cos α

10−6 sin α .

For β = 2, γ = 1, we calculate

M(z) =
2
z

∫ z

0
(1 + 3it)tdt =

2
z

(
z2

2
+ iz3

)
= z + 2iz2,

and zM′(z)
M(z) = 1 + 2iz

1+2iz .
Using Corollary 1, we have:
Let β = 2, γ = 1, fuzzy function F(z) = |z|

1+|z| , z ∈ U, and h(z) = 1−2z
1+z , h(0) = 1,

with univalent solution q(z) = 1−z
1+z , z ∈ U, which satisfy the fuzzy differential subordination

|1− z|
|1 + z|+ |1− z| ≤

|1− 2z|
|1 + z|+ |1− 2z| , i.e., q(z) =

1− z
1 + z

≺F
1− 2z
1 + z

= h(z),

and φ
(
−1, 1

3 ; z
)
= 1 + 3iz, Kummer hypergeometric function.

If 1+6iz
1+3iz is holomorphic in U, and

|1 + 6iz|
|1 + 3iz|+ |1 + 6iz| ≤

|1− 2z|
|1 + z|+ |1− 2z| , i.e.,

1 + 6iz
1 + 3iz

≺F
1− 2z
1 + z

,

then
|3iz|

|1 + 3iz|+ |3iz| ≤
|1− z|

|1 + z|+ |1− z| , i.e.,
3iz

1 + 3iz
≺F

1− z
1 + z

, z ∈ U.

In

Re
zφ′
(
−1, 1

3 ; z
)

φ
(
−1, 1

3 ; z
) = Re

(
1− 1− 3 sin α− 3i cos α

10− 6 sin α

)
= 1− 1− 3 sin α

10− 6 sin α

=
10− 6 sin α− 1 + 3 sin α

4 + 6(1− sin α)
=

9− 3 sin α

4 + 6(1− sin α)
=

6 + 3(1− sin α)

4 + 6(1− sin α)
> 0.

4. Conclusions

Since the study of operators using the fuzzy differential subordination theory presents
interest at this time, and many new and interesting results have been obtained recently,
the research regarding this topic is further conducted in this paper. A new hypergeometric
integral operator M(z) is introduced in this paper in relation (7) by using a confluent (or
Kummer) hypergeometric function and, having as inspiration, the operator studied by
Miller, Mocanu and Reade in 1978 [28] and taking specific values for parameters β, γ, α, δ
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involved in its definition. Using the notion of fuzzy differential subordination and results
related to it, in the first theorem proved, the fuzzy best dominant of a certain fuzzy differ-
ential subordination is given. Using particular functions as fuzzy best dominants, several
corollaries are stated, giving sufficient conditions for the operator M(z) to be starlike,
convex, starlike of order 1

2 and convex of order (− 1
2 ), respectively. The second theorem

proved shows the property of the operator M(z) to be close-to-convex. For further study,
the properties already proved, related to starlikeness and convexity of the operator M(z),
could inspire applications in introducing special classes of analytic functions. The operator
could also be studied using the dual theory of fuzzy differential superordination, possibly
obtaining sandwhich-type theorems, connecting with the present results a usual outcome
in geometric function theory. Since particular values for parameters have been used for
defining this operator, it might be interesting to try using other values for obtaining certain
potentially interesting operators. It being well-known how hypergeometric functions have
numerous applications in physics, engineering and statistics, applications of the operators
involving those functions could prove useful in other disciplines. The theory of fuzzy
differential subordination is still very new and one cannot predict what applications in
real life or other scientific domains it might have. Those are subjects for investigation in
long-term future studies.
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15. Eş, A.H. On fuzzy differential subordination. Math. Moravica 2015, 19, 123–129.
16. Majeed, A.H. Fuzzy differential subordinations properties of analytic functions involving generalized differential operator. Sci.

Int. Lahore 2018, 30, 297–302.
17. Ibrahim, R.W. On the subordination and superordination concepts with applications. J. Comput. Theor. Nanosci. 2017, 14,

2248–2254. [CrossRef]
18. Altai, N.H.; Abdulkadhim, M.M.; Imran, Q.H. On first order fuzzy differential superordination. J. Sci. Arts 2017, 173, 407–412.
19. Thilagavathi, K. Fuzzy subordination and superordination results for certain subclasses of analytic functions associated with

Srivastava-Attitya operator. Int. J. Pure Appl. Math. 2018, 118, 921–929.

http://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.3390/math9141701
http://dx.doi.org/10.15837/ijccc.2021.1.4102
http://dx.doi.org/10.1016/0022-247X(78)90181-6
http://dx.doi.org/10.1307/mmj/1029002507
http://dx.doi.org/10.15837/ijccc.2017.6.3111
http://dx.doi.org/10.1166/jctn.2017.6817


Mathematics 2021, 9, 2539 13 of 13
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