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Abstract: Multigranulation rough set (MGRS) based on soft relations is a very useful technique to
describe the objectives of problem solving. This MGRS over two universes provides the combination
of multiple granulation knowledge in a multigranulation space. This paper extends the concept of
fuzzy set Shabir and Jamal in terms of an intuitionistic fuzzy set (IFS) based on multi-soft binary
relations. This paper presents the multigranulation roughness of an IFS based on two soft relations
over two universes with respect to the aftersets and foresets. As a result, two sets of IF soft sets with
respect to the aftersets and foresets are obtained. These resulting sets are called lower approximations
and upper approximations with respect to the aftersets and with respect to the foresets. Some
properties of this model are studied. In a similar way, we approximate an IFS based on multi-soft
relations and discuss their some algebraic properties. Finally, a decision-making algorithm has been
presented with a suitable example.
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1. Introduction

In our real world, many problems naturally involve uncertainty. This uncertainty can
be observed in several fields, such as environmental science, medical science, economics
and engineering. Researchers are active and interested to address uncertainty. In this
respect, many theories have been presented, such as the probability theory, fuzzy set (FS)
theory, rough set (RS) theory, intuitionistic fuzzy set (IFS) theory and soft set (SS) theory etc.

Fuzzy set (FS) proposed by Zadeh in [1] is a framework to address partial truth,
uncertainty and impreciseness. Zadeh’s FS is a very crucial, innovative and ingenious set
because of its importance in multiple research dimensions. Often, we are encountered by
ill-defined situations which are addressed through quantitative expressions. To evaluate
better results from these critical situations, the FS is much useful by using qualitative
expressions due to its degree of membership. The FS represents degree of membership
for each element of the universe of a discourse to a subset of it, and later on, Attanassov
presented intuitionistic fuzzy set (IFS) [2] which avails the opportunity to model the
problem precisely based on the observations and treat more accurately to uncertainty
quantification. Attanassov discussed the literature based on theory and fundamentals of
IFSs in [3]. An IFS is a very useful concept with its applications in many different fields,
such as electoral system, market prediction, machine learning, pattern recognition, career
determination and medical diagnosis [4]. The description in terms of membership degree
only in many cases is insufficient because the presence of non-membership degree is helpful
to deal with uncertainty in good manner.
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Molodtsov [5] presented an untraditional approach known as soft set (SS) theory for
handling the vagueness and uncertainty. A collection of approximate descriptions of an
element in terms of parameters by a set-valued map is known as a soft set. This theory
has become a successful approach to different problems in different fields due to its rich
operations. In decision-making problems, this is an applicable tool using the RSs [6]. Many
researchers hybridized the models of SSs with different applicable theories [7–9]. Maji et al.
defined Fuzzy SS (FSS) and Intuitionistic fuzzy soft set (IFSS) [10,11]. After that, several
extensions of SSs have been presented, such as the vague SS [12], the soft RS (SRS) [13,14],
the generalized FSS [15], the trapezoidal FSS [16], interval-valued FSS [17]. Agarwal
built a framework of the generalized IFSS [18]. Feng et al. [19] pointed out some errors
in generalized IFSS [18] and rebuilt the generalized IFSS. Many authors combined the
concepts of IFSs and fuzzy RSs (FRSs). Samanta and Mondal [20] presented the IF rough
set (IFRS) model. In [21], the combination of RS and FS has been studied. To overcome the
unnaturalness of FRSs, Sang et al. [22] proposed a newly defined IFRS model.

Pawlak presented rough sets (RSs) to deal with incomplete data, vagueness and un-
certainty [6,23]. To solve different problems based on incomplete data, many researchers
showed interest in RSs. The RS theory is an untraditional technique to discuss data in-
vestigation, representation of vague or inexact data and reasoning based reduction of
vague data [24]. Recently, researchers have investigated RSs in the light of dataset features,
varieties of remedy and procedure control. Many extensions of RSs have been presented
for many requirements, such as the RS model based on reflexive relations, equivalence
relations and tolerance relations, FRS model, SRS model and rough FS (RFS) model [25–27].
As it is commonly known, many problems have different universes of discourse [28], such
as the objections of customers and their solutions in enterprise management, the character-
istics of customers and the features of products in personalized marketing, the mechanical
defects and their solutions in machine diagnosis, the symptoms of diseases and drugs in
diseased diagnosis. To formalize these problems, the RS models have been generalized
over two universes [29–31]. Pie et al. [32] built a framework of the RS model on alge-
braic characteristics over two universes. According to the inter-relationship between two
universes, Liu et al. [33] connected the graded RS with appropriate parameters. Ma and
Sun [34] proposed a framework of probability RS to deal with impreciseness [19,35].

Granular computing is very useful to describe the objectives of a problem solving
through multiple binary relations [36]. Under a single granulation, a set is characterized
by lower and upper approximations in the light of granular computing. By using multi-
ple equivalence relations, multigranulation rough set (MGRS) approximations have been
investigated. Rauszer [37] presented a framework of a multi-agent system based on an
equivalence relation where each agent has its own knowledge base. Khan and Baner-
jee [38,39] considered the agent as a “source” in a more general setting but many other
scholars considered “agent” as granulation [40–42]. Khan et al. [38,39] presented two ap-
proximation operators in terms of multiple source approximation system [35]. In the same
sense, Qian et al. [43] presented the MGRS theory. There are two types of MGRS, named
optimistic MGRS (OMGRS) and pessimistic MGRS (PMGRS) [41]. Later, many extensions
of MGRS have been presented by different authors [44,45]. The real dataset involving multi-
ple and overlapping knowledge has been dealt with by presenting MGRS and covering RSs.
These two special models have been generalized as many hybrid models such as covering
MGRS [43] and MGRS based on multiple equivalence relations [41] etc. Liu et al. [46] used
a covering approximation space and presented four types of covering MGRS models. Later
on, Xu et al. presented a covering MGRS based on order relations [47], fuzzy compatible
relations [48] and generalized relations [49] by relaxing the conditions of equivalence rela-
tions. After that, many researchers proposed different MGRS models according to different
dataset needs. Dou et al. [50] presented a useful MGRS model for variable-precision and
discussed its properties. Ju et al. [51] proposed a heuristic algorithm using their newly
defined variable-precision MGRS model for computing reduction. Feng et al. [52] presented
a three-way decision-based type-1 variable-precision multigranulation decision-theoretic
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fuzzy rough set [53]. In management science and various professional fields, the MGRS
showed its importance and extensions of MGRS have made their role with respect to the
nature of problems [54–58]. Qian et al. discussed the risk attitudes by presenting OMGRS
and PMGRS models using multiple binary relations. Huang et al. [59] combined MGRS
and IFS and presented an IFMGRS model. Pang et al. [60] combined MGRS with three-way
decision making and proposed a multi-criteria decision-making (MCGDM) model. Differ-
ent experts have different experiences and expertises to solve different decision-making
problems. Better decisions can be made by taking opinions of multiple experts compared
with taking one expert’s opinion only. In view of this logic, Zadeh [36] introduced granular
computing knowledge through multiple relations. Sun and Ma [61] proposed the MGRS
model over two universes. For selective dataset approximation, Tan et al. [35] presented the
MGRS model with granularity selection algorithm [56]. Xu et al. [62] combined Pawlak RS
model, FRS model and MGRS model in terms of granular computing and proposed multi-
granulation fuzzy rough set (MGFRS) model. Recently, Shabir et al. [63] proposed a useful
model of MGRS with multi-soft binary relations. After that, Shabir et al. [64] extended that
optimistic MGRS in terms of FS which is called optimistic multigranulation fuzzy rough
set (OMGFRS). The existing MGRS models have obvious disadvantages regarding FSs.

1. The existing MGRS models with FSs are unable to manage the real life situations
where only degree of membership is discussed;

2. Decision experts have hesitation to make better decision due to no consideration of
their own subjective consciousness.

To manage these above critical situations, we extended the model of MGFRS based
on soft binary relations in [64] in terms of IFS. We used IFSs instead of FSs to present an
optimistic multigranulation intuitionistic fuzzy rough set (OMGIFRS) model.

The organization of the remaining paper is as follows. In Section 2, some basic
definitions and fundamental concepts of FS, IFS, RS, SS, FRS, IFSS, MGRS, and soft relation
are given. Section 3 presents the optimistic granulation roughness of an IFS based on two
soft relations over two universes with their basic properties and examples. OMGIFRS
over two universes and their properties are discussed in Section 4. Section 5 presents
the decision making algorithm with a practical example about decision making problems.
In Section 6, we made a comparison of our proposed model with other existing theories.
Finally, we conclude our research work in Section 7.

2. Preliminaries and Basic Concepts

In this section, some fundamental notions about IFS, RS, MGRS, SS, soft binary relation,
and IFSS are given. Throughout this paper, U1 and U2 represent two non-empty finite sets
unless stated otherwise.

Definition 1 ([2]). Let U be a non-empty universe. An IFS B in the universe U is an object
having the form B = {〈x, µB(x), γB(x)〉 : x ∈ U}, where µB : U → [0, 1] and γB : U → [0, 1]
satisfying 0 ≤ µB(x) + γB(x) ≤ 1 for all x ∈ U. The values µB(x) and γB(x) are called
degree of membership and degree of non-membership of x ∈ U to B, respectively. The number
πB(x) = 1− µB(x)− γB(x) is called the degree of hesitancy of x ∈ U to B. The collection of all
IFSs in U is denoted by IF(U). In the remaining paper, we shall write an IFS by B = 〈µB, γB〉
instead of B = {〈x, µB(x), γB(x)〉 : x ∈ U}. Let B = 〈µB, γB〉 and B1 =

〈
µB1 , γB1

〉
be two IFSs

in U. Then, B ⊆ B1 if and only if µB(x) ≤ µB1(x) and γB1(x) ≤ γB(x) for all x ∈ U. Two IFSs
B and B1 are said to be equal if and only if B ⊆ B1 and B1 ⊆ B.

Definition 2 ([2]). The union and intersection of two IFSs B and B1 in U are denoted and defined
by B∪ B1 =

〈
µB ∪ µB1 , γB ∩ γB1

〉
and B∩ B1 =

〈
µB ∩ µB1 , γB ∪ γB1

〉
where

(
µB ∪ µB1

)
(x) =

sup{µB(x), µB1(x)},
(
γB ∩ γB1

)
(x) = inf{γB(x), γB1(x)},

(
µB ∩ µB1

)
(x) = inf{µB(x),

µB1(x)},
(
γB ∪ γB1

)
(x) = sup{γB(x), γB1(x)}, for all x ∈ U.

Next, we define two special types of IFSs as:
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The IF universe set U = 1U =< 1, 0 > and IF empty set Φ = 0U =< 0, 1 >, where
1(x) = 1 and 0(x) = 0 for all x ∈ U. The complement of an IFS B =< µ, γ > is denoted
and defined as Bc =< γ, µ >. See Table 1 for acronyms.

Table 1. List of acronyms.

Acronyms Representations

FSs Fuzzy sets

IFSs Intuitionistic fuzzy sets

RSs Rough sets

SSs Soft sets

FSSs Fuzzy soft sets

IFSSs Intuitionistic fuzzy soft sets

SRSs Soft rough sets

IFRSs Intuitionistic fuzzy rough sets

FRSs Fuzzy rough sets

RFSs Rough fuzzy sets

MGRS Multigranulation rough set

OMGRS Optimistic multigranulation rough set

PMGRS Pessimistic multigranulation rough set

IFMGRS Intuitionistic fuzzy multigranulation rough set

MCGDM Multi-critria group decision making

OMGFRS Optimistic multigranulation fuzzy rough set

OMGIFRS Optimistic multigranulation intuitionistic fuzzy rough set

IFN Intuitionistic fuzzy number

IFV Intuitionistic fuzzy value

For a fixed x ∈ U, the pair (µB(x), γB(x)) is called intuitionistic fuzzy value (IFV) or
intuitionistic fuzzy number (IFN). In order to define the order between two IFNs, Chen and
Tan [65] introduced the score function as S(x) = µB(x)− γB(x) and Hong and Choi [66]
defined the accuracy function as H(x) = µB(x) + γB(x), where x ∈ U. Xu [62,67] used
both the score and accuracy functions to form the order relation between any pair of IFVs
(x, y) as given below:

(a) if S(x) > S(y), then x > y;
(b) if S(x) = S(y), then

(1) if H(x) = H(y), then x = y;
(2) if H(x) < H(y), then x < y.

Definition 3 ([6]). Let σ be an equivalence relation on a universe U. For any M ⊆ U, the Pawlak
lower and upper approximations of M with respect to σ are defined by

σ(M) = {u ∈ U : [u]σ ⊆ M},
σ(M) = {u ∈ U : [u]σ ∩M 6= ∅},

where [u]σ is the equivalence class of u with respect to σ. The set BMσ = σ(M)− σ(M) is the
boundary region of M ⊆ U. If BMσ(M) = ∅, then M is defineable (exact), otherwise, M is rough
with respect to σ.
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Qian et al. [40] extended the Pawlak rough set model to the MGRS model, where the
set approximations are defined by using multi-equivalence relations on a universe.

Definition 4 ([40]). Let σ1, σ2, σ3, . . . , σn be n equivalence relations on a universe U. For any
M ⊆ U, the Pawlak lower and upper approximations of M are defined by

MΣn
i=1σi

= {u ∈ U : [u]σi ⊆ M for some i, 1 ≤ i ≤ n},

MΣn
i=1σi = (Mc

Σn
i=1σi

)c,

where [u]σi is the equivalence class of u with respect to σi.

Definition 5 ([5]). A pair (F, A) is called an SS over U if F is a mapping given by F : A→ P(U),
where A is a subset of E (the set of parameters) and P(U) is the power set of U. Thus, F(e) is a
subset of U for all e ∈ A. Hence, a SS over U is a parameterized collection of subsets of U.

Definition 6 ([68]). Let (σ, A) be an SS over U1×U1. Then, (σ, A) is called a soft binary relation
on U1. In fact, (σ, A) is a parameterized collection of binary relations on U1, that is, we have a
binary relation σ(e) on U1 for each parameter e ∈ A.

Li et al. [69] presented the generalization of the soft binary relation over U1 to U2,
as follows.

Definition 7 ([69]). A soft binary relation (σ, A) from U1 to U2 is an SS over U1 ×U2, that is,
σ : A→ P(U1 ×U2), where A is a subset of the set of parameters E.

Of course, (σ, A) is a parameterized collection of binary relations from U1 to U2. That is,
for each e ∈ A, we have a binary relation σ(e) from U1 to U2.

Definition 8 ([11]). A pair (F, A) is called an IFSS over U if F is a mapping given by F : A→
IF(U) and A is a subset of E (the set of parameters). Thus, F(e) is an IFS in U for all e ∈ A.
Hence, an IFSS over U is a parameterized collection of IF sets in U.

Definition 9 ([11]). For two IFSSs (F, A) and (G, B) over a common universe U, we say that
(F, A) is an IF soft subset of (G, B) if (1) A ⊆ B and (2) F(e) is an IF subset of G(e) for all e ∈ A.
Two IFSSs (F, A) and (G, B) over a common universe U are said to be IF soft equal if (F, A) is an
IF soft subset of (G, B) and (G, B) is an IF soft subset of (F, A). The union of two IFSSs (F, A)
and (G, A) over the common universe U is the IFSS (H, A), where H(e) = F(e) ∪ G(e) for all
e ∈ A. The intersection of two IFSSs (F, A) and (G, A) over the common universe U is the IFSS
(K, A), where K(e) = F(e) ∩ G(e) for all e ∈ A.

Definition 10 ([70]). Let (σ, A) be a soft binary relation from U1 to U2 and B = 〈µB, γB〉 be an
IFS in U2. Then, lower approximation σB = (σµB , σγB) and upper approximation σB = (σµB , σγB)
of B = 〈µB, γB〉 with respect to aftersets are defined as follows:

σµB(e)(u1) =

{
∧a∈u1σ(e)µB(a) if u1σ(e) 6= ∅;

1 if u1σ(e) = ∅;

σγB(e)(u1) =

{
∨a∈u1σ(e)γB(a) if u1σ(e) 6= ∅;

0 if u1σ(e) = ∅;

and

σµB(e)(u1) =

{
∨a∈u1σ(e)µB(a) if u1σ(e) 6= ∅;

0 if u1σ(e) = ∅;

σγB(e)(u1) =

{
∧a∈u1σ(e)γB(a) if u1σ(e) 6= ∅;

1 if u1σ(e) = ∅,
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where u1σ(e) = {a ∈ U2 : (u1, a) ∈ σ(e)} and is called the afterset of u1 for u1 ∈ U1 and e ∈ A.

• σµB(e)(u1) indicates the degree to which u1 definitely has the property e;
• σγB(e)(u1) indicates the degree to which u1 probably does not have the property e;
• σµB(e)(u1) indicates the degree to which u1 probably has the property e;
• σγB(e)(u1) indicates the degree to which u1 definitely does not have the property e.

Definition 11 ([70]). Let (σ, A) be a soft binary relation from U1 to U2 and B = 〈µB, γB〉 be an
IFS in U1. Then, lower approximation Bσ = (µB σ,γB σ) and upper approximation Bσ = (µB σ,γB σ)
of B = 〈µB, γB〉 with respect to foresets are defined as follows:

µB σ(e)(u2) =

{
∧a∈σ(e)u2

µB(a) if σ(e)u2 6= ∅;
1 if σ(e)u2 = ∅;

γB σ(e)(u2) =

{
∨a∈σ(e)u2

γB(a) if σ(e)u2 6= ∅;
0 if σ(e)u2 = ∅;

and
µB σ(e)(u2) =

{
∨a∈σ(e)u2

µB(a) if σ(e)u2 6= ∅;
0 if σ(e)u2 = ∅;

γB σ(e)(u2) =

{
∧a∈σ(e)u2

γB(a) if σ(e)u2 6= ∅;
1 if σ(e)u2 = ∅,

where σ(e)u2 = {a ∈ U1 : (a, u2) ∈ σ(e)} and is called the foreset of u2 for u2 ∈ U2 and e ∈ A.

Of course, σB : A → IF(U1), σB : A → IF(U1) and Bσ : A → IF(U2), Bσ : A →
IF(U2).

Theorem 1 ([70]). Let (σ, A) be a soft binary relation from U1 to U2, that is σ : A→ P(U1×U2).
For any IFSs B = 〈µB, γB〉, B1 =

〈
µB1 , γB1

〉
and B2 =

〈
µB2 , γB2

〉
of U2, the following are true:

(1) If B1 ⊆ B2 then σB1 ⊆ σB2 ;
(2) If B1 ⊆ B2 then σB1 ⊆ σB2 ;
(3) σB1 ∩ σB2 = σB1∩B2 ;
(4) σB1 ∩ σB2 ⊇ σB1∩B2 ;
(5) σB1 ∪ σB2 ⊆ σB1∪B2 ;
(6) σB1 ∪ σB2 = σB1∪B2 ;
(7) σ1U2 = 1U1 if u1σ(e) 6= ∅;
(8) σ1U2 = 1U1 if u1σ(e) 6= ∅;

(9) vB =
(

σBc
)c

if u1σ(e) 6= ∅;

(10) σB =
(

σBc
)c

if u1σ(e) 6= ∅;

(11) σ0U2 = 0U1 = σ0U2 if u1σ(e) 6= ∅.

Theorem 2 ([70]). Let (σ, A) be a soft binary relation from U1 to U2, that is σ : A→ P(U1×U2).
For any IFSs B = 〈µB, γB〉, B1 =

〈
µB1 , γB1

〉
and B2 =

〈
µB2 , γB2

〉
of U1, the following are true:

(1) If B1 ⊆ B2, then B1 σ ⊆B2 σ;
(2) If B1 ⊆ B2, then B1 σ ⊆B2 σ;
(3) B1 σ ∩B2 σ =B1∩B2 σ;
(4) B1 σ ∩B2 σ ⊇B1∩B2 σ;
(5) B1 σ ∪B2 σ ⊆B1∪B2 σ;
(6) B1 σ ∪B2 σ =B1∪B2 σ;
(7) σ1U1 = 1U2 if u2σ(e) 6= ∅;
(8) σ1U1 = 1U2 if u2σ(e) 6= ∅;
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(9) Bσ =
(

Bc
σ
)c

if u2σ(e) 6= ∅;

(10) Bσ =
(

Bc
σ
)c

if u2σ(e) 6= ∅;

(11) 0U1 σ = 0U2 =0U1 σ.

3. Roughness of an Intuitionistic Fuzzy Set by Two Soft Relations

In this section, we discuss the optimistic roughness of an IFS by two soft binary
relations from U1 to U2. We approximate an IFS of universe U2 in universe U1 and an IFS
of U1 in U2 by using aftersets and foresets of soft binary relations, respectively. In this way,
we obtain two IFSSs corresponding to IFSs in U2(U1). We also study some properties of
these approximations.

Definition 12. Let U1 and U2 be two non-empty sets, (σ1, A) and (σ2, A) be two soft binary
relations from U1 to U2 and B = 〈µB, γB〉 be an IFS in U2. Then, the optimistic lower ap-
proximation σ1 + σ2

B
o =

(
σ1 + σ2

µB
o , σ1 + σ2

γB
o

)
and the upper approximation oσ1 + σ2

B =(oσ1 + σ2
µB ,o σ1 + σ2

γB
)

of B = 〈µB, γB〉 are IF soft sets over U1 and are defined as:

σ1 + σ2
µB
o (e)(u1) =

{
∧{µB(u2) : u2 ∈ (u1σ1(e) ∪ u1σ2(e))}, if u1σ1(e) ∪ u1σ2(e) 6= ∅;

1 otherwise;

σ1 + σ2
γB
o (e)(u1) =

{
∨{γB(u2) : u2 ∈ (u1σ1(e) ∩ u1σ2(e))}, if u1σ1(e) ∩ u1σ2(e) 6= ∅;

0 otherwise;

and

oσ1 + σ2
µB(e)(u1) =

{
∨{µB(u2) : u2 ∈ (u1σ1(e) ∩ u1σ2(e))}, if u1σ1(e) ∩ u1σ2(e) 6= ∅;

0 otherwise;

oσ1 + σ2
γB(e)(u1) =

{
∧{γB(u2) : u2 ∈ (u1σ1(e) ∪ u1σ2(e))}, if u1σ1(e) ∪ u1σ2(e) 6= ∅;

1 otherwise;

for all u1 ∈ U1, where u1σ1(e) = {u2 ∈ U2 : (u1, u2) ∈ σ1(e)} and u1σ2(e) = {u2 ∈ U2 :
(u1, u2) ∈ σ2(e)} are called the aftersets of u1 for u1 ∈ U1 and e ∈ A. Obviously, (σ1 + σ2

B
o (e)), A)

and (oσ1 + σ2
B
(e)) are two IFS soft sets over U1.

Definition 13. Let U1 and U2 be two non-empty sets, (σ1, A) and (σ2, A) be two soft binary
relations from U1 to U2 and B = 〈µB, γB〉 be an IFS in U1. Then, the optimistic lower ap-
proximation Bσ1 + σ2o =

(
µB σ1 + σ2o,γB σ1 + σ2o

)
and the optimistic upper approximation

Bσ1 + σ2 =
(

µB σ1 + σ2
o,γB σ1 + σ2

o) of B = 〈µB, γB〉 are IF soft sets over U2 and are defined as:

µB σ1 + σ2o(e)(u2) =

{
∧{µB(u1) : u1 ∈ (σ1u2(e) ∪ σ2u2(e))}, if σ1u2(e) ∪ σ2u2(e) 6= ∅;

1 otherwise;

γB σ1 + σ2o(e)(u2) =

{
∨{γB(u1) : u1 ∈ (σ1u2(e) ∩ σ2u2(e))}, if σ1u2(e) ∩ σ2u2(e) 6= ∅;

0 otherwise;

and

µB σ1 + σ2
o
(e)(u2) =

{
∨{µB(u1) : u1 ∈ (σ1u2(e) ∩ σ2u2(e))}, if σ1u2(e) ∩ σ2u2(e) 6= ∅;

0 otherwise;

γB σ1 + σ2
o
(e)(u2) =

{
∧{γB(u1) : u1 ∈ (σ1u2(e) ∪ σ2u2(e))}, if σ1u2(e) ∪ σ2u2(e) 6= ∅;

1 otherwise;
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for all u2 ∈ U2 where σ1(e)u2 = {u1 ∈ U1 : (u1, u2) ∈ σ1(e)} and σ2(e)u2 = {u1 ∈ U1 :
(a, u2) ∈ σ2(e)} are called the foresets of u2 for u2 ∈ U2 and e ∈ A. Obviously, (Bσ1 + σ2o(e)), A)

and (Bσ1 + σ2
o
(e)) are two IFS soft sets over U2.

Of course, σ1 + σ2
B
o (e) : A → IF(U1), oσ1 + σ2

B
(e) : A → IF(U1) and Bσ1 + σ2o(e) :

A→ IF(U2), Bσ1 + σ2
o
(e) : A→ IF(U2).

The following example explains the above definitions.

Example 1. Let U1 = {1, 2, 3}, U2 = {a, b, c} and A = {e1, e2}, and (σ1, A) and (σ2, A) be
soft binary relations from U1 to U2 defined by

σ1(e1) = {(1, a), (1, b), (2, a)}, σ1(e2) = {(2, b), (3, a)},
σ2(e1) = {(2, b), (2, c), (3, a)} and σ2(e2) = {(1, c), (3, b), (3, c)}.

Then, their aftersets and foresets are

1σ1(e1) = {a, b}, 2σ1(e1) = {a}, 3σ1(e1) = ∅,

1σ1(e2) = ∅, 2σ1(e2) = {b}, 3σ1(e2) = {a} and

1σ2(e1) = ∅, 2σ2(e1) = {b, c}, 3σ2(e1) = {a},
1σ2(e2) = {c}, 2σ2(e2) = ∅, 3σ2(e2) = {b, c},

σ1(e1)a = {1, 2}, σ1(e1)b = {1}, σ1(e1)c = ∅,

σ1(e2)a = {3}, σ1(e2)b = {2}, σ1(e2)c = ∅and

σ2(e1)a = {3}, σ2(e1)b = {2}, σ2(e1)c = {2},
σ2(e2)a = ∅, σ2(e2)b = {3}, σ2(e2)c = {1, 3}.

(1) Define B1 =
〈
µB1 , γB1

〉
: U2 → [0, 1] (given in Table 2).

Table 2. Intuitionistic fuzzy set B1.

B1 a b c

µB1 0.5 0.4 0.3

γB1 0.4 0.5 0.7

The optimistic multigranulation lower and upper approximations of B1 with respect
to the aftersets are given in Tables 3 and 4.

Table 3. Optimistic multigranulation lower approximation of B1.

1 2 3

σ1 + σ2
µB1
o (e1) 0.4 0.3 0.5

σ1 + σ2
γB1
o (e1) 0.5 0.7 0.4

σ1 + σ2
µB1
o (e2) 0.3 0.4 0.3

σ1 + σ2
γB1
o (e2) 0.7 0.5 0.7
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Table 4. Optimistic multigranulation upper approximation of B1.

1 2 3
oσ1 + σ2

µB1 (e1) 0 0 0
oσ1 + σ2

γB1 (e1) 1 1 1
oσ1 + σ2

µB1 (e2) 0 0 0
oσ1 + σ2

γB1 (e2) 1 1 1

(2) Define B = 〈µB, γB〉 : U1 → [0, 1] as given in Table 5.

Table 5. Intuitionistic fuzzy set B.

B 1 2 3

µB 0.3 0.7 0.6

γB 0.6 0.3 0.2

The optimistic multigranulation lower and upper approximations of B with respect to
the foresets are given in Tables 6 and 7.

Table 6. Optimistic multigranulation lower approximation of B.

a b c
µB σ1 + σ2o(e1) 0.3 0.3 0.7
γB σ1 + σ2o(e1) 0.6 0.6 0.3
µB σ1 + σ2o(e2) 0.6 0.6 0.3
γB σ1 + σ2o(e2) 0.2 0.2 0.6

Table 7. Optimistic multigranulation upper approximation of B.

a b c
µB σ1 + σ2

o(e1) 0 0 0
γB σ1 + σ2

o(e1) 1 1 1
µB σ1 + σ2

o(e2) 0 0 0
γB σ1 + σ2

o(e2) 1 1 1

Proposition 1. Let (σ1, A), (σ2, A) be two soft relations from U1 to U2, that is σ1 : A→ P(U1×
U2) and σ2 : A → P(U1 ×U2) and B ∈ IF(U2). Then, the following hold with respect to the
aftersets:

1. σ1 + σ2
B
o 6 σ1

B ∨ σ2
B;

2. oσ1 + σ2
B 6 σ1

B ∧ σ2
B.

Proof. (1) Let u1 ∈ U1. Then, σ1 + σ2
µB
o (e)(u1) = ∧{µB(u2) : u2 ∈ (u1σ1(e) ∪ u1σ2(e))} 6

(∧{µB(u2) : u2 ∈ (u1σ1(e)}) ∨ (∧{µB(u2) : u2 ∈ (u1σ2(e)}) = σ1
µB(e)(u1) ∨ σ2

µB(e)(u1).
Similarly, let u1 ∈ U1. Then σ1 + σ2

γB
o (e)(u1) = ∨{γB(u2) : u2 ∈ (u1σ1(e)∩u1σ2(e))} >

(∨{γB(u2) : u2 ∈ (u1σ1(e)}) ∧ (∨{γB(u2) : u2 ∈ (u1σ2(e)}) = σ1
γB(e)(u1) ∧ σ2

γB(e)(u1).
Hence, σ1 + σ2

B
o 6 σ1

B ∨ σ2
B.

(2) The properties can be proved similarly to (1).

Proposition 2. Let (σ1, A), (σ2, A) be two soft relations from U1 to U2, that is σ1 : A→ P(U1×
U2) and σ2 : A → P(U1 ×U2) and B ∈ IF(U1). Then, the following hold with respect to the
foresets:

1. Bσ1 + σ2o 6
B σ1 ∨B σ2;

2. Bσ1 + σ2
o 6B σ1 ∧B σ2.
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Proof. The proof is similar to the proof of Proposition 1.

For the converse, we have the following example.

Example 2 (Continued from Example 1). According to Example 1, we have the following:

σ1
µB1 (e1)(2) = 0.5 and σ1

γB1 (e1)(2) = 0.4;

σ2
µB1 (e1)(2) = 0.3 and σ2

γB1 (e1)(2) = 0.7;

σ1
µB1 (e1)(2) = 0.5 and σ1

µB1 (e1)(2) = 0.4;

σ2
µB1 (e1)(2) = 0.4 and σ2

γB1 (e1)(2) = 0.5.

Hence,

σ1 + σ2
µB1
o (e1)(2) = 0.3 � 0.5 = σ1

µB1 (e1)(2) ∨ σ2
µB1 (e1)(2);

σ1 + σ2
γB1
o (e1)(2) = 0.7 
 0.4 = σ1

γB1 (e1)(2) ∧ σ2
γB1 (e1)(2);

oσ1 + σ2
µB1 (e1)(2) = 0 � 0.4 = σ1

µB1 (e1)(2) ∧ σ2
µB1 (e1)(2);

oσ1 + σ2
γB1 (e1)(2) = 1 
 0.5 = σ1

γB1 (e1)(2) ∨ σ1
γB1 (e1)(2).

In addition,

µB σ1(e1)(a) = 0.3 and γB σ1(e1)(a) = 0.6
µB σ2(e1)(a) = 0.6 and γB σ2(e1)(a) = 0.2
µB σ1(e1)(a) = 0.7 and γB σ1(e1)(a) = 0.3
µB σ2(e1)(a) = 0.6 and γB σ2(e1)(a) = 0.2

Hence,
µB σ1 + σ2o(e1)(a) = 0.3 � 0.7 =µB σ1(e1)(a) ∨µB σ2(e1)(a);
γB σ1 + σ2o(e1)(a) = 0.3 
 0.2 =γB σ1(e1)(a) ∧γB σ2(e1)(a);
µB σ1 + σ2

o(e1)(a) = 0 � 0.6 =µB σ1(e1)(a) ∧µB σ2(e1)(a);
γB σ1 + σ2

o(e1)(a) = 1 
 0.3 =
γB σ1(e1)(a) ∨γB σ2(e1)(a).

Proposition 3. Let (σ1, A), (σ2, A) be two soft relations from U1 to U2, that is σ1 : A →
P(U1 ×U2) and σ2 : A→ P(U1 ×U2) and B ∈ IF(U2). Then, the following hold:

(1) σ1 + σ2
1U2
o = 1U1 for all e ∈ A;

(2) oσ1 + σ2
1U2 = 1U1 if u1σ1(e) ∩ u1σ2(e) 6= ∅ and u1σ1(e) ∪ u1σ2(e) 6= ∅;

(3) σ1 + σ2
0U2
o = 0U1 if u1σ1(e) ∪ u1σ2(e) 6= ∅ and u1σ1(e) ∩ u1σ2(e) 6= ∅;

(4) oσ1 + σ2
0U2 = 0U1 for all e ∈ A.

Proof. (1) Let u1 ∈ U1 and 1U2 = 〈1, 0〉 be the universal set of U2. If u1σ1(e) ∪ u1σ2(e) = ∅,
then σ1 + σ2

1
o(e)(u1) = 1 and σ1 + σ2

0
o(e)(u1) = 0.

If u1σ1(e)∪u1σ2(e) 6= ∅, then σ1 + σ2
1
o(e)(u1) =∧{1(u2) : u2 ∈ (u1σ1(e)∪u1σ2(e))} =

∧{1 : u2 ∈ (u1σ1(e) ∪ u1σ2(e))} = 1,
and σ1 + σ2

0
o(e)(u1) = ∨{0(u2) : u2 ∈ (u1σ1(e) ∩ u1σ2(e))} = ∨{0 : u2 ∈ (u1σ1(e) ∩

u1σ2(e))} = 0.
(2) The properties can be proved similarly to (1).
(3) Let u1 ∈ U1 and 0U2 = 〈0, 1〉 be the universal set of U2. If u1σ1(e) ∪ u1σ2(e) 6= ∅,

then σ1 + σ2
0
o(e)(u1) = ∧{0(u2) : u2 ∈ (u1σ1(e) ∪ u1σ2(e))} = ∧{0 : u2 ∈ (u1σ1(e) ∪

u1σ2(e))} = 0,
and σ1 + σ2

1
o(e)(u1) = ∨{1(u2) : u2 ∈ (u1σ1(e) ∩ u1σ2(e))} = ∨{1 : u2 ∈ (u1σ1(e) ∩

u1σ2(e))} = 1.
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(4) The properties can be proved similarly to (3).

Proposition 4. Let (σ1, A), (σ2, A) be two soft relations from U1 to U2, that is σ1 : A→ P(U1×
U2) and σ2 : A→ P(U1 ×U2) and and B ∈ IF(U1). Then, the following hold:

(1) 1U1 σ1 + σ2o = 1U2 for all e ∈ A;

(2) 1U1 σ1 + σ2
o = 1U2 for all e ∈ A,for all e ∈ A, if σ1(e)u2 ∩ σ2(e)u2 6= ∅ and σ1(e)u2 ∪

σ2(e)u2 6= ∅;
(3) 0U1 σ1 + σ2o = 0U2 for all e ∈ A,for all e ∈ A, if σ1(e)u2 ∪ σ2(e)u2 6= ∅ and σ1(e)u2 ∩

σ2(e)u2 6= ∅;
(4) 0U1 σ1 + σ2

o for all e ∈ A.

Proof. The proof is similar to the proof of Proposition 3.

Proposition 5. Let (σ1, A), (σ2, A) be two soft relations from U1 to U2, that is σ1 : A→ P(U1×
U2) and σ2 : A→ P(U1 ×U2) and B, B1, B2 ∈ IF(U2). Then, the following properties hold:

(1) If B1 ⊆ B2 then σ1 + σ2
B1
o ⊆ σ1 + σ2

B2
o ;

(2) If B1 ⊆ B2 then oσ1 + σ2
B1 ⊆o σ1 + σ2

B2 ;
(3) σ1 + σ2

B1∩B2
o = σ1 + σ2

B1
o ∩ σ1 + σ2

B2
o ;

(4) σ1 + σ2
B1∪B2
o ⊇ σ1 + σ2

B1
o ∪ σ1 + σ2

B2
o ;

(5) oσ1 + σ2
B1∪B2 =o σ1 + σ2

B1 ∪o σ1 + σ2
B2 ;

(6) oσ1 + σ2
B1∩B2 ⊆o σ1 + σ2

B1 ∩o σ1 + σ2
B2 .

Proof. (1) Since B1 ⊆ B2 so µB1 6 µB2 and γB1 > γB2 . Thus σ1 + σ2
µB1
o (e)(u1) = ∧{µB1(u2) :

u2 ∈ (u1σ1(e) ∪ u1σ2(e))} 6 ∧{µB2(u2) : u2 ∈ (u1σ1(e) ∪ u1σ2(e))} = σ1 + σ2
µB2
o (e)(u1),

and σ1 + σ2
γB1
o (e)(u1) = ∨{γB1(u2) : u2 ∈ (u1σ1(e) ∩ u1σ2(e))} > ∨{γB2(u2) : u2 ∈

(u1σ1(e) ∩ u1σ2(e))} = σ1 + σ2
γB2
o (e)(u1).

(2) The properties can be proved similarly to (1).
(3) Let u1 ∈ U1. If u1σ1(e)∪u1σ2(e) = ∅, then σ1 + σ2

µB1∩B2
o (e)(u1) = 1 = σ1 + σ2

µB1
o (e)

(u1) ∩ σ1 + σ2
µB2
o (e)(u1)

and σ1 + σ2
γB1∩B2
o (e)(u1) = 0 = σ1 + σ2

γB1
o (e)(u1) ∪ σ1 + σ2

γB2
o (e)(u1).

If u1σ1(e) ∪ u1σ2(e) 6= ∅,
then σ1 + σ2

µB1∩B2
o (e)(u1) = ∧{(µB1 ∧ µB2)(u2) : u2 ∈ (u1σ1(e) ∪ u1σ2(e))} = ∧{µB1

(u2) ∧ µB2(u2) : u2 ∈ (u1σ1(e) ∪ u1σ2(e))}
= (∧{µB1(u2) : u2 ∈ (u1σ1(e) ∪ u1σ2(e))}) ∧ (∧{µB2(u2) : u2 ∈ (u1σ1(e) ∪ u1σ2(e))})
= σ1 + σ2

µB1
o (e)(u1) ∩ σ1 + σ2

µB2
o (e)(u1).

In addition, σ1 + σ2
γB1∩B2
o (e)(u1) = ∨{(µB1 ∨ µB2)(u2) : u2 ∈ (u1σ1(e) ∪ u1σ2(e))} =

∨{µB1

(u2) ∨ µB2(u2) : u2 ∈ (u1σ1(e) ∪ u1σ2(e))}
= (∨{µB1(u2) : u2 ∈ (u1σ1(e) ∪ u1σ2(e))}) ∨ (∨{µB2(u2) : u2 ∈ (u1σ1(e) ∪ u1σ2(e))})
= σ1 + σ2

µB1
o (e)(u1) ∪ σ1 + σ2

µB2
o (e)(u1).

This shows that σ1 + σ2
B1∩B2
o = σ1 + σ2

B1
o ∩ σ1 + σ2

B2
o .

(4) The properties can be proved similarly to (3).
(5) Let u1 ∈ U1. If u1σ1(e)∩ u1σ2(e) = ∅, then oσ1 + σ2

µB1∪B2 (e)(u1) = 0 =o σ1 + σ2
µB1

(e)(u1) ∪o σ1 + σ2
µB2 (e)(u1)

and oσ1 + σ2
γB1∪B2 (e)(u1) = 1 =o σ1 + σ2

µB1 (e)(u1) ∩o σ1 + σ2
µB2 (e)(u1).

If u1σ1(e) ∩ u1σ2(e) 6= ∅,
then oσ1 + σ2

µB1∪B2 (e)(u1) = ∨{(µB1 ∨ µB2)(u2) : u2 ∈ (u1σ1(e) ∩ u1σ2(e))} = ∨{µB1

(u2) ∨ µB2(u2) : u2 ∈ (u1σ1(e) ∩ u1σ2(e))}
= (∨{µB1(u2) : u2 ∈ (u1σ1(e) ∩ u1σ2(e))}) ∨ (∨{µB2(u2) : u2 ∈ (u1σ1(e) ∩ u1σ2(e))})
=o σ1 + σ2

µB1 (e)(u1) ∪o σ1 + σ2

µB2
(e)(u1).

In addition, oσ1 + σ2
γB1∪B2 (e)(u1) = ∧{(γB1 ∧ γB2)(u2) : u2 ∈ (u1σ1(e) ∪ u1σ2(e))} =

∧{γB1(u2) ∧ γB2(u2) : u2 ∈ (u1σ1(e) ∪ u1σ2(e))}
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= (∧{γB1(u2) : u2 ∈ (u1σ1(e)∪ u1σ2(e))})∧ (∧{γB2(u2) : u2 ∈ (u1σ1(e)∪ u1σ2(e))})
=o σ1 + σ2

γB1 (e)(u1) ∩o σ1 + σ2

γB2
(e)(u1).

This shows that oσ1 + σ2
B1∪B2 =o σ1 + σ2

B1 ∪o σ1 + σ2
B2 .

(6) The properties can be proved similarly to (5).

Proposition 6. Let (σ1, A), (σ2, A) be two soft relations from U1 to U2, that is σ1 : A→ P(U1×
U2) and σ2 : A→ P(U1 ×U2) and B, B1, B2 ∈ IF(U2). Then, the following properties hold:

(1) If B1 ⊆ B2 then B1 σ1 + σ2o ⊆
B2 σ1 + σ2o;

(2) If B1 ⊆ B2 then B1 σ1 + σ2
o ⊆B2 σ1 + σ2

o;
(3) B1∩B2 σ1 + σ2o =

B1 σ1 + σ2o ∩
B2 σ1 + σ2o;

(4) B1∪B2 σ1 + σ2o ⊇
B1 σ1 + σ2o ∪

B2 σ1 + σ2o;
(5) B1∪B2 σ1 + σ2

o =B1 σ1 + σ2
o ∪B2 σ1 + σ2

o;
(6) B1∩B2 σ1 + σ2

o ⊆B1 σ1 + σ2
o ∩B2 σ1 + σ2

o.

Proof. The proof is similar to the proof of Proposition 5.

4. Roughness of an Intuitionistic Fuzzy Set over Two Universes by
Multi-Soft Relations

In this section, we discuss the optimistic roughness of an IFS by multi-soft binary
relations from U1 to U2 and approximate an IFS of universe U2 in universe U1 and an IFS
U1 in U2 by using aftersets and foresets of soft binary relations, respectively. In this way,
we obtain two intuitionistic fuzzy soft sets corresponding to IFSs in U2(U1). We also study
some properties of these approximations.

Definition 14. Let U1 and U2 be two non-empty finite universes, π be a family of soft binary rela-
tions from U1 to U2. Then, we say (U1, U2, π) the multigranulation generalized soft approximation
space over two universes.

Definition 15. Let (U1, U2, π) be the multigranulation generalized soft approximation space over
two universes U1 and U2, where π = σ1, σ2, σ3, .....σm and B = 〈µB, γB〉 be an IFS in U2. Then,
the optimistic lower approximation Σm

i=1σi
B
o
=

(
Σm

i=1σi
µB
o

, Σm
i=1σi

γB
o

)
and the optimistic upper

approximation oΣm
i=1σi

B
=

(
oΣm

i=1σi
µB ,o Σm

i=1σi
γB
)

of B = 〈µB, γB〉 are IF soft sets over U1 with
respect to the aftersets of soft relations (σi, A) ∈ π and are defined as:

Σm
i=1σi

µB
o
(e)(u1) =

{
∧{µB(u2) : u2 ∈ ∪m

i=1u1σi(e)}, if ∪m
i=1 u1σi(e) 6= ∅;

1 otherwise;

Σm
i=1σi

γB
o
(e)(u1) =

{
∨{γB(u2) : u2 ∈ ∩m

i=1u1σi(e)}, if ∩m
i=1 u1σi(e) 6= ∅;

0 otherwise;

and

oΣm
i=1σi

µB(e)(u1) =

{
∨{µB(u2) : u2 ∈ ∩m

i=1u1σi(e)}, if ∩m
i=1 u1σi(e) 6= ∅;

0 otherwise;

oΣm
i=1σi

γB(e)(u1) =

{
∧{γB(u2) : u2 ∈ ∪m

i=1u1σi(e)}, if ∪m
i=1 u1σi(e) 6= ∅;

1 otherwise,

where u1σi(e) = {u2 ∈ U2 : (u1, u2) ∈ σi(e)} are called the aftersets of u1 for u1 ∈ U1 and
e ∈ A. Obviously, (Σm

i=1σi
B
o

, A) and (oΣm
i=1σi

B
, A) are two IFS soft sets over U1.

Definition 16. Let (U1, U2, π) be the multigranulation generalized soft approximation space over
two universes U1 and U2, where π = σ1, σ2, σ3, .....σm and B = 〈µB, γB〉 be an IFS in U1. Then,
the optimistic lower approximation BΣm

i=1σio
=

(
µB Σm

i=1σio
,γB Σm

i=1σio

)
and the optimistic upper
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approximation BΣm
i=1σi

o
=

(
µB Σm

i=1σi
o
,γB Σm

i=1σi
o
)

of B = 〈µB, γB〉 are IF soft sets over U2 with
respect to the foresets of soft relations (σi, A) ∈ π and are defined as:

µB Σm
i=1σio

(e)(u2) =

{
∧{µB(u1) : u1 ∈ ∪m

i=1σi(e)u2}, if ∪m
i=1 σi(e)u2 6= ∅;

1 otherwise;

γB Σm
i=1σio

(e)(u2) =

{
∨{γB(u1) : u1 ∈ ∩m

i=1σi(e)u2}, if ∩m
i=1 σi(e)u2 6= ∅;

0 otherwise;

and

µB Σm
i=1σi

o
(e)(u2) =

{
∨{µB(u1) : u1 ∈ ∩m

i=1σi(e)u2}, if ∩m
i=1 σi(e)u2 6= ∅;

0 otherwise;

γB Σm
i=1σi

o
(e)(u2) =

{
∧{γB(u1) : u1 ∈ ∪m

i=1σi(e)u2}, if ∪m
i=1 σi(e)u2 6= ∅;

1 otherwise,

where σ1(e)u2 = {u1 ∈ U1 : (u1, u2) ∈ σi(e)} are called the foresets of u2 for u2 ∈ U2 and e ∈ A.
Obviously, (BΣm

i=1σio
, A) and (BΣm

i=1σi
o
, A) are two IFS soft sets over U2.

Moreover, Σm
i=1σi

B
o

: A → IF(U1),o Σm
i=1σi

B
: A → IF(U1) and BΣm

i=1σio
: A →

IF(U2),B Σm
i=1σi

o
: A→ IF(U2).

Proposition 7. Let (U1, U2, π) be the multigranulation generalized soft approximation space over
two universes U1 and U2 and B = 〈µB, γB〉 be an IFS in U2. Then, the following properties for
Σm

i=1σi
B
o

,o Σm
i=1σi

B
hold:

(1) Σm
i=1σi

B
o
⊆ ∨m

i=1σi
B;

(2) oΣm
i=1σi

B ⊆ ∧m
i=1σi

B.

Proof. The proof is similar to the proof of Proposition 1.

Proposition 8. Let (U1, U2, π) be the multigranulation generalized soft approximation space over
two universes U1 and U2 and B = 〈µB, γB〉 be an IFS in U1. Then, the following properties for
BΣm

i=1σio
,B Σm

i=1σi
o

hold:

(1) BΣm
i=1σio

⊆ ∨m
i=1

Bσi;

(2) BΣm
i=1σi

o ⊆ ∧m
i=1

Bσi.

Proof. The proof is similar to the proof of Proposition 2.

Proposition 9. Let (U1, U2, π) be the multigranulation generalized soft approximation space over
two universes U1 and U2. Then, the following properties with respect to the aftersets hold:

(1) Σm
i=1σi

1U2
o

= 1U1 for all e ∈ A;

(2) oΣm
i=1σi

1U2 = 1U1 if ∩m
i=1u1σi(e) 6= ∅ and ∪m

i=1u1σi(e) 6= ∅, for some i ≤ m;
(3) Σm

i=1σi
0U2
o

= 0U1 if ∪m
i=1u1σi(e) 6= ∅ and ∩m

i=1u1σi(e) 6= ∅ , for some i ≤ m;
oΣm

i=1σi
0U2 = 0U1 for all e ∈ A.

Proof. The proof is similar to the proof of Proposition 3.

Proposition 10. Let (U1, U2, π) be the multigranulation generalized soft approximation space
over two universes U1 and U2. Then, the following properties with respect to the foresets hold:

(1) 1U1 Σm
i=1σio

= 1U2 for all e ∈ A;

(2) 1U1 Σm
i=1σi

o
= 1U2 if ∩m

i=1σi(e)u2 6= ∅ and ∪m
i=1σi(e)u2 6= ∅, for some i ≤ m;
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(3) 0U1 Σm
i=1σio

= 0U2 if ∪m
i=1σi(e)u2 6= ∅ and ∩m

i=1σi(e)u2 6= ∅, for some i ≤ m;

(4) 0U1 Σm
i=1σi

o
= 0U2 for all e ∈ A.

Proof. The proof is similar to the proof of Proposition 4.

Proposition 11. Let (U1, U2, π) be the multigranulation generalized soft approximation space
over two universes U1 and U2 and B, B1, B2 ∈ IF(U2). Then, the following properties for Σm

i=1σi
B
o

,
oΣm

i=1σi
B

with respect the aftersets hold:
(1) If B1 ⊆ B2 then Σm

i=1σi
B1
o
⊆ Σm

i=1σi
B2
o

;

(2) If B1 ⊆ B2 then oΣm
i=1σi

B1 ⊆o Σm
i=1σi

B2 ;
(3) Σm

i=1σi
B1∩B2
o

= Σm
i=1σi

B1
o
∩ Σm

i=1σi
B2
o

;

(4) Σm
i=1σi

B1∪B2
o

⊇ Σm
i=1σi

B1
o
∪ Σm

i=1σi
B2
o

;

(5) oΣm
i=1σi

B1∪B2 =o Σm
i=1σi

B1 ∪o Σm
i=1σi

B2 ;

(6) oΣm
i=1σi

B1∩B2 ⊆o Σm
i=1σi

B1 ∩o Σm
i=1σi

B2 .

Proof. The proof is similar to the proof of Proposition 5.

Proposition 12. Let (U1, U2, π) be the multigranulation generalized soft approximation space
over two universes U1 and U2 and B, B1, B2 ∈ IF(U1). Then, the following properties for BΣm

i=1σio
,

BΣm
i=1σi

o
with respect the foresets hold:

(1) If B1 ⊆ B2 then B1 Σm
i=1σio

⊆B2 Σm
i=1σio

;

(2) If B1 ⊆ B2 then B1 Σm
i=1σi

o ⊆B2 Σm
i=1σi

o
;

(3) B1∩B2 Σm
i=1σio

=B1 Σm
i=1σio

∩B2 Σm
i=1σio

;

(4) B1∪B2 Σm
i=1σio

⊇B1 Σm
i=1σio

∪B2 Σm
i=1σio

;

(5)
B1∪B2 Σm

i=1σi
o
=

B1 Σm
i=1σi

o ∪B2 Σm
i=1σi

o
;

(6) B1∩B2 Σm
i=1σi

o ⊆B1 Σm
i=1σi

o ∩B2 Σm
i=1σi

o
.

Proof. The proof is similar to the proof of Proposition 6.

Proposition 13. Let (U1, U2, π) be the multigranulation generalized soft approximation space
over two universes U1 and U2 and B1, B2, B3, . . .Bn ∈ IF(U2), and B1 ⊆ B2 ⊆ B3 ⊆ . . . ⊆ Bn.
Then, the following properties with respect the aftersets hold:

(1) Σm
i=1σi

B1
o
⊆ Σm

i=1σi
B2
o
⊆ Σm

i=1σi
B3
o
⊆ . . . . . . ⊆ Σm

i=1σi
Bn
o

;

(2) oΣm
i=1σi

B1 ⊆o Σm
i=1σi

B2 ⊆o Σm
i=1σi

B3 ⊆ . . . . . . ⊆o Σm
i=1σi

Bn .

Proof. The proof is similar to the proof of Proposition 5.

Proposition 14. Let (U1, U2, π) be the multigranulation generalized soft approximation space
over two universes U1 and U2 and B1, B2, B3, . . .Bn ∈ IF(U1), and B1 ⊆ B2 ⊆ B3 ⊆ . . . ⊆ Bn.
Then, the following properties with respect the foresets hold:

(1) B1 Σm
i=1σio

⊆B2 Σm
i=1σio

⊆B3 Σm
i=1σio

⊆ . . . . . . ⊆Bn Σm
i=1σio

;

(2) B1 Σm
i=1σi

o ⊆B2 Σm
i=1σi

o ⊆B1 Σm
i=1σi

o ⊆ . . . . . . ⊆Bn Σm
i=1σi

o
.

Proof. The proof is similar to the proof of Proposition 6.

5. Application in Decision-Making Problem

Decision making is a major area of study in almost all types of data analysis. To select
effective alternatives from aspirants is the process of decision making. Since our environ-
ment is becoming changeable and complicated day by day and the decision-making process
proposed by a single expert is no longer good, therefore, a decision-making algorithm
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based on consensus by using collective wisdom is a better approach. From imprecise
multi-observer data, Maji et al. [71] proposed a useful technique of object recognition.
Feng et al. [72] pointed out errors in Maji et al. [71] and rebuilt a framework correctly.
Shabir et al. [63] presented MGRS model based on soft relations by using crisp sets and
proposed a decision-making algorithm. Jamal and Shabir [64] presented a decision-making
algorithm by using the OMGRS model in terms of FS based on soft relations. This pa-
per extends Jamal’s OMGFRS model and presents the decision-making method based on
multi-soft relations by use of OMGIFRS.

The lower and upper approximations are the closest to approximated subsets of a

universe. We obtain two corresponding values Σm
i=1σi

B
o
(ej)(xk) and oΣm

i=1σi
B
(ej)(xk) with

respect to the afterset to the decision alternative xk ∈ U1 by the IF soft lower and upper
approximations of an IF B ∈ IF(U2).

We present Algorithms 1 and 2 for our proposed model here.

Algorithm 1: Aftersets for decision-making problem

(1) Compute the optimistic multigranulation lower IF soft set approximation Σm
i=1σi

B
o

and optimistic multigranulation upper IF soft set approximation oΣm
i=1σi

B
of an IF set

B = 〈µB, γB〉 with respect to the aftersets;
(2) Compute the score values for each of the entries of the Σm

i=1σi
B
o

and oΣm
i=1σi

B
and

denote them by Sij(xi, ej) and Sij(xi, ej) for all i, j;

(3) Compute the aggregated score S(xi) =
n
∑

j=1
Sij(xi, ej) and S(xi) =

n
∑

j=1
Sij(xi, ej);

(4) Compute S(xi) = S(xi) + S(xi);
(5) The best decision is xk = maxi S(xi);
(6) If k has more than one value, say k1, k2, then we calculate the accuracy values
Hij(xi, ej) and Hij(xi, ej) for only those xk for which S(xk) are equal;

(7) Compute H(xk) =
n
∑

j=1
Hkj(xk, ej) +

n
∑

j=1
Hkj(xk, ej) for k = k1, k2;

(8) If H(xk1) > H(xk2), then we select xk1;
(9) If H(xk1) = H(xk2), then select any one of xk1 and xk2 .

Algorithm 2: Foresets for decision-making problem

(1) Compute the optimistic multigranulation lower IF soft set approximation BΣm
i=1σi

B
o

and upper multigranulation IF soft set approximation BΣm
i=1σi

o
of an IF set B = 〈µB, γB〉

with respect to the foresets;
(2) Compute the score values for each of the entries of the BΣm

i=1σi
B
o

and BΣm
i=1σi

o
and

denote them by Sij(xi, ej) and Sij(xi, ej) for all i, j;

(3) Compute the aggregated score S(xi) =
n
∑

j=1
Sij(xi, ej) and S(xi) =

n
∑

j=1
Sij(xi, ej);

(4) Compute S(xi) = S(xi) + S(xi);
(5) The best decision is xk = maxi S(xi);
(6) If k has more than one value, say k1, k2, then we calculate the accuracy values
Hij(xi, ej) and Hij(xi, ej) for only those xk for which S(xk) are equal;

(7) Compute H(xk) =
n
∑

j=1
Hkj(xk, ej) +

n
∑

j=1
Hkj(xk, ej) for k = k1, k2;

(8) If H(xk1) > H(xk2) then we select xk1;
(9) If H(xk1) = H(xk2) then select any one of xk1 and xk2 .
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Now, we show the proposed approach of decision making step by step by using
following example. The following example discusses an algorithm to make a wise decision
for the selection of a car.

Example 3. Suppose a multi-national company wants to select a best officer and there are 10
short-listed applicants which are categorized in two groups, platinum and diamond. The set U1 =
{m1, m2, m3, m4, m5, m6} represents the applicants of platinum group and U2 = {c1, c2, c3, c4}
represents the applicants of diamond group. Let A = {e1, e2, e3} ={e1=education,e2=experience,
e3=computer knowledge} be the set of parameters. Let two different teams of interviewers analyze
and compare the competencies of these applicants.

We have σ1 : A→ P(U1 ×U2) represent the comparison of the first-interviewer team
defined by

σ1(e1) = {(m1, c1), (m1, c2), (m2, c2), (m2, c4), (m4, c2), (m4, c3), (m5, c3), (m5, c4), (m6, c1)},
σ1(e2) = {(m1, c1), (m2, c3), (m4, c1), (m5, c1), (m6, c2), (m6, c3)},

and σ1(e3) = {(m1, c1), (m2, c4), (m3, c1), (m3, c3), (m4, c1), (m5, c3), (m5, c4)},

where σ1(e1) compares the education of applicants, σ1(e2) compares the experience of
applicants, σ1(e3) compares the computer knowledge of applicants.

Similarly, σ2 : A→ P(U1 ×U2) represent the comparison of the second-interviewer
team defined by

σ2(e1) = {(m1, c1), (m1, c2), (m2, c3), (m3, c4), (m4, c2), (m5, c2), (m6, c3)},
σ2(e2) = {(m1, c1), (m3, c2), (m4, c1), (m6, c4)},

and σ2(e3) = {(m1, c1), (m1, c3), (m2, c2), (m2, c3), (m4, c1), (m5, c4), (m6, c4)},

where σ2(e1) compares the education of applicants, σ2(e2) compares the experience of
applicants, σ2(e3) compares the computer knowledge of applicants.

From these comparisons, we obtain two soft relations from U1 to U2. Now, the aftersets

m1σ1(e1) = {c1, c2}, m2σ1(e1) = {c2, c4}, m3σ1(e1) = ∅,

m4σ1(e1) = {c2, c3}, m5σ1(e1) = {c3, c4}, m6σ1(e1) = {c1} and

m1σ1(e2) = {c1}, m2σ1(e2) = {c3}, m3σ1(e2) = ∅,

m4σ1(e2) = {c1}, m5σ1(e2) = {c1}, m6σ1(e2) = {c2, c3}, and

m1σ1(e3) = {c1}, m2σ1(e3) = {c4}, m3σ1(e3) = {c1, c3},
m4σ1(e3) = {c1}, m5σ1(e3) = {c3, c4}, m6σ1(e3) = ∅, and

m1σ2(e1) = {c1, c2}, m2σ2(e1) = {c3}, m3σ2(e1) = {c4},
m4σ2(e1) = {c2}, m5σ2(e1) = {c2}, m6σ2(e1) = {c3} and

m1σ2(e2) = {c1}, m2σ2(e2) = ∅, m3σ2(e2) = {c2},
m4σ2(e2) = {c1}, m5σ2(e2) = ∅, m6σ2(e2) = {c4}, and

m1σ2(e3) = {c1, c3}, m2σ2(e3) = {c2, c3}, m3σ2(e3) = ∅,

m4σ2(e3) = {c1}, m5σ2(e3) = {c4}, m6σ2(e3) = {c4},

where miσj(e1) represents all those applicants of the diamond group whose education is
equal to mi, miσj(e2) represents all those applicants of the diamond group whose experience
is equal to mi and miσj(e3) represents all those applicants of the diamond group whose
computer knowledge is equal to mi. In addition, foresets



Mathematics 2021, 9, 2587 17 of 22

σ1(e1)c1 = {m1, m6}, σ1(e1)c2 = {m1, m2, m4}, σ1(e1)c3 = {m4, m5}, σ1(e1)c4 = {m2, m5}, and

σ1(e2)c1 = {m1, m4, m5}, σ1(e2)c2 = {m6}, σ1(e2)c3 = {m2, m6}, σ1(e2)c4 = ∅, and

σ1(e3)c1 = {m1, m3, m4}, σ1(e3)c2 = ∅, σ1(e3)c3 = {m3, m5}, σ1(e3)c4 = {m2, m5}.
σ2(e1)c1 = {m1}, σ2(e1)c2 = {m1, m4, m5}, σ2(e1)c3 = {m2, m6}, σ2(e1)c4 = {m3}, and

σ2(e2)c1 = {m1, m4}, σ2(e2)c2 = {m3}, σ2(e2)c3 = ∅, σ2(e2)c4 = {m6}, and

σ2(e3)c1 = {m1, m4}, σ2(e3)c2 = {m2}, σ1(e3)c3 = {m1, m2}, σ2(e3)c4 = {m5, m6},

where σj(e1)ci represents all those applicants of the platinum group whose education is
equal to ci, σj(e2)ci represents all those applicants of the platinum group whose experience
is equal to ci and σj(e3)ci represents all those applicants of the platinum group whose
computer knowledge is equal to ci.

Define B = 〈µB, γB〉 : U2 → [0, 1] which represents the preference of applicants given by a multi-national company such that

µB(c1) = 0.9, µB(c2) = 0.8, µB(c3) = 0.4, µB(c4) = 0 and

γB(c1) = 0.0, γB(c2) = 0.2, γB(c3) = 0.5, γB(c4) = 0.8.

Define B1 =
〈
µB1 , γB1

〉
: U1 → [0, 1] which represents the preference of applicants given by a multi-national company such that

µB1(m1) = 1, µB1(m2) = 0.7, µB1(m3) = 0.5, µB1(m4) = 0.1,

µB1(m5) = 0, µB1(m6) = 0.4 and

γB1(m1) = 0, γB1(m2) = 0.2, γB1(m3) = 0.5, γB1(m4) = 0.7,

γB1(m5) = 1, γB1(m6) = 0.5.

Therefore, the optimistic multigranulation lower and upper approximations (with
respect to the aftersets as well as with respect to the foresets) are given in Tables 8 and 9.

σ1 + σ2
B
o = (σ1 + σ2

µB
o , σ1 + σ2

γB
o ),

oσ1 + σ2
B = (oσ1 + σ2

µB ,o σ1 + σ2
γB).

Table 8. Optimistic multigranulation lower approximations of B.

σ1 + σ2
µB
o , σ1 + σ2

γB
o m1 m2 m3 m4 m5 m6

σ1 + σ2
µB
o (e1) 0.8 0 0 0.4 0 0.4

σ1 + σ2
µB
o (e2) 0.9 0.4 0.8 0.9 0.9 0

σ1 + σ2
µB
o (e3) 0.4 0 0.4 1 0 0

σ1 + σ2
γB
o (e1) 0.2 0.8 0.8 0.5 0.8 0.5

σ1 + σ2
γB
o (e2) 0 0.5 0.2 0 0 0.8

σ1 + σ2
γB
o (e3) 0.5 0.8 0.5 0 0.8 0.8

Table 8 shows the exact degree of competency of applicant mi to B in education,
experience and computer knowledge.

Table 9 shows the possible degree of competency of applicant mi to B in education,
experience and computer knowledge.

In Table 10, S(m1) = S(m4), so we calculate accuracy values for m1 and m4, as shown
in Table 11.
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Table 9. Optimistic multigranulation upper approximations of B.

oσ1 + σ2
µB ,o σ1 + σ2

γB m1 m2 m3 m4 m5 m6

oσ1 + σ2
µB(e1) 0.9 0 0 0.8 0 0

oσ1 + σ2
µB(e2) 0.9 0 0 0.9 0 0

oσ1 + σ2
µB(e3) 0.9 0 0 0 0 0

oσ1 + σ2
γB(e1) 0 1 1 0.2 1 1

oσ1 + σ2
γB(e2) 0 1 1 0 1 1

oσ1 + σ2
γB(e3) 0 1 1 1 0.8 1

Table 10. Values of score function of applicants.

Sij(e1) Sij(e2) Sij(e3) Sij(e1) Sij(e2) Sij(e3) S(xi) S(xi) S(xi)

m1 0.6 0.9 −0.1 0.9 0.9 0.9 1.4 2.7 4.1

m2 −0.8 −0.1 −0.8 −1 −1 −1 −1.7 −3 −4.7

m3 −0.8 0.6 −0.1 −1 −1 −1 −0.3 −3 −3.3

m4 −0.1 0.9 0.9 0.6 0.9 0.9 1.7 2.4 4.1

m5 −0.8 0.9 −0.8 −1 −1 −0.8 −0.7 −2.8 −3.5

m6 −0.1 −0.8 −0.8 −1 −1 −1 1.7 −3 −4.7

Table 11. Values of accuracy function.

Hij(e1) Hij(e2) Hij(e3) Hij(e1) Hij(e2) Hij(e3) H

m1 1 0.9 0.9 0.9 0.9 0.9 5.5

m6 0.9 0.9 1 1 0.9 1 5.7

It is shown in Table 11 that H(m6) = 5.7 is maximum. Therefore, a multi-national
company will select applicant m6.

Therefore, the optimistic multigranulation lower and upper approximations (with
respect to the foresets) are given in Tables 12 and 13.

Bσ1 + σ2o = (µB σ1 + σ2o,γB σ1 + σ2o),
Bσ1 + σ2

o = (µB σ1 + σ2
o,γB σ1 + σ2

o).

Table 12. Optimistic multigranulation lower approximations of B.

µB σ1 + σ2o,γB σ1 + σ2o c1 c2 c3 c4

µB σ1 + σ2o(e1) 0.4 0 0 0
µB σ1 + σ2o(e2) 0 0.4 0.4 0.4
µB σ1 + σ2o(e3) 0.1 0.7 0 0
γB σ1 + σ2o(e1) 0.5 1 1 1
γB σ1 + σ2o(e2) 1 0.5 0.5 0.5
γB σ1 + σ2o(e3) 0.7 0.2 1 1

Table 12 shows the exact degree of competency of applicant ci to B in education,
experience and computer knowledge.
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Table 13 shows the possible degree of competency of applicant ci to B in education,
experience and computer knowledge.

Table 13. Optimistic multigranulation upper approximations of B.

µB σ1 + σ2
o,γB σ1 + σ2

o c1 c2 c3 c4

µB σ1 + σ2
o(e1) 1 0.1 0 0

µB σ1 + σ2
o(e2) 1 0 0 0

µB σ1 + σ2
o(e3) 1 0 0 0

γB σ1 + σ2
o(e1) 0 0.7 1 1

γB σ1 + σ2
o(e2) 0 1 1 1

γB σ1 + σ2
o(e3) 0 1 1 1

It is shown in Table 14 that S(c1) = 1.3 is maximum. Therefore, a multi-national
company will select applicant c1.

Table 14. Values of score function of colors of car.

Sij(e1) Sij(e2) Sij(e3) Sij(e1) Sij(e2) Sij(e3) S(xi) S(xi) S(xi)

c1 −0.1 −1 −0.6 1 1 1 −1.7 3 1.3

c2 −1 −0.1 0.5 −0.6 −1 −1 −0.6 −2.6 −3.2

c3 −1 −0.1 −1 −1 −1 −1 −2.1 −3 −5.1

c4 −1 −0.1 −1 −1 −1 −1 −2.1 −3 −5.1

6. Comparison

The RS describes a target set by a lower and upper approximation based on single
granulation. However, the multiple granulation with approximations of a target set is
needed in many real world problems as well. For example, Qian et al. [41,42] built a
framework of OMGRS and PMGRS by getting inspiration of multi-source datasets and
multiple granulation is needed by multi-scale data for set approximations [73]. Many
things are different when comparing our work with existing theories. Mainly, we make a
note on the differences of our work and existing ones, such as angle of thinking, MGRS
environment and research objective. Our research with respect to the angle of thinking
is different from other existing theories. For a comparative study, our proposed model
transforms decision-making systems into a formal decision context. Our study is different
from the existing ones in [41,63,74] in terms of MGRS because our work is about IFSs which
are useful in dealing with uncertainty. In [63], Shabir et al. used crisp sets to present MGRS
model based on soft relations. Later, they used a FS instead of a crisp set and presented
OMGFRS [64]. We extended the OMGFRS model in terms of IFS and proposed OMGIFRS
model based on soft binary relations to make better decision in decision making-problems.
An IFS is better than a crisp set or a FS to discuss the uncertainty. In IFS, an element is
described with membership degree as well as non-membership degree but in FS, an element
is described with membership degree only. That is why our proposed model has more
capability to reveal the uncertainty because of IFS. Furthermore, we have used soft relations
which have many applications in dealing with uncertainty because of its parameterized
collection of binary relations.

7. Conclusions

This paper proposes the MGRS model in terms of IFS based on soft binary relations
over two universes. First of all, we defined granulation roughness based on two soft binary
relations using IFSs with respect to the aftersets and foresets. In this way, we obtain two
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IFSSs with respect to the aftersets and foresets. Some properties of OMGIFRS have been
studied. Then, we generalized these concepts to granulation roughness of an IFS based
on multi-soft relations and discussed their properties. We presented a decision-making
algorithm regarding the aftersets and foresets with an example in practical decision-making
problem. In IFS, the sum of membership degree, non-membership degree and hesitant
degree of an element is less than or equal to 1. However, in some decision-making problems,
the sum of membership degree, non-membership degree and hesitant degree of an element
may be greater than 1. In this case, the Pythagorean fuzzy set which is an extension of
IFS is the better set to deal with uncertainty. The Pythagorean fuzzy set extension makes
better improvement in applicability and flexibility of IFS. Further work may be discussed
about investigation of pessimistic MGRS of an IFS based on soft relations. Other OMGIFRS
models with interval valued IFSs, uncertain linguistic FSs, basic uncertain information SSs,
linguistic Z-number FSSs and Pythagorean FSs may be discussed in future.
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