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Abstract: A generalization of the well-known Fibonacci sequence is the k−Fibonacci sequence whose
first k terms are 0, . . . , 0, 1 and each term afterwards is the sum of the preceding k terms. In this
paper, we find all k-Fibonacci numbers that are curious numbers (i.e., numbers whose base ten
representation have the form a · · · ab · · · ba · · · a). This work continues and extends the prior result
of Trojovský, who found all Fibonacci numbers with a prescribed block of digits, and the result of
Alahmadi et al., who searched for k-Fibonacci numbers, which are concatenation of two repdigits.
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1. Introduction

Given a couple of non-negative integers ` and m, we shall define the (`, m)−curious
number as a natural number with the following base ten representation

a · · · a︸ ︷︷ ︸
`

b · · · b︸ ︷︷ ︸
m

a · · · a︸ ︷︷ ︸
`

,

where a and b are integers such that a, b ∈ {0, 1, . . . , 9}. The first curious numbers are

C = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, . . .},

and this matches with the sequence A335779 in Sloane’s Encyclopedia [1]. Few properties
of curious numbers are currently known. For instance, Borade and Mayle in [2] determined
all curious number that are perfect squares. Note that a (0, m)−curious number is not
more than a repdigit, i.e., a positive integer with only one distinct digit in its decimal
representation.

However, many papers have been written on Diophantine equations involving repdi-
gits and terms of certain linear recurrence sequences. It should be mentioned that Luca [3]
in 2000 showed that 55 and 11 are the largest repdigits in the Fibonacci and Lucas sequences,
respectively. Since then, this result has been generalized and extended in various directions.
For example, Erduvan and Keskin [4] found all repdigits expressible as products of two
Fibonacci or Lucas numbers. Faye and Luca [5] looked for repdigits in the usual Pell
sequence; using some elementary methods, they concluded that there are no Pell numbers
larger than 10 that are repdigits. We also mention the work of Normenyo, Luca and
Togbé [6] who found all repdigits expressible as sums of three Pell numbers. Shortly
afterwards, they extended their work to four Pell numbers [7].

The Fibonacci sequence has been generalized in many ways. Here, we consider, for
an integer k ≥ 2, the k−Fibonacci sequence F(k) = (F(k)

n )n≥−(k−2) defined by the recurrence
relation

F(k)
n = F(k)

n−1 + · · ·+ F(k)
n−k for all n ≥ 2,
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with initial values F(k)
i = 0 for i = 2− k, . . . , 0, and F(k)

1 = 1. We call F(k)
n the nth k-Fibonacci

number. The Fibonacci numbers are obtained for k = 2, while when, for example, k = 3, the
resulting sequence is a tribonacci sequence.

Diophantine problems involving k−Fibonacci numbers and repdigits were recently an
active research field in number theory. For example, a conjecture (proposed by Marques [8])
about repdigits in k−Fibonacci sequences was proved by Bravo-Luca [9].
Alahmadi et al. [10] generalized recently the results mentioned above by showing that
only repdigits with at least two digits as a product of ` consecutive k-Fibonacci numbers
occur only for (k, `) = (2, 1), (3, 1), extending the works [11,12], which dealt with the partic-
ular cases of Fibonacci and Tribonacci numbers. See [13] for a problem involving repdigits
in generalized pell sequences. In addition, Bravo-Luca [14] found all repdigits, which are
sums of two k−Fibonacci numbers (see [15] for a product version). Problems concerning
powers of two and coincidences in generalized Fibonacci numbers can be found in [16,17].
Finally, Alahmadi et al. [18] determined all k−Fibonacci numbers that are concatenations
of two repdigits, while Trojovský [19] found all Fibonacci numbers with a prescribed block
of digits.

In this paper, we determine all curious numbers, which are k-Fibonacci numbers, i.e.,

F(k)
n = a · · · a︸ ︷︷ ︸

`

b · · · b︸ ︷︷ ︸
m

a · · · a︸ ︷︷ ︸
`

,

which continues and extends the works in [18,19]. More precisely, we solve the Diophantine
equation as follows:

F(k)
n =

1
9

(
a · 102`+m − (a− b) · 10`+m + (a− b) · 10` − a

)
(1)

in positive integers n, k, m, `, a and b with k ≥ 2, a, b ∈ {0, 1, . . . , 9} and a 6= b.
Before presenting our main theorem, it is important to mention that in Equation (1),

we assumed `, m ≥ 1 and a 6= b since otherwise, the problem reduces to finding all
k−Fibonacci numbers that are repdigits or concatenations of two repdigits; these problems
have been already solved in [9,18] (see also [20]). In addition, note that when a = 0, our
problem also reduces to determining all k−Fibonacci numbers that are concatenations of
two repdigits. Thus, throughout this paper we also assume that a ≥ 1. Our result is the
following.

Theorem 1. The only curious generalized Fibonacci number is F(5)
11 = 464.

As an immediate consequence of Theorem 1, we have the following corollary.

Corollary 1. There are no curious numbers that are powers of two.

2. Preliminary Results

In this section, we present some basic properties of the k−Fibonacci sequence and give
some important estimations needed for the sequel. Additionally, we present a lower bound
for a nonzero linear form in logarithms of algebraic numbers and state two reduction
lemmas, which will be the key tool used in this paper to reduce the upper bounds. All
these facts will be used in the proof of Theorem 1.

2.1. On k–Fibonacci Numbers

The first direct observation about the k−Fibonacci sequence is that the first k + 1
non–zero terms in F(k) are powers of two, namely, the following:

F(k)
n = 2max{0,n−2} for all 1 ≤ n ≤ k + 1, (2)
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while the next term is F(k)
k+2 = 2k − 1. In fact, the inequality (see [16])

F(k)
n < 2n−2 holds for all n ≥ k + 2. (3)

Next, F(k) is a linear recurrence sequence of the following characteristic polynomial:

Ψk(z) = zk − zk−1 − · · · − z− 1.

The classic study of linear recurrence sequences (see [21]) is based on knowledge of
the roots of their characteristic polynomials. While studying the roots of Ψk(z), it is usual
to work with the shifted polynomial as follows:

ψk(z) = (z− 1)Ψk(z) = zk+1 − 2zk + 1.

Except for the extra root at z = 1, ψk(z) has the same roots as Ψk(x). By Descartes’
rule of signs, the polynomial Ψk(z) has exactly one positive real root, for example, z = α(k).
Since Ψk(1) = 1− k and Ψk(2) = 1, it follows that α(k) ∈ (1, 2). In fact, it is known that
2(1− 2−k) < α(k) < 2 (see [22] (Lemma 2.3) or [23] (Lemma 3.6)). Thus, α(k) approaches 2
as k tends to infinity. To simplify the notation, we shall omit the dependence on k of α.

Miles [24] showed that the roots of Ψk(z) are distinct, and the remaining k− 1 roots of
Ψk(z) different from α lie inside the unit disk. He showed this by reducing the equation
Ψk(z) = 0 to a form where Rouch’s theorem could be applied. This fact was reproved by
Miller [25] by an elementary argument. In particular, α is a Pisot number of degree k, and
Ψk(z) is an irreducible polynomial over Q[z].

We consider for k ≥ 2, the function fk(z) := (z− 1)/(2 + (k + 1)(z− 2)). With this
notation, Dresden and Du proved in [26] the following:

|F(k)
n − fk(α)α

n−1| < 1
2

(4)

which for all n ≥ 1 and k ≥ 2. From (4), we can write the following:

F(k)
n = fk(α)α

n−1 + ek(n) where |ek(n)| < 1/2. (5)

Furthermore, we obtain the following:

1/2 ≤ fk(α) ≤ 3/4 and | fk(αi))| < 1 for i = 2, . . . , k, (6)

which hold for all k ≥ 2, where α =: α1, α2, . . . , αk are all the zeros of Ψk(z). So, by
computing norms from Q(α) to Q, we see that the number fk(α) is not an algebraic integer.
Proofs for this fact and inequalities (6) can be found in [27].

Additionally, it was proved in [9] the following:

αn−2 ≤ F(k)
n ≤ αn−1 holds for all n ≥ 1 and k ≥ 2. (7)

We finish this subsection with the following estimate, due to Bravo, Gómez and
Luca [28], which will be one of the key points in addressing the large values of k (see
also [29]).

Lemma 1. Let k ≥ 2 and suppose that r < 2k/2. Then, the following holds:

F(k)
r = 2r−2(1 + ζ f ) where |ζ f | <

1
2k/2 .

2.2. Linear Forms in Logarithms

We need to use a Baker-type lower bound for a nonzero linear form in logarithms of
algebraic numbers. We begin by recalling some basic notions from algebraic number theory.
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Let η be an algebraic number of degree d over Q with minimal primitive polynomial
over the integers m(z) := a0 ∏d

i=1(z − η(i)) ∈ Z[z], where the leading coefficient a0 is
positive and the η(i)’s are the conjugates of η. The logarithmic height of η is given by the
following:

h(η) :=
1
d

(
log a0 +

d

∑
i=1

log max{|η(i)|, 1}
)

.

In order to illustrate this, we can use the facts that the minimal primitive polynomial
of α is Ψk(z), Q(α) = Q( fk(α)) and that | fk(α

(i))| ≤ 1 for all i = 1, . . . , k and k ≥ 2 (see (6)),
to prove the following:

h(α) = (log α)/k < (log 2)/k and h( fk(α)) < 2 log k for all k ≥ 2. (8)

See [27] for further details of the proof of (8). In addition, if η = p/q is a rational
number with gcd(p, q) = 1 and q > 0, then h(η) = log max{|p|, q}. Finally, the following
properties of h(·) are used in the next sections:

h(η ± γ) ≤ h(η) + h(γ) + log 2; h(ηγ±1) ≤ h(η) + h(γ);

h(η) = h(η(i)), i = 2, . . . , k; h(ηs) = |s|h(η) (s ∈ Z).

As a consequence of the above properties, one can easily deduce the next lemma.

Lemma 1. Let k ≥ 2 and s 6= 0 be the integers and suppose that |s| ≤ 10ε for some integer ε ≥ 1.
Then, we have the following:

h
(

9 fk(α)s−1
)
< ε log 10 + 2 log k.

Furthermore, if ε = 1, then we have the following:

h
(

9 fk(α)s−1
)
< 6 log k.

Our main tool is the following lower bound for a non-zero linear form in logarithms
of algebraic numbers, due to Matveev [30].

Theorem 1 (Matveev’s theorem). Let K be a number field of degree D over Q, γ1, . . . , γt

be positive real numbers of K, and b1, . . . , bt rational integers. Put Λ := γb1
1 · · · γ

bt
t − 1 and

B ≥ max{|b1|, . . . , |bt|}. Let Ai ≥ max{Dh(γi), | log γi|, 0.16} be real numbers for i = 1, . . . , t.
Then, assuming that Λ 6= 0, we have the following:

|Λ| > exp
(
−1.4× 30t+3 × t4.5 × D2(1 + log D)(1 + log B)A1 · · · At

)
.

2.3. Reduction Tools

To lower the bounds arising from applying Theorem 1, we will use a result from the
theory of continued fractions. The following lemma is a slight variation of a result, due to
Dujella and Pethő [31]. We shall use the version given by Bravo, Gómez and Luca (see [27]
[Lemma 1]).

Lemma 2. Let τ be an irrational number, and let A, B, µ be real numbers with A > 0 and B > 1.
Assume that M is a positive integer. Let p/q be a convergent of the continued fraction of τ such that
q > 6M and put ε := ‖µq‖ −M‖τq‖, where ‖·‖ denotes the distance from the nearest integer. If
ε > 0, then there is no solution of the inequality

0 < |uτ − v + µ| < AB−w

in positive integers u, v and w with u ≤ M and w ≥ log(Aq/ε)/ log B.
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The above lemma cannot be applied when µ is an integer linear combination of 1 and
τ since then, ε < 0. In this case, we use the following nice property of continued fractions
(see Theorem 8.2.4 and top of page 263 in [32]).

Lemma 3. Let pi/qi be the convergent of the continued fraction [a0, a1, . . .] of the irrational
number γ. Let M be a positive integer and put aM := max{ai | 0 ≤ i ≤ N + 1} where N ∈ N is
such that qN ≤ M < qN+1. If x, y ∈ Z with x > 0, then we have the following:

|xγ− y| > 1
(aM + 2)x

for all x ≤ M.

We finish with the following simple facts concerning the exponential function. We list
it as a lemma for further reference, and its proof can be found in [33].

Lemma 4. For any non-zero real number x, we have the following:

(a) 0 < x < |ex − 1|.
(b) If x < 0 and |ex − 1| < 1/2, then |x| < 2 |ex − 1|.

3. Proof Theorem 1

Assume throughout that (n, k, a, b, `, m) is a solution of Equation (1). First, we note
that n ≤ 3 is impossible since F(k)

n must have at least 3 digits in its decimal representation.
Thus, we assume n ≥ 4. We now want to establish a relationship between the variables
of (1). For this purpose, we use Equations (1), (3) and (7) to obtain the following:

102`+m−1 < F(k)
n ≤ 2n−2 and αn−2 ≤ F(k)

n < 102`+m (9)

giving the following:

2`+ m < (n− 2)
(

log 2
log 10

)
+ 1 and n− 2 < (2`+ m)

(
log 10
log α

)
.

In particular, we have the following:

(2`+ m) + 2 < n < 6(2`+ m) holds for all n ≥ 4. (10)

3.1. Powers of 2 Which Are Curious Numbers

Assuming 4 ≤ n ≤ k + 1 and taking into account (2), we can rewrite Equation (1) as
follows:

a · 102`+m − (a− b) · 10`+m + (a− b) · 10` − 9 · 2n−2 = a. (11)

Since ` < n− 2 by (10), it follows from (11) that 2` | a and so ` ≤ 3. We now use (11)
once again to obtain the following:

a · 102`+m − (a− b) · 10`+m − 9 · 2n−2 = a− (a− b) · 10` ∈ R, (12)

whereR := ([−8991, 0) ∪ (0, 8001]) ∩Z. Since the largest 2−adic valuation of integers of
the interval R is 7, by (12), we obtain `+ m ≤ 7. So, m ≤ 6. Finally, a numerical check
with Mathematica reveals that Equation (1) has no solutions in the following range (see
Appendix A):

4 ≤ n ≤ k + 1, 1 ≤ ` ≤ 3, 1 ≤ m ≤ 6, 1 ≤ a ≤ 9 and 0 ≤ b ≤ 9.

Thus, from now on, we suppose that n ≥ k + 2.
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3.2. Bounding n in Terms of k

In this subsection, we want to find an upper bound for n in terms of k. To do this, we
use (5) and rewrite (1) in two different forms, namely, the following:

9 fk(α)α
n−1 − a · 102`+m = −9ek(n)− (a− b) · 10`+m + (a− b) · 10` − a,

9 fk(α)α
n−1 − 10`+mX = −9ek(n) + (a− b) · 10` − a,

(13)

where we have put X := a · 10` − (a− b). For future calculations, it will be important to
note the following:

1 ≤ X ≤ 10`+1. (14)

We now take absolute value in relations given by (13); doing some straightforward
calculations, we obtain the following:∣∣∣9 fk(α)α

n−1 − a · 102`+m
∣∣∣ < 11 · 10`+m,∣∣∣9 fk(α)α

n−1 − 10`+m X
∣∣∣ < 11 · 10`.

(15)

Dividing both sides of each one of the above inequalities (15) by a · 102`+m and 10`+m X,
respectively, and rearranging some terms, we obtain the following:∣∣∣αn−1 · 10−(2`+m) ·

(
9 fk(α)

a

)
− 1
∣∣∣ < 11/10`, and (16)∣∣∣αn−1 · 10−(`+m) ·

(
9 fk(α)

X

)
− 1
∣∣∣ < 11/10m. (17)

At this point, we claim that the left-hand sides of (16) and (17) are not zero. Indeed, if
these were zero, we would then obtain the following, respectively:

a · 102`+m = 9 fk(α)α
n−1 and 10`+m X = 9 fk(α)α

n−1,

Conjugating with an automorphism σ of the Galois group of Ψk(x) over Q such that
σ(α) = αi for some i > 1, taking absolute values and using the fact that |9 fk(αi)α

n−1
i | < 9,

we obtain the following, respectively:

a · 102`+m < 9 and 10`+mX < 9,

However, these lead to a contradiction since the following are true:

a · 102`+m ≥ 103 and 10`+mX ≥ 102.

We shall now apply Matveev’s theorem on inequalities (16) and (17) (in that order).
To do this, we take the following parameters:

t := 3, γ1 := α, γ2 := 10, γ3,1 := 9 fk(α)/a, γ3,2 := 9 fk(α)/X,

b1 := n− 1, b2,1 := −(2`+ m), b2,2 := −(`+ m), b3 := 1.

The real number field containing γ1, γ2, γ3,1, γ3,2 is K := Q(α). From this and (10), we
can take D := [K : Q] = k and B := n in any application of Matveev’s theorem.

On the other hand, since h(γ1) < (log 2)/k (by (8)) and h(γ2) = log 10, we can always
take A1 := log 2 and A2 := k log 10. Furthermore, from Lemma 1 and (14) we obtain the
following:

h(γ3,1) < 6 log k, (18)

h(γ3,2) < 2 log k + (`+ 1) log 10. (19)
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3.2.1. An Inequality for ` in Terms of k

In order to apply Matveev’s theorem on (16) with the parameters γ1, γ2 and γ3,1, we
take A1, A2 as mentioned before and A3 := 6k log k (by (18)) to obtain the following:∣∣∣∣αn−1 · 10−(2`+m) ·

(
9 fk(α)

a

)
− 1
∣∣∣∣ > exp

(
−9× 1012k4 log2 k log n

)
, (20)

where we use that 1 + log k < 3 log k and 1 + log n < 2 log n hold for all k ≥ 2 and n ≥ 4,
respectively. Comparing (16) and (20) and performing the respective calculations, we
obtain the following:

` < 4× 1012 k4 log2 k log n. (21)

3.2.2. An Inequality for m in Terms of k

In light of (19) and (21), we deduce the following:

h(γ3,2) < 1013 k4 log2 k log n.

This allows us to choose now A3 := 1013 k5 log2 k log n. We then apply Matveev’s
theorem on (17) with the parameters γ1, γ2 and γ3,2 to obtain the following:∣∣∣∣αn−1 · 10−(`+m) ·

(
9 fk(α)

X

)
− 1
∣∣∣∣ > exp

(
−2× 1025 k8 log3 k log2 n

)
. (22)

Using now (17) and (22), we have the following:

m < 1025 k8 log3 k log2 n. (23)

3.2.3. An Inequality for n in Terms of k

We finally use (21) and (23) combined with (10) to assert the following:

n
log2 n

< 1.2× 1026 k8 log3 k. (24)

In order to upper bound n polinomially in terms of k, we use an analytical argument
of Guzmán and Luca [34] who proved that if m ≥ 1, T > (4m2)m and T > x/ logm x, then
x < 2mT logm T. In our case, we take T := 1.2× 1026 k8 log3 k and m := 2 to obtain from (24)
the following lemma.

Lemma 5. If (n, k, a, b, `, m) is a solution of Equation (1) with n ≥ k + 2, then the following
holds:

2`+ m < n < 5× 1030 k8 log5 k.

3.3. The Case of Large k

Suppose that k > 430. Note that for such values of k, we have the following:

5× 1030 k8 log5 k < 2k/2.

Then, by Lemma 5, we obtain that the inequality n < 2k/2 is satisfied when k > 430,
and therefore, we are in the hypothesis of Lemma 1. Applying the above lemma and
Equation (1), we obtain the following:

∣∣∣ a
9
· 102`+m · 2−(n−2) − 1

∣∣∣ < 3 · 10`+m

2n−2 +
1

2k/2 <
30
10`

+
1

2k/2 ,



Mathematics 2021, 9, 2588 8 of 12

where we have used that 10`+m/2n−2 < 10/10` (see (9)). Consequently, we have the
following: ∣∣∣ a

9
· 102`+m · 2−(n−2) − 1

∣∣∣ < 30
2θ`

+
1

2k/2 ≤
31
2λ

, (25)

where θ := (log 10)/(log 2) and λ := min{k/2, θ`}. Again, in order to use the result of
Matveev, we take t := 3 and the following:

(γ1, b1) := (a/9, 1), (γ2, b2) := (10, 2`+ m) and (γ3, b3) := (2,−(n− 2)).

We begin by noticing that the three numbers γ1, γ2, γ3 are positive rational numbers,
so we can take K := Q for which D := 1. To see why the left-hand side of (25) is not zero,
note that, otherwise, we would obtain a · 102`+m = 9 · 2n−2, which is impossible since its
left-hand side is divisible by 5 while its right-hand side is not.

Clearly, we can take A1 := log 9, A2 := log 10 and A3 := log 2. Here, we can also take
B := n. Then, Matveev’s theorem together with a straightforward calculation gives the
following: ∣∣∣ a

9
· 102`+m · 2−(n−2) − 1

∣∣∣ > exp
(
−1.1× 1012 log n

)
, (26)

where we use 1 + log n < 2 log n holds for all n ≥ 4. Comparing (25) and (26), taking
logarithms and then performing the respective calculations, we arrive at the following:

λ < 1.8× 1012 log n.

Note that, if λ = k/2, then k < 3.6× 1012 log n. Since log n < 73 log k holds for all
k > 430 by Lemma 5, we obtain k < 2.7× 1014 log k, giving k < 1016. For the case when
λ = θ`, we have ` < 5.5× 1011 log n. Here, proceeding as in (25), we obtain the following:∣∣∣∣X9 · 10`+m · 2−(n−2) − 1

∣∣∣∣ < 2θ`

2n−2 +
2

2k/2 ≤
2k/2

2k +
2

2k/2 =
3

2k/2 . (27)

The same argument used before also shows that the left-hand side of (27) is not zero.
With a view toward applying Matveev’s theorem, we take the same parameters as in the
previous application, except by γ1 and b2, which, in this case, are given by X/9 and `+ m,
respectively. As before, K := Q, D := 1, A2 := log 10, A3 := log 2 and B := n. Moreover,
by (14), we have the following:

h(γ1) = log X ≤ (`+ 1) log 10 < 1.3× 1012 log n.

Hence, we can take A1 := 1.3× 1012 log n. This time, Matveev’s theorem leads to the
following:

exp
(
−6× 1023 log2 n

)
<

∣∣∣∣X9 · 10`+m · 2−(n−2) − 1
∣∣∣∣ < 3

2k/2 ,

which implies k < 9.4× 1026 log2 k. Hence, k < 5× 1030 and so, by Lemma 5, we obtain
that n < 3.5× 10285. At this point, we summarize what we have obtained so far on the
upper bounds for k and n. The result is the following.

Lemma 6. If (n, k, a, b, `, m) is a solution of Equation (1) with k > 430 and n ≥ k + 2, then all
inequalities hold:

k < 5× 1030 and 2`+ m < n < 3.5× 10285

3.4. Reducing the Bound on k.

We now want to reduce our bound on k by using Lemma 2. Let the following hold:

Γ1 := log(a/9) + (2`+ m) log 10− (n− 2) log 2.
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Then, from (25) we get that |eΓ1 − 1| < 31/2λ. Note that 31/2λ < 1/2 whenever
λ ≥ 6. Now, assuming that λ ≥ 6, we obtain |eΓ1 − 1| < 1/2 and so Lemma 4 shows
that 0 < |Γ1| < 2|eΓ1 − 1| < 62/2λ. Dividing the above inequality through log 2 gives the
following:

0 < |(2`+ m)θ − n + µa| < 90 · 2−λ for all λ ≥ 6, (28)

where µa := 2 + (log(a/9))/(log 2). Taking M := 3.5× 10285 we get that 2`+ m < M.
Applying now Lemma 2 to inequality (28) for each a ∈ {1, 2, . . . , 8} we find, with the help
of Mathematica, that λ ≤ 960.

For the case a = 9, we cannot use Lemma 2 because the corresponding value of ε is
always negative. However, one can see that if a = 9, then the resulting inequality from (28)
has the following shape:

|xγ− y| < 90 · 2−λ, (29)

with γ := θ being an irrational number and x := 2`+ m, y := n− 2 ∈ Z. In order to apply
Lemma 3 on the left-hand side of (29), we define [a0, a1, a2, a3, . . .] = [3, 3, 9, 2, . . .] as the
continued fraction of γ and pi/qi its ith convergent. We can also take M := 3.5× 10285 so
that x < M by Lemma 6. A quick inspection using Mathematica reveals that q573 ≤ M < q574
and therefore, aM := max{ai | 0 ≤ i ≤ 574} = a135 = 5393. Hence, by Lemma 3, we obtain
|xγ− y| > 1/(5395(2`+ m)), and after a comparison with (29), we obtain λ ≤ 967. Thus,
λ ≤ 967 always holds.

Note that if λ = k/2, then k ≤ 1934. On the other hand, if λ = θ` then we have
` ≤ 291. Now, let the following hold:

Γ2 := (`+ m) log 10− (n− 2) log 2 + log(X/9).

Here, (27) yields |eΓ2 − 1| < 3/2k/2. Since k > 430, we get that |eΓ2 − 1| < 1/2. Using
Lemma 4 again, we deduce that 0 < |Γ2| < 6/2k/2. Dividing through the above inequality
by log 2 gives the following:

0 < |(`+ m)θ − n + µ(a, b, `)| < 9 · 2−k/2, (30)

where µ(a, b, `) := 2 + (log(X/9)/(log 2)). Here, we also take M := 3.5× 10285 and apply
Lemma 2 to inequality (30) for all a, b ∈ {0, 1, . . . , 9} with a ≥ 1, a 6= b and 1 ≤ ` ≤ 291,
except when the following is true:

(a, b, `) ∈ {(1, 0, 1), (1, 9, 1), (2, 0, 1), (3, 9, 1), (4, 0, 1), (7, 9, 1), (8, 0, 1), (4, 9, 1), (5, 0, 1)}

and (a, b, `) = (9, 9, `) for all ` ≥ 1. Indeed, a computer search with Mathematica reveals
that k ≤ 1955. Now, we deal with the special cases mentioned just before. First of all, it is a
straightforward exercise to check that in these cases, we have the following:

µ(a, b, `) =



2, if (a, b, `) = (1, 0, 1);
3, if (a, b, `) = (1, 9, 1), (2, 0, 1);
4, if (a, b, `) = (3, 9, 1), (4, 0, 1);
5, if (a, b, `) = (7, 9, 1), (8, 0, 1);

1 + θ, if (a, b, `) = (4, 9, 1), (5, 0, 1);
1 + `θ, if (a, b, `) = (9, 9, `), ` ≥ 1.

In these cases, the inequality (30) turns into the following:

|(m + 1)θ − (n− i)| < 9 · 2−k/2 (for i = 2, 3, 4, 5), or

|(m + 2)θ − (n− 1)| < 9 · 2−k/2, or |(2`+ m)θ − (n− 1)| < 9 · 2−k/2.

In any case, by the same arguments used to get (29), we obtain 2k/2 < 1.7× 10290,
which implies that k ≤ 1928. Thus, k ≤ 1955 holds for any choice of λ. Then, by Lemma 5,
2`+ m < 2.7× 1061 := M. With this new choice of M, Lemma 2 applied to inequality (28)
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implies that λ ≤ 222 (including the case a = 9). If λ = k/2, then k ≤ 444, while if λ = θ`,
we have that ` ≤ 66. We finally apply Lemma 2 with M := 2.7× 1061 to inequality (30)
for all a, b ∈ {0, 1, . . . , 9} with a 6= b, a ≥ 1 and 1 ≤ ` ≤ 66, except in the special cases
mentioned above. With the help of Mathematica, we find that k ≤ 457. The same upper
bound for k holds in the special cases. So, k ≤ 457 holds for any choice of λ. Finally, taking
M := 8.2× 1055 and repeating the previous procedure, we obtain k ≤ 422, which is a
contradiction. Hence, the Equation (1) has no solutions for k > 430.

3.5. The Case of Small k

Suppose now that k ∈ [2, 430]. Note that for each of these values of k, Lemma 5 gives
us absolute upper bounds for n. However, these upper bounds are so large and will be
reduced by using Lemma 2 once again. To do this, we put the following:

Ω :=
[

Ω1
Ω2

]
=

[
(n− 1) log α− (2`+ m) log 10 + log((9 fk(α))/a)

(n− 1) log α− (`+ m) log 10 + log((9 fk(α))/X)

]
.

Thus, (16) and (17) can be rewritten as follows:

|eΩ1 − 1| < 11
10`

, and |eΩ2 − 1| < 11
10m .

Now assuming ` ≥ 2 and m ≥ 2, we see that |eΩi − 1| < 1/2 for all i ∈ {1, 2}. Using
Lemma 4, we deduce the following:

0 < |Ω1| < 22/10` and 0 < |Ω2| < 22/10m.

Dividing both inequalities by log 10, we obtain the following:

0 < |(n− 1)τ1 − (2`+ m) + µ1(k, a)| < 10 · 10−`, (31)

0 < |(n− 1)τ1 − (`+ m) + µ2(k, `, a, b)| < 10 · 10−m, (32)

where

τ1 :=
log α

log 10
and

[
µ1(k, a)

µ2(k, `, a, b)

]
:=

 log((9 fk(α))/a)
log 10

log((9 fk(α))/X)
log 10

.

Note that τ1 clearly is an irrational number because α and 10 are multiplicatively
independent. Next, we shall apply Lemma 2 to (31) and (32). For this purpose, we put also
Mk := 5× 1030 k8 log5 k, which is an upper bound on n− 1 by Lemma 5.

In the first application, we choose the following parameters:

τ := τ1, µ := µ1(k, a), A := 10, B := 10.

A computer search with Mathematica reveals that if k ∈ [2, 430] and a ∈ {1, 2, . . . , 9},
then the maximum value of blog(Aq/ε)/ log Bc is 130. Then, every possible solution
(n, k, a, b, `, m) of Equation (1) for which (k, a) ∈ [2, 430]× [1, 9] has ` ∈ [1, 130].

For the second application, we take the following:

τ := τ1, µ := µ2(k, `, a, b), A := 10, B := 10.

In this case, Mathematica shows that for each a, b ∈ {0, 1, . . . , 9} with a ≥ 1, a 6= b,
k ∈ [2, 430] and ` ∈ [1, 130], the maximum value of blog(Aq/ε)/ log Bc is 130. Thus,
m ∈ [1, 130] and so n ∈ [1, 2340].

Finally, we use Mathematica to display the values of F(k)
n for (k, n) ∈ [2, 430]× [4, 2340],

and check that Equation (1) has only the solution listed in Theorem 1 (see Appendix A).
This completes the analysis in the case k ∈ [2, 430] and ends the proof.
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Appendix A

Below, we present the Mathematica commands used along the paper.

Appendix A.1. Basic Commands

First, we present the commands to approximate the dominant root α of Ψk(x) and
the commands to display the first n generalized Fibonacci numbers and the largest prime
factor of n. We also give a curious number function.

• The dominant root α of Ψk(x):
alpha[k_] :=

x/. FindRoot[
x̂ k− Sum[x̂ i, {i, 0, k− 1}],
{k, 2}, WorkingPrecision→ 2000];
WorkingPrecision→ 2000];
];

• The first n generalized Fibonacci numbers:
Fib[k_, n_] :=

Module[{list, f},
f = 1− Sum[x̂ i, {i, 1, k}];
list = Drop[CoefficientList[ Series[x/f, {x, 0, n}], x], 1 ]
];

• The largest prime factor of n:
LargestPrimeFactor[n_] := Max[ FactorInteger[n][[All, 1]] ];

• A curious number of the form a · · · a︸ ︷︷ ︸
`

b · · · b︸ ︷︷ ︸
m

a · · · a︸ ︷︷ ︸
`

:

Courios[a_, b_, l_, m_]
:= (1/9) ∗ (a ∗ 10̂ ((2 ∗ l) + m)− (a− b) ∗ 10̂ (l+ m) + (a− b) ∗ 10̂ (l)− a);

Appendix A.2. Basic Algorithms

We next give the Mathematica algorithm used to determine all powers of two, which
are curious numbers, and the algorithm employed in s Section 3.5 to find all the solutions
in the small range of k.

Algorithm A1 Powers of 2 which are curious numbers.

1: Solutions = { };
2: Do[
3: If[LargestPrimeFactor[Curious[a, b, l, m]] == 2,
4: AppendTo[ Solutions, {Curious[a, b, l, m], a, b, l, m} ] ],
5: {a, 1, 9}, {b, 0, 9}, {l, 1, 3}, {m, 1, 6};
6: ];
7: If[Length[Solutions] == 0, False, Solutions]
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Algorithm A2 The final search algorithm.

1: K = Flatten[
2: ParallelTable[Curious[a, b, l, m], {a, 1, 9}, {b, 0, 9}, {l, 1, 130}, {m, 1, 130}] ];
3: For[k = 2, k ≤ 430, k++,
4: F = Fib[k, 2340];
5: If[Intersection[F, K] 6= { },
6: Print[“k = ”, k, “ ”, Intersection[F, K]],
7: Print[“k = ”, k, “No solutions”]
8: ]
9: ];
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