

 mathematics-09-02611

mathematics-09-02611

Mathematics 2021, 9(20), 2611; doi:10.3390/math9202611

Article

A Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack Problem

José García 1,*[image: Orcid], José Lemus-Romani 2[image: Orcid], Francisco Altimiras 3,*[image: Orcid], Broderick Crawford 4[image: Orcid], Ricardo Soto 4[image: Orcid], Marcelo Becerra-Rozas 4[image: Orcid], Paola Moraga 1[image: Orcid], Alex Paz Becerra 1[image: Orcid], Alvaro Peña Fritz 1[image: Orcid], Jose-Miguel Rubio 5[image: Orcid] and Gino Astorga 6[image: Orcid]

1

Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile

2

Escuela de Construcción Civil, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile

3

Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500975, Chile

4

Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile

5

Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O’Higgins Santiago, Metropolitana 8370993, Chile

6

Escuela de Negocios Internacionales, Universidad de Valparaíso, Viña del Mar 2572048, Chile

*

Correspondence: jose.garcia@pucv.cl (J.G.); faltimiras@udla.cl (F.A.)

Academic Editors: Anatoliy Swishchuk and Petr Stodola

Received: 9 September 2021 / Accepted: 12 October 2021 / Published: 16 October 2021

Abstract

:

Optimization techniques, specially metaheuristics, are constantly refined in order to decrease execution times, increase the quality of solutions, and address larger target cases. Hybridizing techniques are one of these strategies that are particularly noteworthy due to the breadth of applications. In this article, a hybrid algorithm is proposed that integrates the k-means algorithm to generate a binary version of the cuckoo search technique, and this is strengthened by a local search operator. The binary cuckoo search algorithm is applied to the NP -hard Set-Union Knapsack Problem. This problem has recently attracted great attention from the operational research community due to the breadth of its applications and the difficulty it presents in solving medium and large instances. Numerical experiments were conducted to gain insight into the contribution of the final results of the k-means technique and the local search operator. Furthermore, a comparison to state-of-the-art algorithms is made. The results demonstrate that the hybrid algorithm consistently produces superior results in the majority of the analyzed medium instances, and its performance is competitive, but degrades in large instances.

Keywords:

combinatorial optimization; machine learning; metaheuristics; set-union knapsack

1. Introduction

Metaheuristics have demonstrated their efficacy in recent years in handling complex problems, especially complex combinatorial challenges. There are several examples in biology [1], logistics [2], civil engineering [3], and machine learning [4], among others. Despite the increased efficiency, and in part due to the vast scale of many combinatorial problems, it is also vital to maintain the strength of metaheuristic approaches. Thus, hybrid techniques have been employed to enhance metaheuristic algorithmic performance.

Among the main approaches of how to integrate metaheuristics, has been found hybrid heuristics, [5], where multiple metaheuristic algorithms are merged to boost their capabilities. In [6], for example, the authors employed simulated annealing-based genetic and tabu-search-based genetic algorithms to address the ordering planning problem. The hybrid approaches were compared to the traditional approaches in this study, with the hybrid approaches outperforming the traditional approaches. In [7], the cuckoo search and firefly algorithm search methods are combined in order to avoid getting the procedure stuck in local optimum. The hybrid algorithm was applied to a job schedulers problem in high-performance computing systems. When compared to traditional policies, the results indicated significant reductions in server energy consumption.

Another interesting hybrid approach, [8], is matheuristics, which combines mathematical programming approaches with metaheuristic algorithms. The vehicle routing problem, for example, was studied utilizing mixed-integer linear programming and metaheuristic techniques in [9]. These methods, generally, do not take advantage of the auxiliary data created by metaheuristics in order to obtain more reliable results. In the solution-finding process, metaheuristics provide useful accessory data, which may be used to inform machine learning approaches. The area of artificial intelligence and in particular machine learning has grown important in recent times applying in different areas [10,11,12]. Machine learning approaches combined with metaheuristic algorithms is a novel area of research that has gained traction in recent years [13].

According to [13,14], there are three primary areas in which machine learning algorithms utilize metaheuristic data: low-level integrations, high-level integrations, and optimization problems. A current area of research in low-level integrations is the construction of binary versions of algorithms that operate naturally in continuous space. In [15], a state-of-the-art of the different binarization techniques is developed in which two main groups stand out. The first group corresponds to general binarization techniques in which the movements of the metaheuristics are not modified, but rather after its execution, the binarization of the solutions is applied. The second group corresponds to modifications applied directly to the movement of metaheuristics. The first group has the advantage that the procedure is used for any continuous metaheuristic, the second, when the adjustments are carried out in an adequate way, have good performance. There are examples of integration between machine learning and metaheuristics in this domain. In [16,17], the binary versions of the cuckoo search algorithm were generated using the k-nearest neighbor technique. These binary versions were applied to multidimensional knapsack and set covering problems, respectively. Whereas in the field of civil engineering [18,19], hybrid methods were proposed that utilizes db-scan and k-means, respectively, as a binarization method and is used to optimize the emission of CO 2 of retaining walls.

In accordance with low-level integration between machine learning and metaheuristics, in this article, a hybrid approach was used that combines a cuckoo search algorithm with the unsupervised k-means technique to obtain a binary version of the continuous cuckoo search algorithm. The suggested approach combines these two strategies with the objective of obtaining a robust binary version through the use of the data acquired during the execution of the metaheuristic. The proposed algorithm was applied to the set-union knapsack problem. The set union knapsack problem (SUKP) [20] is a generalization of the classical knapsack problem. SUKP has received attention from researchers in recent years [21,22,23] due to its interesting applications [24,25], as well as the difficulty of being able to solve it efficiently. In SUKP, there is a set of items where each item has a profit. Additionally, each item associates a set of elements where each element has a weight that is associated with the knapsack constraint. In the literature, it is observed that the algorithms that have addressed SUKP are mainly improved metaheuristics and have allowed obtaining results in reasonable times. When applying a metaheuristic in its standard form to SUKP, these algorithms have had limitations such as stability and decreased performance as the instance grows in size. For example, in [26], different transfer functions were used and evaluated with small and medium SUKP instances. This effect is observed when the algorithms are applied to standard SUKP instances, additionally, to increase the challenge in [27], a new set of benchmark problems was recently generated. All previous, leads to exploring hybrid techniques in order to strengthen the performance of the algorithm. The following are the contributions made by this work:

	1.

	
A new greedy initiation operator is proposed.

	2.

	
The k-means technique, proposed in [28], is used to binarize the cuckoo search (CS) algorithm, tuned and applied for the first time to the SUKP. Additionally, a random binarization operator is designed and two transition probabilities are applied to evaluate the contribution of k-means in the final result. It should be noted that the binarization method allows generating binary versions of other continuous swarm intelligence metaheuristics.

	3.

	
A new local search operator is proposed to improve the exploitation of the search space.

	4.

	
The results obtained by the hybrid algorithm are compared with different algorithms that have addressed SUKP. It should be noted that the standard SUKP instances and the new instances proposed in [27] were solved.

The following is a summary of the contents: Section 2 delves into the set-union knapsack problem and its applications. The k-means cuckoo search algorithm and the local search operator are described in Section 3. In Section 4, the detail of the numerical experiments and comparisons are developed. Finally, the conclusions and potential lines of research are discussed in Section 5.

2. The Set Union Knapsack Problem

The Set-Union Knapsack Problem (SUKP) is a generalized knapsack model with the following definition. First, let U be a set of n elements with each element j ∈ U having a weight w j > 0. Let V be a set of m items with each item i ∈ V being a subset of elements U i ⊆ U and having a profit p i . Finally, for a knapsack with capacity C, SUKP entails identifying a set of items S ⊆ V that maximizes the total profit of S while guaranteeing that the total weight of the components of S does not exceed the capacity C of the knapsack. Being the elements belonging to the set S, the decision variables of the problem. It is worth noting that an elements weight is only tallied once, even if it corresponds to several chosen items in S. SUKP may be written mathematically as follows:

 Maximize P (S) = ∑ i ∈ S p i .

(1)

subject to:

 W (S) = ∑ j ∈ ∪ i ∈ S U i w j ≤ C , S ⊆ V .

(2)

In reviewing the literature SUKP has been found to have interesting applications, for example in [24]. The goal of this application is to improve the scalability of cybernetic systems robustness. Given a centralized cyber system with a fixed memory capacity that holds a collection of profit-generating services (or requests), each of which contains a set of data objects. When a data object is activated, it consumes a particular amount of memory, and using the same data object several times does not result in increased memory consumption (An important condition of SUKP). The goal is to choose a subset of services from among the candidate services that maximizes the total profit of those services while keeping the total memory required by the underlying data objects within the cyber system’s memory capacity. The SUKP model, in which an item corresponds to a service with its profit and an element relates to a data object with its memory usage, is a convenient way to structure this application (element weight). Finding the optimal solution to the ensuing SUKP problem is thus comparable to solving the data allocation problem.

Another interesting application is related to the rendering of an animated crow in real-time [29]. In the article, the authors present a method to accelerate the visualization of large crowds of animated characters. They adopt a caching system that enables a skinned key-pose (elements) to be re-used by multi-pass rendering, between multiple agents and across multiple frames, an interpolative approach that enables key-pose blending to be supported. In this problem, each item corresponds to a crowd member. Applications are also found in data stream compression through the use of bloom filters [25].

SUKP is an NP -hard problem [20] that has been tackled by a variety of methods. In [20,30], theoretical studies using greedy approaches or dynamic programming are found. An integer linear programming model was developed in [31] and applied to small instances of 85 and 100 items, finding the optimal solutions.

Metaheuristic algorithms have also addressed SUKP. In [32], the authors use an artificial bee colony technique to tackle SUKP. In addition, this algorithm integrates a greedy operator with the aim of addressing infeasible solutions. In [33], the authors designed an enhanced moth search algorithm. To improve its efficiency, this algorithm incorporates an integrating differential mutation operator. The Jaya algorithm was employed in [34]. Additionally, a differential evolution technique was incorporated to enhance exploration capability. The Cauchy mutation is used to boost its exploitation ability. Furthermore, an enhanced repair operator has been designed to repair the infeasible solutions. In [26], the effectiveness of different transfer functions is studied in order to binarize the moth metaheuristics. A local search operator is designed in [35] and applied to long-scale instances of SUKP. The article proposes three strategies that conform to the adaptive tabu search framework and efficiently solve new instances of SUKP. In [36], the grey wolf optimizer (GWO) algorithm is adapted to address binary problems. For the algorithm to be robust, traditional binarization methods are not used. To replicate the GWO leadership hierarchy technique, a multiple parent crossover is established with two distinct dominance tactics. In addition, an adaptive mutation with an exponentially decreasing step size is used to avoid early convergence and achieve a balance of intensification and diversification.

3. The Machine Learning Cuckoo Search Algorithm

This section describes the machine learning binary cuckoo search algorithm used to solve the SUKP problem. This hybrid algorithm consists of three main operators: A greedy initialization operator detailed in Section 3.1. CS is then used to develop the optimization. Here, it should be noted that CS is going to produce results with values in R and therefore they must be binarized. Then, a machine learning binarization operator performs the binarization of the solutions generated by the cuckoo search algorithm, and which uses the unsupervised k-means technique. This operator is detailed in Section 3.2. Finally, a local search operator is applied when the condition of finding a new maximum is met. The logic of the local search operator is detailed in Section 3.3. Figure 1 shows the flowchart of the binary machine learning cuckoo search algorithm. It is also worth noting that CS can be replaced by any other continuous swarm intelligence metaheuristic.

3.1. Greedy Initialization Operator

The objective of this operator is to build the solutions that will start the search process. For this, the items are ordered using the ratio defined in Equation (3). As input to the operator, s o r t I t e m s is utilized, and it contains the elements ordered by r from highest to lowest. As output, a valid solution, S o l , is obtained.

 r = item profit sum of element weights

(3)

In line 4, a blank S o l solution is initialized, then in line 5 the fulfillment of the constraint by S o l is validated. While the weight of the solution items (w e i g h S o l), Equation (2), is not equal or greater thab the knapsack constraint (k n a p s a c k S i z e), a random number r a n d is generated in line 6, and compare it in line 7 with β . If r a n d is greater than β , an element of s o r t I t e m s is added in line 8, fulfilling the order. Otherwise, in line 11, a random item is chosen, then add it to the solution, and in line 12 remove it from s o r t I t e m s . Once the knapsack is full, the solution needs to be cleaned up in line 15, as it is greater than or equal to k n a p s a c k S i z e . In the case that it is the same, it does not take action. In the event that it is greater, the items of S o l must be ordered using r defined in Equation (3) and it is removed in order starting with the smallest and checking the constraint in each elimination. Once the constraint is fulfilled, the procedure stops and the solution S o l is returned. The pseudo-code is shown in Algorithm 1.

	Algorithm 1 Greedy initialization operator

	
	1:

	
Function initSolutions(s o r t I t e m s)

	2:

	
Input s o r t I t e m s

	3:

	
Output S o l

	4:

	
 S o l ← []

	5:

	
while (weightSol < knapsackSize) do

	6:

	
 r a n d ← getRandom()

	7:

	
 if r a n d > β then

	8:

	
 S o l ← a d d S o r t I t e m (s o r t I t e m s)

	9:

	
 s o r t I t e m s ← r e m o v e F r o m S o r t I t e m s (I t e m)

	10:

	
 else

	11:

	
 S o l ← a d d R a n d o m I t e m (s o r t I t e m s)

	12:

	
 s o r t I t e m s ← r e m o v e F r o m S o r t I t e m s (I t e m)

	13:

	
 end if

	14:

	
end while

	15:

	
 S o l ← cleanSol(S o l)

	16:

	
return S o l

3.2. Machine Learning Binarization Operator

The machine learning binarization operator (MLBO) is responsible for the binarization process. This receives as input the list l S o l of solutions obtained from the previous iteration, the metaheuristic (M H), in this case CS, the best solution obtained, b e s t S o l so far, and the transition probability for each cluster, t r a n s P r o b s . To this list l S o l , in line 4, the M H is applied, in this case it corresponds to CS. From the result of applying M H to l S o l , the absolute value of velocities, v l S o l , is obtained. These velocities correspond to the transition vector obtained by applying MH to the list of solutions. The set of all velocities is clustered in line 5, using k-means (getKmeansClustering), in this particular case K = 5.

So, for each S o l i and each dimension j, a cluster is assigned and each cluster is associated with a transition probability (t r a n s P r o b s), ordered by the value of the cluster centroid. For this case the transition probabilities used were [0.1, 0.2, 0.4, 0.8, 0.9]. Then for the set of points that belong to the cluster with the smallest centroid, which is represented by the green color in Figure 2, the transition probability 0.1 was associated. For the group of blue points that obtained the centroid with the highest value, a transition probability of 0.9 was associated. The smaller the value of the centroid, the smaller the value of t r a n s P r o b s are associated with it. Then, in line 8, for each l S o l i , j , a transition probability d i m S o l P r o b i , j is associated and and later on line 9 compared with a random number r 1 . In the case that d i m S o l P r o b i , j > r 1 , then it is updated considering the best value, line 10, and otherwise, it is not updated, line 12. Once all the solutions have been updated, each of them is cleaned up using the process explained in Section 3.1. In the case of a new best value is obtained, in line 19, a local search operator is executed. This local search operator is detailed in the following section. Finally, the updated list of solutions l S o l and the best solution b e s t S o l are returned. The pseudo-code is shown in Algorithm 2.

	Algorithm 2 Machine learning binarization operator (MLBO).

	
	1:

	
Function MLBO(l S o l , M H , t r a n s P r o b s , b e s t S o l)

	2:

	
Input l S o l , M H , t r a n s P r o b s

	3:

	
Output l S o l , b e s t S o l

	4:

	
 v l S o l ← getAbsValueVelocities(l S o l , M H)

	5:

	
 l S o l C l u s t ← getKmeansClustering(v l S o l , K)

	6:

	
for (each S o l i in l S o l C l u s t) do

	7:

	
 for (each d i m S o l i , j l in S o l i) do

	8:

	
 d i m S o l P r o b i , j = getClusterProbability(d i m S o l , t r a n s P r o b s)

	9:

	
 if d i m S o l P r o b i , j > r 1 then

	10:

	
 Update l S o l i , j considering the best.

	11:

	
 else

	12:

	
 Do not update the item in l S o l i , j

	13:

	
 end if

	14:

	
 end for

	15:

	
 S o l i ← cleanSol(S o l i)

	16:

	
end for

	17:

	
 t e m p B e s t ← getBest(l S o l)

	18:

	
if c o s t (t e m p B e s t) > c o s t (b e s t S o l) then

	19:

	
 t e m p B e s t ← execLocalSearch(t e m p B e s t)

	20:

	
 b e s t S o l ← t e m p B e s t

	21:

	
end if

	22:

	
return l S o l , b e s t S o l

3.3. Local Search Operator

According to Figure 1, the local search operator is executed every time the metaheuristic finds a new best value. As input, the local search operator receives the new best values (b e s t S o l), and as a first stage, it uses it to obtain the items that belong and do not belong to b e s t S o l , line 4 of Algorithm 3. These two lists of items are iterated, T = 300 times, performing a swap without repetition, line 7 of Algorithm 3. Once the swap is carried out, the conditions are evaluated: it will improve the profit and that the weight of the knapsack is less than or equal to k n a p s a c k S i z e . If both conditions are met, the b e s t S o l is updated by t e m p S o l , to finally return b e s t S o l .

	Algorithm 3 Local search.

	
	1:

	
Function LocalSearch(b e s t S o l)

	2:

	
Input b e s t S o l

	3:

	
Output b e s t S o l

	4:

	
 l s o l I t e m s , l s o l N o I t e m s ← getItems(b e s t S o l)

	5:

	
i = 0

	6:

	
while (i < T) do

	7:

	
 t e m p S o l ← swap(l s o l I t e m s , l s o l N o I t e m s)

	8:

	
 if p r o f i t (t e m p S o l) > p r o f i t (b e s t S o l) and k n a p s a c k (t e m p S o l) < = k n a p s a c k S i z e

 then

	9:

	
 b e s t S o l ← t e m p S o l

	10:

	
 end if

	11:

	
 i += 1

	12:

	
end while

	13:

	
return b e s t S o l

4. Results

This section details the experiments conducted with MLBO and cuckoo search metaheuristic, to determine the proposed algorithms effectiveness and contribution when applied to a NP -hard combinatorial problem. This specific version of MLBO that cuckoo search uses will be denoted by MLCSBO. The SUKP was chosen as a benchmark problem because it has been approached by several algorithms and is not trivial to solve in small, medium and large instances. However, it should be emphasized that the MLBO binarization technique is easily adaptable to other optimization algorithms. The optimization algorithm chosen was CS because it is a simple-to-parameterize algorithm that has been used to solve a wide variety of optimization problems.

Python 3.6 was used to build the algorithm, as well as a PC running Windows 10 with a Core i7 processor and 16 GB of RAM. To evaluate whether the difference is statistically significant, the Wilcoxon signed-rank test was used. Additionally, 0.05 was utilized as the significance level. The test is chosen in accordance with the methodology outlined in [37,38]. The Shapiro–Wilk normality test is used initially in this process. If one of the populations is not normal and both have the same number of points, the Wilcoxon signed-rank test is proposed to determine the difference. In the experiments, the Wilcoxon test was used to compare the MLCSBO results with the other variants or algorithms used in pairs. For comparison, the complete list of results was always used. Further, in the case of the experiment in Section 4.2, since there are multiple comparisons and in order to correct for these comparisons, a post hoc test was performed with the Holm–Bonferroni correction. The statsmodels and scipy libraries of Python were used to develop the tests. Each instance was resolved 30 times in order to acquire the best value and average indicators. Additionally, the average time (in seconds) required for the algorithm to find the optimal solution is reported for each instance.

The first set of instances were proposed in [39]. These instances have between 85 and 500 items and elements. These instances are characterized by two parameters. A first parameter μ = (∑ i = 1 m ∑ j = 1 n R i j) / (m n) , which represents the density in the matrix, where R i j = 1 means the item i includes to the j element. A second parameter ν = C / (∑ j = 1 n w j) , which represents the capacity ratio C over the total weight of the elements. Then, a SUKP instance is named as m _ n _ μ _ ν . The second group of instances was introduced in [27], and in this case, they contain between 585 and 1000 items and elements. The form was built following the same previous structure.

4.1. Parameter Setting

The methods described in [28,40] was used to pick the parameters. To make an appropriate parameter selection, this methodology employs four metrics specified by the Equations (4)–(7). Values were generated using the instances 100_85_0.10_0.75, 100_100_0.15_0.85, and 85_100_0.10_0.75. Each parameter combination was run ten times. The collection of parameters that have been explored and selected is presented in Table 1. To determine the configuration, the polygon area obtained from the four metric radar chart is calculated for each setting. The configuration that obtained the largest area was selected. In the case of the transition probabilities, only the probability of the third cluster was varied considering the values [0.4, 0.5], the rest of the values were considered constant.

	1.

	
The difference in percentage terms between the best value achieved and the best known value:

 b S o l u t i o n = 1 − K n o w n B e s t V a l u e − B e s t V a l u e K n o w n B e s t V a l u e

(4)

	2.

	
The percentage difference between the worst value achieved and the best value known:

 w S o l = 1 − K n o w n B e s t V a l u e − W o r s t V a l u e K n o w n B e s t V a l u e

(5)

	3.

	
The percentage departure of the obtained average value from the best-known value:

 a S o l = 1 − K n o w n B e s t V a l u e − A v e r a g e V a l u e K n o w n B e s t V a l u e

(6)

	4.

	
The convergence time used in the execution:

 n T i m e = 1 − c o n v e r g e n c e T i m e − m i n T i m e m a x T i m e − m i n T i m e

(7)

4.2. Insight into Binary Algorithm

The objective of this section is to determine the contribution of the MLCSBO operator and the local search operator in the final result of the optimization. To address this challenge, a random operator is designed that aims to replace MLBO in Figure 1 with an operator that performs random transitions. In particular, two configurations are studied Random-05, which has a 50% chance of making a transition, and Random-03, which has a 30% chance of making a transition. Additionally, the configuration with and without a local search operator is studied. Each of the algorithms is evaluated for its performance without (NL) and with the local search operator.

The results are shown in Table 2 and Table 3 and Figure 3. From Table 2, it can be deduced that the best values obtained are for MLCSBO, which has the binarization mechanism based on k-means. The above for both indicators average and best value. When comparing MLCSBO-NL, note that MLCSBO-NL does not have the local search operator, with Random-03-NL and Random-05-NL, it is noted that MLCSBO-NL is more robust in the averages and best values. This allows evaluating the effect of incorporating k-means with respect to a random binarization operator in the optimization result. Furthermore, MLCSBO-NL works better than Random-03 and Random-05, where the latter incorporate the local search operator. On the other hand, when analyzing the contribution of the local operator, it is observed that each time it is incorporated generates an improvement in both the averages and the best values. First the Wilcoxon statistical test was applied, where MLCSBO is compared with the other variations. The statistical test indicates that the differences are significant between MLCSBO and the other variations analyzed. However, as there are multiple comparisons, the p-values were corrected using the Holm–Bonferroni test. For this correction, the experiments of the operators Random-03 and Random-05 were treated as independent groups. In Figure 3, we see that the highest time is for MLCSBO. In particular, Random-05-NL, which corresponds on average to the best performer, is 18.8% faster than MLCSBO. On the other hand, MLCSBO-NL which does not have the local search operator is 7.4% faster than MLCSBO.

In Figure 3 and Table 4, the %-Gap, defined in Equation (8), with respect to the best known value is compared of the different variants developed in this experiment. The comparison is made through box plots. In Figure, it is observed that MLCSBO has a more robust behavior than the rest, since it obtains better values and smaller dispersions than the other variants. On the other hand, the variants that obtain the worst performance correspond to those that have the random binarization operator and do not use the local search operator.

 % - G a p = 100 × B e s t k n o w n V a l u e − V a l u e B e s t k n o w n V a l u e

(8)

Additionally, the significance has been analyzed using the Wilcoxon test for the other variants. The details of the results are shown in Table 5. In each cell of the table, the p-values of best|average are written. In the table, it is observed that the difference of MLCSBO-NL with respect to the Random variants is not significant in the best indicator, but it is significant in the average indicator. The same goes for Random03 with respect to Random05. However, when analyzing Random03-NL with respect to Random05-NL, there is no significant difference in any of the indicators.

4.3. Algorithm Comparisons

This section compares MLCSBO performance to that of other algorithms that have tackled SUKP. Different forms of approximations were used in the comparative selection. A genetic algorithm (GA), in which uniform mutation, point cross-over, and roulette wheel selection operators were used. In particular, the cross-over probability was p c = 0.8 and the mutation probability was selected at p m = 0.01 . An artificial bee colony (ABC b i n , BABC), where the parameters used were a = 5 and limit defined as M a x { m , n } / 5 , and a binary evolution technique (binDE) with factor F = 0.5 and crossover constant in 0.3, were adapted in [32] to tackle the SUKP. In [41], a weighted superposition attraction algorithm (bSWA), with parameters τ = 0.8 , ϕ = 0.008 , and s l 1 = 0.4 , is proposed to solve SUKP. Two variations gPSO and gPSO* of particle swam optimization algorithm were proposed in [22]. In the case of gPSO, the init parameters used were r 1 = 0.05 , ϕ = 0.005 , p 1 = 0.2 , and p 2 = 0.8 . In the case of gPSO*, p 1 = 0.10 and p 2 = 0.70 . An artificial search agent with cognitive intelligence (intAgents) was proposed in [42], where the parameters used are, θ m u t = 0.005 , m r a t e = 0.05 , p x o v e r = 0.6 , and p x o v e r i t M a x = 0.1 . Finally, the DH-Jaya algorithm was designed in [34], with parameters C r = 0.8 , F + 0.8 , and C a = 1 . In Table 6 and Table 7, the comparisons of the 30 smallest instances of SUKP are presented. Table 8 shows the results for the 30 largest instances. In the latter case, only results were found for BABC and DH-Jaya reported in the literature.

Consider Table 6 and Table 7, which summarize the results for the 30 smallest instances. MLCSBO had the best value in 27 of the 30 cases. After that, GWOrbd has 16 best values, DH-Jaya has 11 best values, and GWOfbd also has 11 best values. It is possible that more than one algorithm gets the best value in some cases, in which case they are repeated in the accounting. This shows a good performance of the MLCSBO algorithm with respect to the other algorithms both in finding the best values as well as in reproducing these systematically. However, when the results for the 30 largest instances are analyzed, which are shown in Table 8, it is observed that the good performance obtained by MLCSBO is not repeated. In the case of larger instances, DH-Jaya is observed to perform better than MLCSBO. In the case of the best value indicator, DH-Jaya obtains 22 best values and MLCSBO 10. Even more, so when the average indicator is compared, MLCSBO gets 4 best averages and DH-Jaya, 26. To make sure there was an exploit problem on the local search operator, in these cases T was changed to 800, however, no improvements were obtained. The latter raises the suspicion that the decrease in performance in large cases is related to the exploration of the algorithm.

5. Conclusions

In this research, a hybrid k-means cuckoo search algorithm has been proposed. This hybrid binarization method applies the k-means technique to binarize the solutions generated by the cuckoo search algorithm. Additionally, in order for the procedure to be efficient, it was reinforced with a greedy initialization algorithm and with a local search operator. The proposed hybrid technique was used to solve cases of the set-union knapsack problem on a medium and large scale. The role of binarization and local search operators was investigated. To do this, a random operator was designed using two transition probabilities Random03 and Random05, which were compared in different situations. Finally, when the proposed approach is compared with several state-of-the-art methods, it is observed that the proposed algorithm is capable of improving the previous results in most cases. We highlight that the proposed algorithm uses a general binarization framework based on k-means and which can be easily adapt different metaheuristics and integrate with initiation and local search operators and in this particular case solve SUKP giving reasonable results.

According to the behavior of MLCSBO, it is observed that in the first 30 instances, it performed robustly, significantly outperforming the algorithms used in the comparison. However, in the 30 largest instances, their efficiency was not as clear when compared to the algorithms that had solved these instances. When it came to increasing the exploitation capacity of the local search operator, increasing T, there were no improvements. The above suggests three ideas for new lines of research. The first idea is to improve the search space exploration, this can be achieved using different solution initiation mechanisms, in MLBO, a greedy initialization operator was used. The second idea, thinking that the algorithm could be trapped in local optimum, the incorporation of a perturbation operator can be investigated. At this point, it can also consider the use of machine learning techniques such as the k-nearest neighborhood. Finally, the last idea aims to explore other binarization techniques based on other clustering algorithms or some other binarization strategies.

Author Contributions

J.G.: Conceptualization, investigation, methodology, writing—review and editing, project administration, resources, formal analysis. J.L.-R., M.B.-R., F.A.: Conceptualization, investigation, validation. B.C., R.S., J.-M.R., P.M., A.P.B., A.P.F., G.A.: Validation, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by: José García was supported by the Grant CONICYT/ FONDECYT/INICIACION/ 11180056. PROYECTO DI INVESTIGACIÓN INNOVADORA INTERDISCIPLINARIA: 039.414/2021. José Lemus-Romani is supported by National Agency for Research and Development (ANID)/ Scholarship Program/DOCTORADO NACIONAL/2019- 21191692. Marcelo Becerra-Rozas is supported by National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2021-21210740. Broderick Crawford is supported by Grant CONICYT / FONDECYT/REGULAR/1210810.Ricardo Soto is supported by Grant CONICYT/FONDECYT/REGULAR/1190129. Broderick Crawford, Ricardo Soto, and Marcelo Becerra-Rozas are supported by Grant Nucleo de Investigacion en Data Analytics/VRIEA/PUCV/039.432/2020.

Institutional Review Board Statement

Not applicable for studies not involving humans or animals.

Informed Consent Statement

Informed consent was obtained from all subjects involved in the study.

Data Availability Statement

The data set used in this article can be obtained from: https://drive.google.com/drive/folders/1aH11zXXBFtWbKjS9MlKxv-7eZjgcvCpL?usp=sharing, accessed on 14 October 2021. The results of the experiments are in: https://drive.google.com/drive/u/2/folders/1xLY1Cu8loizh44oVa7vS0s4nqUAvhHNV, accessed on 14 October 2021.

Acknowledgments

José García was supported by the Grant CONICYT/FONDECYT/INICIACION/ 11180056. PROYECTO DI INVESTIGACIÓN INNOVADORA INTERDISCIPLINARIA: 039.414/2021. José Lemus-Romani is supported by National Agency for Research and Development (ANID)/ Scholarship Program/DOCTORADO NACIONAL/2019-21191692. Marcelo Becerra-Rozas is supported by National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2021-21210740. Broderick Crawford is supported by Grant CONICYT/FONDECYT/REGULAR/1210810.Ricardo Soto is supported by Grant CONICYT/FONDECYT/REGULAR/ 1190129. Broderick Crawford, Ricardo Soto, and Marcelo Becerra-Rozas are supported by Grant Nucleo de Investigacion en Data Analytics/VRIEA/PUCV/039.432/2020.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Guo, H.; Liu, B.; Cai, D.; Lu, T. Predicting protein–protein interaction sites using modified support vector machine. Int. J. Mach. Learn. Cybern. 2018, 9, 393–398. [Google Scholar] [CrossRef]

	

Korkmaz, S.; Babalik, A.; Kiran, M.S. An artificial algae algorithm for solving binary optimization problems. Int. J. Mach. Learn. Cybern. 2018, 9, 1233–1247. [Google Scholar] [CrossRef]

	

Penadés-Plà, V.; García-Segura, T.; Yepes, V. Robust design optimization for low-cost concrete box-girder bridge. Mathematics 2020, 8, 398. [Google Scholar] [CrossRef]

	

Al-Madi, N.; Faris, H.; Mirjalili, S. Binary multi-verse optimization algorithm for global optimization and discrete problems. Int. J. Mach. Learn. Cybern. 2019, 10, 3445–3465. [Google Scholar] [CrossRef]

	

Talbi, E.G. Combining metaheuristics with mathematical programming, constraint programming and machine learning. Ann. Oper. Res. 2016, 240, 171–215. [Google Scholar] [CrossRef]

	

Tsao, Y.C.; Vu, T.L.; Liao, L.W. Hybrid Heuristics for the Cut Ordering Planning Problem in Apparel Industry. Comput. Ind. Eng. 2020, 144, 106478. [Google Scholar] [CrossRef]

	

Chhabra, A.; Singh, G.; Kahlon, K.S. Performance-aware energy-efficient parallel job scheduling in HPC grid using nature-inspired hybrid meta-heuristics. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 1801–1835. [Google Scholar] [CrossRef]

	

Caserta, M.; Voß, S. Metaheuristics: Intelligent problem solving. In Matheuristics; Springer: Berlin, Germany, 2009; pp. 1–38. [Google Scholar]

	

Schermer, D.; Moeini, M.; Wendt, O. A matheuristic for the vehicle routing problem with drones and its variants. Transp. Res. Part Emerg. Technol. 2019, 106, 166–204. [Google Scholar] [CrossRef]

	

Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E. Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows. Measurement 2021, 168, 108427. [Google Scholar] [CrossRef]

	

Roshani, S.; Jamshidi, M.B.; Mohebi, F.; Roshani, S. Design and Modeling of a Compact Power Divider with Squared Resonators Using Artificial Intelligence. Wirel. Pers. Commun. 2021, 117, 2085–2096. [Google Scholar] [CrossRef]

	

Nazemi, B.; Rafiean, M. Forecasting house prices in Iran using GMDH. Int. J. Hous. Mark. Anal. 2020, 14, 555–568. [Google Scholar] [CrossRef]

	

Talbi, E.G. Machine Learning into Metaheuristics: A Survey and Taxonomy. ACM Comput. Surv. (CSUR) 2021, 54, 1–32. [Google Scholar]

	

Calvet, L.; de Armas, J.; Masip, D.; Juan, A.A. Learnheuristics: Hybridizing metaheuristics with machine learning for optimization with dynamic inputs. Open Math. 2017, 15, 261–280. [Google Scholar] [CrossRef]

	

Crawford, B.; Soto, R.; Astorga, G.; García, J.; Castro, C.; Paredes, F. Putting continuous metaheuristics to work in binary search spaces. Complexity 2017, 2017, 8404231. [Google Scholar] [CrossRef]

	

García, J.; Lalla Ruiz, E.; Voß, S.; Lopez Droguett, E. Enhancing a machine learning binarization framework by perturbation operators: Analysis on the multidimensional knapsack problem. Int. J. Mach. Learn. Cybern. 2020, 11, 1951–1970. [Google Scholar] [CrossRef]

	

García, J.; Astorga, G.; Yepes, V. An analysis of a KNN perturbation operator: An application to the binarization of continuous metaheuristics. Mathematics 2021, 9, 225. [Google Scholar] [CrossRef]

	

García, J.; Martí, J.V.; Yepes, V. The buttressed walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics 2020, 8, 862. [Google Scholar] [CrossRef]

	

García, J.; Yepes, V.; Martí, J.V. A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics 2020, 8, 555. [Google Scholar] [CrossRef]

	

Goldschmidt, O.; Nehme, D.; Yu, G. Note: On the set-union knapsack problem. Nav. Res. Logist. 1994, 41, 833–842. [Google Scholar] [CrossRef]

	

Wei, Z.; Hao, J.K. Multistart solution-based tabu search for the Set-Union Knapsack Problem. Appl. Soft Comput. 2021, 105, 107260. [Google Scholar] [CrossRef]

	

Ozsoydan, F.B.; Baykasoglu, A. A swarm intelligence-based algorithm for the set-union knapsack problem. Future Gener. Comput. Syst. 2019, 93, 560–569. [Google Scholar] [CrossRef]

	

Liu, X.J.; He, Y.C. Estimation of distribution algorithm based on Lévy flight for solving the set-union knapsack problem. IEEE Access 2019, 7, 132217–132227. [Google Scholar] [CrossRef]

	

Tu, M.; Xiao, L. System resilience enhancement through modularization for large scale cyber systems. In Proceedings of the 2016 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Chengdu, China, 27–29 July 2016; pp. 1–6, 27–29. [Google Scholar]

	

Yang, X.; Vernitski, A.; Carrea, L. An approximate dynamic programming approach for improving accuracy of lossy data compression by Bloom filters. Eur. J. Oper. Res. 2016, 252, 985–994. [Google Scholar] [CrossRef]

	

Feng, Y.; An, H.; Gao, X. The importance of transfer function in solving set-union knapsack problem based on discrete moth search algorithm. Mathematics 2019, 7, 17. [Google Scholar] [CrossRef]

	

Wei, Z.; Hao, J.K. Kernel based tabu search for the Set-union Knapsack Problem. Expert Syst. Appl. 2021, 165, 113802. [Google Scholar] [CrossRef]

	

García, J.; Crawford, B.; Soto, R.; Castro, C.; Paredes, F. A k-means binarization framework applied to multidimensional knapsack problem. Appl. Intell. 2018, 48, 357–380. [Google Scholar] [CrossRef]

	

Lister, W.; Laycock, R.; Day, A. A Key-Pose Caching System for Rendering an Animated Crowd in Real-Time; Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2010; Volume 29, pp. 2304–2312. [Google Scholar]

	

Arulselvan, A. A note on the set union knapsack problem. Discret. Appl. Math. 2014, 169, 214–218. [Google Scholar] [CrossRef]

	

Wei, Z.; Hao, J.K. Iterated two-phase local search for the Set-Union Knapsack Problem. Future Gener. Comput. Syst. 2019, 101, 1005–1017. [Google Scholar] [CrossRef]

	

He, Y.; Xie, H.; Wong, T.L.; Wang, X. A novel binary artificial bee colony algorithm for the set-union knapsack problem. Future Gener. Comput. Syst. 2018, 78, 77–86. [Google Scholar] [CrossRef]

	

Feng, Y.; Yi, J.H.; Wang, G.G. Enhanced moth search algorithm for the set-union knapsack problems. IEEE Access 2019, 7, 173774–173785. [Google Scholar] [CrossRef]

	

Wu, C.; He, Y. Solving the set-union knapsack problem by a novel hybrid Jaya algorithm. Soft Comput. 2020, 24, 1883–1902. [Google Scholar] [CrossRef]

	

Zhou, Y.; Zhao, M.; Fan, M.; Wang, Y.; Wang, J. An efficient local search for large-scale set-union knapsack problem. Data Technol. Appl. 2020. [Google Scholar]

	

Gölcük, İ.; Ozsoydan, F.B. Evolutionary and adaptive inheritance enhanced Grey Wolf Optimization algorithm for binary domains. Knowl.-Based Syst. 2020, 194, 105586. [Google Scholar] [CrossRef]

	

Crawford, B.; Soto, R.; Lemus-Romani, J.; Becerra-Rozas, M.; Lanza-Gutiérrez, J.M.; Caballé, N.; Castillo, M.; Tapia, D.; Cisternas-Caneo, F.; García, J.; et al. Q-Learnheuristics: Towards Data-Driven Balanced Metaheuristics. Mathematics 2021, 9, 1839. [Google Scholar] [CrossRef]

	

Lanza-Gutierrez, J.M.; Crawford, B.; Soto, R.; Berrios, N.; Gomez-Pulido, J.A.; Paredes, F. Analyzing the effects of binarization techniques when solving the set covering problem through swarm optimization. Expert Syst. Appl. 2017, 70, 67–82. [Google Scholar] [CrossRef]

	

He, Y.; Wang, X. Group theory-based optimization algorithm for solving knapsack problems. Knowl.-Based Syst. 2021, 219, 104445. [Google Scholar] [CrossRef]

	

García, J.; Moraga, P.; Valenzuela, M.; Pinto, H. A db-scan hybrid algorithm: An application to the multidimensional knapsack problem. Mathematics 2020, 8, 507. [Google Scholar] [CrossRef]

	

Baykasoğlu, A.; Ozsoydan, F.B.; Senol, M.E. Weighted superposition attraction algorithm for binary optimization problems. Oper. Res. 2020, 20, 2555–2581. [Google Scholar] [CrossRef]

	

Ozsoydan, F.B. Artificial search agents with cognitive intelligence for binary optimization problems. Comput. Ind. Eng. 2019, 136, 18–30. [Google Scholar] [CrossRef]

[image: Mathematics 09 02611 g001 550]

Figure 1. Machine learning cuckoo search binary algorithm.

Figure 1. Machine learning cuckoo search binary algorithm.

[image: Mathematics 09 02611 g001]

[image: Mathematics 09 02611 g002 550]

Figure 2. K-means binarization procedure.

Figure 2. K-means binarization procedure.

[image: Mathematics 09 02611 g002]

[image: Mathematics 09 02611 g003 550]

Figure 3. Box plots for MLCSBO and random operators, with and without local search operator.

Figure 3. Box plots for MLCSBO and random operators, with and without local search operator.

[image: Mathematics 09 02611 g003]

[image: Table]

Table 1. Parameter setting for the MLCSBO.

Table 1. Parameter setting for the MLCSBO.

	Parameters
	Description
	Value
	Range

	N
	Number of Nest
	20
	[10, 15, 20]

	K
	Clusters number
	5
	[4, 5, 6]

	 γ
	Step Length
	0.01
	0.01

	 κ
	Levy distribution parameter
	1.5
	1.5

	T
	Maximum local search iterations
	300
	[300, 400, 800]

	 β
	Random initialization parameter
	0.3
	[0.3, 0.5]

	Transition probability
	Transition probability
	[0.1, 0.2, 0.4, 0.8, 0.9]
	[0.1, 0.2, [0.4, 0.5], 0.8, 0.9]

[image: Table]

Table 2. Comparison between MLCSBO and random operators, with and without local search operator.

Table 2. Comparison between MLCSBO and random operators, with and without local search operator.

	

	
Random-03

	
Random-05

	
Random-03-NL

	
Random-05-NL

	
MLCSBO-NL

	
MLCSBO

	
Instance

	
Avg

	
Best

	
Std

	
Avg

	
Best

	
Std

	
Avg

	
Best

	
Std

	
Avg

	
Best

	
Std

	
Avg

	
Best

	
Std

	
Avg

	
Best

	
Std

	
100_85_0.10_0.75

	
12,825

	
13,089

	
200.9

	
12,862.5

	
13,089

	
136.3

	
12,779.4

	
13,044

	
243.8

	
12,794.4

	
13,089

	
207

	
12,927.8

	
13,089

	
93

	
13,060

	
13,283

	
46.4

	
100_85_0.15_0.85

	
12,071.6

	
12,233

	
83.7

	
12,128

	
12,233

	
58.3

	
12,063.7

	
12,226

	
100.6

	
12,039.4

	
12,272

	
106.8

	
12,177

	
12,274

	
46.3

	
12,237.6

	
12,274

	
18.2

	
200_185_0.10_0.75

	
13,296.4

	
13,502

	
89.4

	
13,296.5

	
13,443

	
102

	
13,265

	
13,521

	
112.7

	
13,252.1

	
13,405

	
94.7

	
13,357.1

	
13,521

	
72.8

	
13,429.8

	
13,521

	
44.1

	
200_185_0.15_0.85

	
13,701.3

	
14,215

	
238.2

	
13,711.2

	
13,995

	
163.4

	
13,624

	
14,102

	
226.9

	
13,581.9

	
13,979

	
181

	
13,729.5

	
14,187

	
165.2

	
13,853.8

	
14,215

	
149.9

	
300_285_0.10_0.75

	
11,221.8

	
11,469

	
118.8

	
11,282.7

	
11,563

	
104.9

	
11,219.3

	
11,545

	
167.4

	
11,218.9

	
11,545

	
165.8

	
11,305.7

	
11,563

	
110.1

	
11,419.4

	
11,563

	
70.8

	
300_285_0.15_0.85

	
12,082.2

	
12,402

	
158.4

	
12,114.3

	
12,380

	
121.7

	
11,942.9

	
12,273

	
190.6

	
11,960.3

	
12,402

	
221.6

	
12,116.1

	
12,380

	
119

	
12,263.4

	
12,402

	
61.7

	
400_385_0.10_0.75

	
11,282

	
11,484

	
99.9

	
11,333.2

	
11,484

	
84.4

	
11,241.5

	
11,484

	
109.2

	
11,273.4

	
11,484

	
117.8

	
11,295.1

	
11,484

	
83

	
11,461.3

	
11,484

	
48.9

	
400_385_0.15_0.85

	
10,716.3

	
11,209

	
209.7

	
10,836.5

	
11,209

	
180.9

	
10,677.7

	
11,209

	
238

	
10,598.7

	
10,923

	
188.8

	
10,837.5

	
11,209

	
179.1

	
10,971.8

	
11,209

	
164.4

	
500_485_0.10_0.75

	
11,467.5

	
11,658

	
101.3

	
11,530

	
11,689

	
96.8

	
11,416.7

	
11,610

	
109.1

	
11,507.2

	
11,729

	
128

	
11,554.1

	
11,722

	
74

	
11,636.2

	
11,729

	
38.3

	
500_485_0.15_0.85

	
9779.8

	
10,217

	
126.2

	
9783.5

	
10,217

	
136.1

	
9695.4

	
10,217

	
144.9

	
9686.4

	
10,086

	
154.9

	
9811.4

	
10,086

	
98.1

	
9916.4

	
10,217

	
99.8

	
100_100_0.10_0.75

	
13,831.7

	
13,957

	
105.2

	
13,835.2

	
13,957

	
74.8

	
13,698.6

	
13,957

	
165.6

	
13,686.1

	
13,937

	
160

	
13,856.8

	
13,957

	
70.2

	
13,952.8

	
13,990

	
11.4

	
100_100_0.15_0.85

	
13,133.5

	
13,445

	
182.4

	
13,157

	
13,498

	
180.5

	
13,057.2

	
13,407

	
181.2

	
13,013.1

	
13,449

	
249.9

	
13,180.4

	
13,498

	
173.1

	
13,337.8

	
13,508

	
148.3

	
200_200_0.10_0.75

	
12,180.8

	
12,350

	
87.2

	
12,181.3

	
12,522

	
106.1

	
12,136.7

	
12,384

	
126.1

	
12,088.6

	
12,301

	
124.7

	
12,196.1

	
12,522

	
110.8

	
12,330.6

	
12,522

	
101.1

	
200_200_0.15_0.85

	
11,793

	
12,317

	
153.1

	
11,797.1

	
12,048

	
165.1

	
11,663.7

	
11,930

	
156.3

	
11,681.4

	
12,100

	
194.6

	
11,757.8

	
11,982

	
118.7

	
11,975.1

	
12,317

	
140.4

	
300_300_0.10_0.75

	
12,539.5

	
12,817

	
90.9

	
12,578.8

	
12,817

	
98.3

	
12,526

	
12,736

	
114.9

	
12,465.1

	
12,817

	
162.1

	
12,621.5

	
12,817

	
85.3

	
12,716.4

	
12,817

	
69.2

	
300_300_0.15_0.85

	
11,157.8

	
11,425

	
138.8

	
11,240.7

	
11,410

	
98.9

	
11,137.4

	
11,410

	
200

	
11,042.9

	
11,410

	
178.1

	
11,231.6

	
11,410

	
97.8

	
11,408.8

	
11,425

	
26.7

	
400_400_0.10_0.75

	
11,397.7

	
11,665

	
154.8

	
11,406.7

	
11,665

	
134.3

	
11,328.7

	
11,665

	
147.5

	
11,378.2

	
11,665

	
143.5

	
11,415.1

	
11,665

	
102.8

	
11,600.9

	
11,665

	
73.9

	
400_400_0.15_0.85

	
11,046.4

	
11,325

	
166.9

	
11,087.2

	
11,325

	
156.6

	
10,911.2

	
11,325

	
244.5

	
10,936.8

	
11,325

	
258.7

	
11,090.9

	
11,325

	
122.8

	
11,271.2

	
11,325

	
62.4

	
500_500_0.10_0.75

	
10,753.2

	
10,943

	
86.1

	
10,841.6

	
11,041

	
85.5

	
10,748.9

	
11,078

	
148.5

	
10,769.5

	
11,011

	
121.2

	
10,846.4

	
10,983

	
70

	
10,954.3

	
11,078

	
74.2

	
500_500_0.15_0.85

	
9847.3

	
10,108

	
146.1

	
9874.6

	
10,194

	
163.3

	
9768.1

	
10,160

	
191.4

	
9829.9

	
10,209

	
188

	
9879.4

	
10,162

	
146.5

	
10,056.6

	
10,209

	
107.2

	
85_100_0.10_0.75

	
11,761.2

	
12,045

	
159.6

	
11,797.4

	
12,045

	
131.7

	
11,684.1

	
11,964

	
181.9

	
11,713.4

	
12,045

	
160

	
11,797.7

	
12,045

	
159.8

	
11,945.5

	
12,045

	
126.6

	
85_100_0.15_0.85

	
11,994.5

	
12,369

	
223.4

	
12,053

	
12,299

	
129.2

	
11,942.5

	
12,348

	
235.5

	
11,988

	
12,369

	
233.6

	
12,083

	
12,369

	
152.9

	
12,253.1

	
12,369

	
81.6

	
185_200_0.10_0.75

	
13,539.9

	
13,659

	
99.6

	
13,493.7

	
13,695

	
90.8

	
13,468

	
13,696

	
120

	
13,449.8

	
13,695

	
125.1

	
13,558.7

	
13,696

	
78.7

	
13,651.7

	
13,696

	
36.1

	
185_200_0.15_0.85

	
10,890.6

	
11,155

	
94.4

	
10,883.2

	
11,298

	
164.6

	
10,893.9

	
11,242

	
135

	
10,873.8

	
11,298

	
149.9

	
10,969.7

	
11,298

	
139.4

	
11,068.7

	
11,298

	
162.4

	
285_300_0.10_0.75

	
11,401.4

	
11,568

	
100.4

	
11,407.4

	
11,568

	
105.4

	
11,323.9

	
11,568

	
146.6

	
11,359.6

	
11,568

	
126.7

	
11,410.1

	
11,568

	
83.3

	
11,546

	
11,568

	
13.5

	
285_300_0.15_0.85

	
11,258.4

	
11,763

	
221.4

	
11,368.1

	
11,763

	
149.9

	
11,220.4

	
11,714

	
225.8

	
11,193.4

	
11,590

	
240.1

	
11,333.5

	
11,763

	
208.4

	
11,564.3

	
11,763

	
129.2

	
385_400_0.10_0.75

	
10,274.1

	
10,397

	
69.5

	
10,300.6

	
10,407

	
71.2

	
10,248.8

	
10,436

	
100.3

	
10,249.1

	
10,467

	
88

	
10,302

	
10,407

	
63.7

	
10,400.7

	
10,600

	
47.3

	
385_400_0.15_0.85

	
9918.2

	
10,506

	
242.8

	
9921.8

	
10,294

	
212.1

	
9815

	
10,354

	
253.2

	
9771

	
10,329

	
358.2

	
9955.1

	
10,506

	
274.9

	
10,162

	
10,506

	
172.7

	
485_500_0.10_0.75

	
10,823.3

	
11,094

	
83.1

	
10,828.5

	
11,115

	
100.5

	
10,790.6

	
11,097

	
135

	
10,785.8

	
11,097

	
97.6

	
10,895.6

	
11,115

	
105.4

	
10,965.3

	
11,125

	
96.2

	
485_500_0.15_0.85

	
9836.6

	
10,117

	
162.2

	
9873.8

	
10,208

	
150.7

	
9760.3

	
10,104

	
160.1

	
9795.1

	
10,220

	
191.9

	
9897.4

	
10,104

	
122

	
10,095.7

	
10,220

	
74.1

	
Average

	
11,594.1

	
11,883.4

	
139.8

	
11,626.9

	
11,882

	
125.1

	
11,535.0

	
11,860

	
167.1

	
11,532.8

	
11,860

	
170.6

	
11,646.3

	
11,890

	
117.6

	
11,783.6

	
11,931

	
83.2

	
p-value Wilcoxon

	
 1.7 × 10 − 6

	
 6.5 × 10 − 4

	

	
 1.8 × 10 − 6

	
 1.9 × 10 − 4

	

	
 1.7 × 10 − 6

	
 5.9 × 10 − 5

	

	
 1.7 × 10 − 6

	
 1.9 × 10 − 4

	

	
 1.7 × 10 − 6

	
 9.7 × 10 − 4

	

	

	

	

	
p-value Holm–Bonferroni

	
 5.1 × 10 − 6

	
0.0013

	

	
 5.4 × 10 − 6

	
 3.8 × 10 − 4

	

	
 5.1 × 10 − 6

	
 1.2 × 10 − 4

	

	
 5.1 × 10 − 6

	
 3.8 × 10 − 4

	

	
 1.7 × 10 − 6

	
 9.7 × 10 − 4

	

	

	

	

[image: Table]

Table 3. Average runtime values in seconds for MLCSBO and random operators, with and without a local search operator.

Table 3. Average runtime values in seconds for MLCSBO and random operators, with and without a local search operator.

	Instance
	MLCSBO
	MLCSBO-NL
	Random-03
	Random-03-NL
	Random-05
	Random-05-NL

	100_85_0.10_0.75
	10
	9
	10
	7
	10
	5

	100_85_0.15_0.85
	20
	18
	19
	16
	18
	15

	200_185_0.10_0.75
	26
	21
	17
	15
	19
	14

	200_185_0.15_0.85
	61
	48
	54
	40
	54
	51

	300_285_0.10_0.75
	33
	25
	22
	15
	23
	17

	300_285_0.15_0.85
	66
	60
	55
	57
	69
	48

	400_385_0.10_0.75
	35
	32
	31
	26
	32
	29

	400_385_0.15_0.85
	97
	102
	106
	101
	101
	99

	500_485_0.10_0.75
	63
	55
	39
	43
	56
	47

	500_485_0.15_0.85
	119
	106
	107
	94
	111
	112

	100_100_0.10_0.75
	6
	5
	4
	4
	4
	5

	100_100_0.15_0.85
	17
	17
	12
	14
	16
	14

	200_200_0.10_0.75
	32
	31
	24
	25
	24
	24

	200_200_0.15_0.85
	140
	143
	124
	122
	133
	112

	300_300_0.10_0.75
	99
	95
	88
	84
	87
	85

	300_300_0.15_0.85
	156
	148
	160
	152
	153
	144

	400_400_0.10_0.75
	46
	43
	32
	30
	42
	37

	400_400_0.15_0.85
	202
	198
	176
	161
	191
	143

	500_500_0.10_0.75
	82
	89
	80
	69
	84
	80

	500_500_0.15_0.85
	168
	135
	153
	128
	123
	110

	85_100_0.10_0.75
	4
	4
	4
	4
	4
	4

	85_100_0.15_0.85
	18
	17
	18
	17
	18
	18

	185_200_0.10_0.75
	29
	32
	29
	25
	29
	20

	185_200_0.15_0.85
	67
	53
	42
	43
	47
	44

	285_300_0.10_0.75
	20
	18
	16
	17
	14
	16

	285_300_0.15_0.85
	91
	79
	73
	66
	67
	60

	385_400_0.10_0.75
	72
	65
	53
	70
	57
	69

	385_400_0.15_0.85
	122
	101
	92
	92
	85
	99

	485_500_0.10_0.75
	114
	114
	108
	104
	87
	108

	485_500_0.15_0.85
	130
	123
	120
	106
	134
	110

	Average
	71.5
	66.2
	62.3
	58.2
	63.1
	58.0

[image: Table]

Table 4. Percentile values for MLCSBO and Random operators, with and without local search operator.

Table 4. Percentile values for MLCSBO and Random operators, with and without local search operator.

	Percentile
	MLCSBO
	MLCSBO-NL
	Random-03
	Random-03-NL
	Random-05
	Random-05-NL

	2.5
	0.00
	0.01
	0.16
	0.63
	0.02
	0.22

	25
	0.57
	1.82
	1.98
	2.44
	1.95
	2.25

	50
	1.51
	2.81
	3.19
	3.78
	2.94
	3.60

	75
	2.43
	3.80
	4.34
	5.12
	4.05
	4.85

	97.5
	4.06
	6.08
	6.64
	7.64
	6.25
	7.61

[image: Table]

Table 5. Best|average p-values for the Wilcoxon test.

Table 5. Best|average p-values for the Wilcoxon test.

	
	MLCSBO
	MLCSBO-NL
	Random-03
	Random-03-NL
	Random-05

	MLCSBO
	-
	
	
	
	

	MLCSBO-NL
	 9.7 × 10 − 4 | 1.7 × 10 − 6
	-
	
	
	

	Random-03
	 6.5 × 10 − 4 | 5.1 × 10 − 6
	0.31| 5.7 × 10 − 5
	-
	
	

	Random-03-NL
	 1.2 × 10 − 4 | 5.1 × 10 − 6
	0.06| 1.7 × 10 − 5
	0.23| 2.1 × 10 − 5
	-
	

	Random-05
	 3.8 × 10 − 4 | 5.4 × 10 − 6
	0.97|0.0012
	0.61| 3.1 × 10 − 4
	0.05| 1.9 × 10 − 5
	-

	Random-05-NL
	 3.8 × 10 − 4 | 5.1 × 10 − 6
	0.44| 1.7 × 10 − 5
	0.47| 8.4 × 10 − 4
	0.77|0.87
	0.50| 1.7 × 10 − 5

[image: Table]

Table 6. Comparison between GA, BABC, ABC bin, gPSO*, gPSO, intAgents, DH-Jaya, GWOfbd, GWOrbd and MLCSBO algorithms for medium instances.

Table 6. Comparison between GA, BABC, ABC bin, gPSO*, gPSO, intAgents, DH-Jaya, GWOfbd, GWOrbd and MLCSBO algorithms for medium instances.

	Instance
	Results
	Best Known
	GA
	BABC
	ABC bin
	binDE
	bWSA
	gPSO*
	gPSO
	intAgents
	DH-jaya
	GWOfbd
	GWOrbd
	MLCSBO

	100_85_0.10_0.75
	best
	13,283
	13,044
	13,251
	13,044
	13,044
	13,044
	13,167
	13,283
	13,283
	13,283
	13,089
	13,283
	13,283

	
	Avg
	
	12,956.4
	13,028.5
	12,818.5
	12,991
	12,915.67
	12,937.05
	13,050.53
	13,061.02
	13,076
	13,041.37
	13,065.93
	13,060

	
	std dev
	
	130.66
	92.63
	153.06
	75.95
	185.45
	189.6
	37.41
	44.08
	66.61
	31.17
	70.02
	46.4

	100_85_0.15_0.85
	best
	12,479
	12,066
	12,238
	12,238
	12,274
	12,238
	12,210
	12,274
	12,274
	12,274
	12,274
	12,274
	12,274

	
	Avg
	
	11,546
	12,155
	12,049.3
	12,123.9
	11,527.41
	11,777.71
	12,084.82
	12,074.84
	12,192.5
	12,079.4
	12,053.57
	12,237.6

	
	std dev
	
	214.94
	53.29
	96.11
	67.61
	332.27
	277.16
	95.38
	86.37
	70.25
	93.34
	81.99
	18.2

	200_185_0.10_0.75
	best
	13,521
	13,064
	13,241
	12,946
	13,241
	13,250
	13,302
	13,405
	13,502
	13,405
	13,405
	13,405
	13,521

	
	Avg
	
	12,492.5
	13,064.4
	11,861.5
	12,940.7
	12,657.65
	12,766.38
	13,286.56
	13,226.28
	13,306.6
	13,282.3
	13,280.78
	13,429.8

	
	std dev
	
	320.03
	99.57
	324.65
	205.7
	319.58
	304.82
	93.18
	150.92
	60.96
	102.88
	123.63
	44.1

	200_185_0.15_0.85
	best
	14,215
	13,671
	13,829
	13,671
	13,671
	13,858
	13,993
	14,044
	14,044
	14,215
	14,215
	14,215
	14,215

	
	Avg
	
	12,802.9
	13,359.2
	12,537
	13,110
	12,585.35
	12,949.05
	13,492.6
	13,441.06
	13,660.2
	13,464.35
	13,479.99
	13,853.8

	
	std dev
	
	291.66
	234.99
	289.53
	269.69
	302.66
	325.58
	328.72
	324.96
	274.76
	358.97
	358.56
	149.9

	300_285_0.10_0.75
	best
	11,563
	10,553
	10,428
	9751
	10,420
	10,991
	10,600
	11,335
	11,335
	10,934
	11,413
	11,335
	11,563

	
	Avg
	
	9980.87
	9994.76
	9339.3
	9899.24
	10,366.21
	10,090.47
	10,669.51
	10,576.1
	10,703.2
	10,707.54
	10,684.17
	11,419.4

	
	std dev
	
	142.97
	154.03
	158.15
	153.18
	257.1
	236.14
	227.85
	281.13
	112.95
	230.46
	242.43
	70.8

	300_285_0.15_0.85
	best
	12,607
	11,016
	12,012
	10,913
	11,661
	12,093
	11,935
	12,245
	12,247
	12,245
	12,402
	12,259
	12,402

	
	Avg
	
	10,349.8
	10,902.9
	9957.85
	10,499.4
	10,901.59
	10,750.3
	11,607.1
	11,490.26
	12,037.5
	11,646.23
	11,606.32
	12,263.4

	
	std dev
	
	215.13
	449.45
	276.9
	403.95
	508.79
	524.53
	477.8
	518.81
	296.02
	517.63
	492.99
	61.7

	400_385_0.10_0.75
	best
	11,484
	10,083
	10,766
	9674
	10,576
	11,321
	10,698
	11,484
	11,484
	11,337
	11,484
	11,484
	11,484

	
	Avg
	
	9641.85
	10,065.2
	9187.76
	9681.46
	10,785.74
	9946.96
	10,915.87
	10,734.62
	11,062
	10,884.49
	10,880.22
	11,461.3

	
	std dev
	
	168.94
	241.45
	167.08
	275.05
	361.45
	295.28
	367.75
	371.37
	273.63
	396.92
	386.79
	48.9

	400_385_0.15_0.85
	best
	11,209
	9831
	9649
	8978
	9649
	10,435
	10,168
	10,710
	10,710
	10,431
	10,710
	10,757
	11,209

	
	Avg
	
	9326.77
	9135.98
	8539.95
	9020.87
	9587.72
	9417.2
	9864.55
	9735
	10,017.9
	9894.54
	9900.01
	10,971.8

	
	std dev
	
	192.2
	151.9
	161.83
	150.99
	360.29
	360.03
	315.38
	370.44
	207.98
	329.34
	325.03
	164.4

	500_485_0.10_0.75
	best
	11,771
	11,031
	10,784
	10,340
	10,586
	11,540
	11,258
	11,722
	11,722
	11,722
	11,722
	11,771
	11,729

	
	Avg
	
	10,567.9
	10,452.2
	9910.32
	10,363.8
	10,921.58
	10,565.9
	11,184.51
	11,111.63
	11,269.4
	11,276.49
	11,338.26
	11,636.2

	
	std dev
	
	123.15
	114.35
	120.82
	93.39
	351.69
	260.32
	322.98
	355.18
	275.37
	347.99
	351.46
	38.3

	500_485_0.15_0.85
	best
	10,238
	9472
	9090
	8759
	9191
	9681
	9756
	10,022
	10,059
	9770
	10,194
	10,194
	10,217

	
	Avg
	
	8692.67
	8857.89
	8365.04
	8783.99
	9013.09
	8779.44
	9299.56
	9165.26
	9354.28
	9339.8
	9398.07
	9916.4

	
	std dev
	
	180.12
	94.55
	114.1
	131.05
	204.85
	300.11
	277.62
	282.55
	212.69
	252.98
	266.46
	99.8

	100_100_0.10_0.75
	best
	14,044
	14,044
	13,860
	13,860
	13,814
	14,044
	13,963
	14,044
	14,044
	14,044
	14,044
	14,044
	13,990

	
	Avg
	
	13,806
	13,734.9
	13,547.2
	13,675.9
	13,492.71
	13,739.71
	13,854.71
	13,767.23
	13,912.5
	13,861.35
	13,847.86
	13,952.8

	
	std dev
	
	144.91
	70.76
	119.11
	119.53
	325.34
	119.52
	96.23
	131.59
	84.55
	84.62
	100.33
	11.4

	100_100_0.15_0.85
	best
	13,508
	13,145
	13,508
	13,498
	13,407
	13,407
	13,498
	13,508
	13,508
	13,508
	13,508
	13,508
	13,508

	
	Avg
	
	12,234.8
	13,352.4
	13,103.1
	13,212.8
	12,487.88
	12,937.53
	13,347.58
	13,003.62
	13,439.1
	13,312.57
	13,297.37
	13,337.8

	
	std dev
	
	388.66
	155.14
	343.46
	287.45
	718.23
	417.91
	194.34
	375.74
	44.86
	189.12
	172.16
	148.3

	200_200_0.10_0.75
	best
	12,522
	11,656
	11,846
	11,191
	11,535
	12,271
	11,972
	12,522
	12,522
	12,522
	12,350
	12,522
	12,522

	
	Avg
	
	10,888.7
	11,194.3
	10,424.1
	10,969.4
	11,430.23
	11,232.55
	11,898.73
	11,586.26
	12,171.6
	11,852.44
	11,906.97
	12,330.6

	
	std dev
	
	237.85
	249.58
	197.88
	302.52
	403.33
	349.39
	391.83
	419.09
	220.68
	371.57
	382.91
	101.1

	200_200_0.15_0.85
	best
	12,317
	11,792
	11,521
	11,287
	11,469
	11,804
	12,167
	12,317
	11,911
	12,187
	11,993
	12,317
	12,317

	
	Avg
	
	10,827.5
	10,945
	10,345.9
	10,717.1
	11,062.06
	11,026.81
	11,584.64
	11,288.25
	11,746
	11,612.07
	11,594.9
	11,975.1

	
	std dev
	
	334.43
	255.14
	273.47
	341.08
	423.9
	421.22
	275.32
	410.54
	181.18
	217.13
	301.1
	140.4

	300_300_0.10_0.75
	best
	12,817
	12,055
	12,186
	11,494
	12,304
	12,644
	12,736
	12,695
	12,695
	12,695
	12,784
	12,695
	12,817

	
	Avg
	
	11,755.1
	11,945.8
	10,922.3
	11,864.4
	12,227.56
	11,934.64
	12,411.27
	12,310.19
	12,569.3
	12,441
	12,446.21
	12,716.4

	
	std dev
	
	144.45
	127.8
	182.63
	160.42
	308.11
	293.83
	225.8
	238.32
	114.13
	247.67
	227.47
	69.2

	300_300_0.15_0.85
	best
	11,585
	10,666
	10,382
	9633
	10,382
	11,113
	10,724
	11,425
	11,425
	11,113
	11,425
	11,425
	11,425

	
	Avg
	
	10,099.2
	9859.69
	9186.87
	9710.37
	10,216.71
	9906.81
	10,568.41
	10,384
	10,701.9
	10,632.71
	10,648.53
	11,408.8

	
	std dev
	
	337.42
	177.02
	147.78
	208.48
	351.12
	399.13
	327.48
	378.42
	153.66
	345.63
	328.13
	26.7

	400_400_0.10_0.75
	best
	11,665
	10,570
	10,626
	10,160
	10,462
	11,199
	11,048
	11,531
	11,531
	11,310
	11,531
	11,531
	11,665

	
	Avg
	
	10,112.4
	10,101.1
	9549.04
	9975.8
	10,624.79
	10,399.97
	10,958.96
	10,756.92
	10,914.8
	10,961.25
	10,964.98
	11,600.9

	
	std dev
	
	157.89
	196.99
	141.27
	185.57
	266.46
	281.99
	274.9
	250.56
	216.47
	258.47
	276.16
	73.9

	400_400_0.15_0.85
	best
	11,325
	9235
	9541
	9033
	9388
	10,915
	10,264
	10,927
	10,927
	10,915
	10,927
	10,927
	11,325

	
	Avg
	
	8793.76
	9032.95
	8365.62
	8768.42
	9580.64
	9195.24
	9845.17
	9608.07
	9969.9
	9849.04
	9873.27
	11,271.2

	
	std dev
	
	169.52
	194.18
	153.4
	212.24
	411.83
	311.9
	358.91
	363.72
	287.61
	343.9
	373.7
	62.4

	500_500_0.10_0.75
	best
	11,249
	10,460
	10,755
	10,071
	10,546
	10,827
	10,647
	10,888
	10,960
	10,960
	10,921
	10,960
	11,078

	
	Avg
	
	10,185.4
	10,328.5
	9738.17
	10,227.7
	10,482.8
	10,205.08
	10,681.46
	10,610.53
	10,703.5
	10,716.55
	10,742.98
	10,954.3

	
	std dev
	
	114.19
	91.62
	111.63
	103.32
	165.62
	190.05
	125.36
	169.73
	105.18
	140.87
	130.05
	74.2

	500_500_0.15_0.85
	best
	10,381
	9496
	9318
	9262
	9312
	10,082
	9839
	10,194
	10,381
	10,176
	10,194
	10,194
	10,209

	
	Avg
	
	8882.88
	9180.74
	8617.91
	9096.13
	9478.71
	9106.64
	9703.62
	9578.89
	9801.5
	9758.61
	9737.48
	10,056.6

	
	std dev
	
	158.21
	84.91
	141.32
	145.45
	262.44
	257.65
	252.84
	278.06
	222.21
	243.59
	272.51
	107.2

[image: Table]

Table 7. Comparison between GA, BABC, ABC bin, gPSO*, gPSO, intAgents, DH-Jaya, GWOfbd, GWOrbd and MLCSBO algorithms for medium instances.

Table 7. Comparison between GA, BABC, ABC bin, gPSO*, gPSO, intAgents, DH-Jaya, GWOfbd, GWOrbd and MLCSBO algorithms for medium instances.

	Instance
	Results
	Best Known
	GA
	BABC
	ABCbin
	binDE
	bWSA
	gPSO*
	gPSO
	intAgents
	DH-jaya
	GWOfbd
	GWOrbd
	MLCSBO

	85_100_0.10_0.75
	best
	12,045
	11,454
	11,664
	11,206
	11,352
	11,947
	11,710
	12,045
	12,045
	12,045
	12,045
	12,045
	12,045

	
	Avg
	
	11,092.7
	11,182.7
	10,879.5
	11,075
	11,233.16
	11,237.05
	11,486.95
	11,419.75
	11,570.6
	11,441.23
	11,430.44
	11,945.5

	
	std dev
	
	171.22
	183.57
	163.62
	119.42
	216.67
	168.96
	137.52
	140.77
	177.86
	11172
	127.56
	126.6

	85_100_0.15_0.85
	best
	12,369
	12,124
	12,369
	12,006
	12,369
	12,369
	12,369
	12,369
	12,369
	12,369
	12,369
	12,369
	12,369

	
	Avg
	
	11,326.3
	12,081.6
	11,485.3
	11,875.9
	11,342.7
	11,684.46
	11,994.36
	11,885.21
	12,318
	11,917.83
	11,942.93
	12,253.1

	
	std dev
	
	417
	193.79
	248.33
	336.94
	474.76
	353.79
	436.81
	431.67
	181.92
	442.25
	418.72
	81.6

	185_200_0.10_0.75
	best
	13,696
	12,841
	13,047
	12,308
	13,024
	13,505
	13,298
	13,696
	13,696
	13,696
	13,647
	13,696
	13,696

	
	Avg
	
	12,236.6
	12,522.8
	11,667.9
	12,277.5
	12,689.09
	12,514.72
	13,204.26
	13,084.52
	13,350.2
	13,121.23
	13,125.85
	13,651.7

	
	std dev
	
	198.18
	201.35
	177.14
	234.24
	336.51
	356.2
	366.56
	388.39
	182.56
	365.41
	367.06
	36.1

	185_200_0.15_0.85
	best
	11,298
	10,920
	10,602
	10,376
	10,547
	10,831
	10,856
	11,298
	11,298
	11,298
	11,298
	11,298
	11,298

	
	Avg
	
	10,351.5
	10,150.6
	9684.33
	10,085.4
	10,228.07
	10,208.33
	10,801.41
	10,780.14
	10,828.9
	10,871.49
	10,819.34
	11,068.7

	
	std dev
	
	208.08
	152.91
	184.84
	160.6
	286.92
	263.73
	205.76
	239.61
	191.76
	240.32
	239.52
	162.4

	285_300_0.10_0.75
	best
	11,568
	10,994
	11,158
	10,269
	11,152
	11,568
	11,310
	11,568
	11,568
	11,568
	11,568
	11,568
	11,568

	
	Avg
	
	10,640.1
	10,775.9
	9957.09
	10,661.3
	11,105.09
	10,761.96
	11,317.99
	11,205.72
	11,327.7
	10,001.33
	10,014.47
	11,546.0

	
	std dev
	
	126.84
	116.8
	141.48
	149.84
	197.78
	199.43
	182.82
	258.49
	166.91
	174.62
	215.35
	13.5

	285_300_0.15_0.85
	best
	11,802
	11,093
	10,528
	10,051
	10,528
	11,377
	11,226
	11,517
	11,517
	11,401
	11,590
	11,763
	11,763

	
	Avg
	
	10,190.3
	9897.92
	9424.15
	9832.32
	10,452.03
	10,309.19
	10,899.2
	10,747.33
	11,025.9
	10,470.33
	10,871.49
	11,564.3

	
	std dev
	
	249.76
	186.53
	197.14
	232.72
	416.76
	389.12
	30036
	334.25
	208.08
	340.47
	332.09
	129.2

	385_400_0.10_0.75
	best
	10,600
	9799
	10,085
	9235
	9883
	10,414
	9871
	10,483
	10,326
	10,414
	10,397
	10,483
	10,600

	
	Avg
	
	9432.82
	9537.5
	8904.94
	9314.57
	9778.03
	9552.14
	10,013.43
	9892.17
	10,017
	10,043.23
	9902.72
	10,400.7

	
	std dev
	
	163.84
	184.62
	111.85
	191.59
	221.49
	234.1
	202.4
	179.19
	141.15
	163.95
	180.32
	47.3

	385_400_0.15_0.85
	best
	10,506
	9173
	9456
	8932
	9352
	10,077
	9389
	10,338
	10,131
	10,302
	10,302
	10,302
	10,506

	
	Avg
	
	8703.66
	9090.03
	8407.06
	8846.99
	9203.52
	8881.17
	9524.98
	9339.67
	9565.72
	9472.39
	9455.24
	10,162.0

	
	std dev
	
	154.15
	156.69
	148.52
	210.91
	303.12
	283.3
	286.16
	288.88
	237.9
	242.25
	261.75
	172.7

	485_500_0.10_0.75
	best
	11,321
	10,311
	10,823
	10,357
	10,728
	10,835
	10,595
	11,094
	11,094
	10,971
	10,989
	11,097
	11,125

	
	Avg
	
	9993.16
	10,483.4
	9615.37
	10,159.4
	10,607.21
	10,145.26
	10,687.62
	10,603.53
	10,754.8
	10,702.72
	10,725.26
	10,965.3

	
	std dev
	
	117.73
	228.34
	151.41
	198.49
	191.86
	199.99
	168.06
	204.99
	112.69
	154.92
	160.001
	96.2

	485_500_0.15_0.85
	best
	10,220
	9329
	9333
	8799
	9218
	9603
	9807
	10,104
	10,104
	9715
	10,104
	10,104
	10,220

	
	Avg
	
	8849.46
	9085.57
	8347.82
	8919.64
	9141.94
	8917.44
	9383.28
	9259.36
	9467.8
	9462
	9455.24
	10,095.7

	
	std dev
	
	141.84
	115.62
	122.65
	168.9
	180.42
	267.49
	241.01
	268.33
	106.55
	229.88
	261.74
	74.1

[image: Table]

Table 8. Comparison between BABC, DH-Jaya, and MLBO algorithms for large instances.

Table 8. Comparison between BABC, DH-Jaya, and MLBO algorithms for large instances.

	

	

	
BABC

	
DH-Jaya

	
MLBO

	
Instance

	
Best Known

	
Best

	
Avg

	
Std

	
 t avg

	
Best

	
Avg

	
Std

	
 t avg

	
Best

	
Avg

	
Std

	
 t avg

	
600_585_0.10_0.75

	
9914

	
9098

	
9026.1

	
34.9

	
498.6

	
9640

	
9450.0

	
60.2

	
690.5

	
9721

	
9668.6

	
54.2

	
88.3

	
600_585_0.15_0.85

	
9357

	
8736

	
8540.5

	
20.5

	
172.5

	
9187

	
8998.5

	
79.2

	
881.3

	
9313

	
9045.9

	
119.6

	
320.5

	
700_685_0.10_0.75

	
9881

	
9311

	
9176.3

	
46.9

	
363.4

	
9790

	
9602.0

	
56.0

	
543.2

	
9736

	
9545.7

	
103.3

	
162.5

	
700_685_0.15_0.85

	
9163

	
8671

	
8397.4

	
87.7

	
302.6

	
9106

	
8894.1

	
140.5

	
426.1

	
9135

	
8834.1

	
106.7

	
356.7

	
800_785_0.10_0.75

	
9837

	
9275

	
9192.4

	
20.3

	
253.3

	
9771

	
9540.1

	
48.0

	
637.3

	
9470

	
9268

	
101.6

	
316.6

	
800_785_0.15_0.85

	
9024

	
8447

	
8366.5

	
72.0

	
254.3

	
8797

	
8649.0

	
63.0

	
236.8

	
8907

	
8611.9

	
66.3

	
200.9

	
900_885_0.10_0.75

	
9725

	
8953

	
8837.2

	
103.2

	
471.4

	
9455

	
9249.5

	
109.1

	
687.2

	
9454

	
9142

	
116.9

	
260.1

	
900_885_0.15_0.85

	
8620

	
8072

	
7881.2

	
88.5

	
228.4

	
8418

	
8244.5

	
87.9

	
316.6

	
8427

	
8120.5

	
186.2

	
264.3

	
1000_985_0.10_0.75

	
9668

	
9276

	
9254.2

	
27.9

	
640.5

	
9424

	
9306.9

	
45.0

	
309.9

	
9146

	
8642.4

	
242.3

	
202.5

	
1000_985_0.15_0.85

	
8453

	
8133

	
8099.1

	
25.4

	
648.2

	
8433

	
8280.5

	
90.9

	
312.6

	
8149

	
7755.7

	
223.7

	
234.0

	
600_600_0.10_0.75

	
10,524

	
10,207

	
9939.4

	
47.5

	
66.7

	
10,507

	
10,504.3

	
19.7

	
321.2

	
10,518

	
10,470.9

	
22.5

	
192.4

	
600_600_0.15_0.85

	
9062

	
8621

	
8361.8

	
101.3

	
455.5

	
8910

	
8785.6

	
43.5

	
572.0

	
8939

	
8891.3

	
31.7

	
570.6

	
700_700_0.10_0.75

	
9786

	
9078

	
9056.5

	
21.9

	
224.4

	
9512

	
9409.0

	
28.7

	
809.8

	
9786

	
9416.6

	
156.6

	
302.3

	
700_700_0.15_0.85

	
9229

	
8614

	
8290.2

	
77.6

	
126.8

	
9121

	
8985.5

	
65.9

	
507.7

	
9068

	
8786

	
140.9

	
244.1

	
800_800_0.10_0.75

	
9932

	
9517

	
9305.4

	
56.8

	
418.5

	
9890

	
9656.4

	
51.4

	
567.1

	
9679

	
9458.9

	
110.7

	
278.8

	
800_800_0.15_0.85

	
9101

	
8444

	
8163.8

	
132.7

	
376.7

	
8961

	
8774.2

	
59.8

	
161.7

	
8864

	
8433.7

	
175.9

	
276.7

	
900_900_0.10_0.75

	
9745

	
9290

	
9273.0

	
14.6

	
460.0

	
9526

	
9462.9

	
37.8

	
671.0

	
9533

	
9289.8

	
138.6

	
254.4

	
900_900_0.15_0.85

	
8990

	
8118

	
8114.5

	
9.2

	
151.0

	
8718

	
8492.9

	
62.3

	
702.7

	
8647

	
8233.4

	
279.8

	
250.5

	
1000_1000_0.10_0.75

	
9544

	
9030

	
8891.3

	
39.0

	
658.0

	
9348

	
9250.8

	
53.7

	
542.2

	
9062

	
8656.8

	
196.8

	
198.9

	
1000_1000_0.15_0.85

	
8474

	
7867

	
7627.8

	
44.9

	
635.0

	
8330

	
8037.9

	
71.9

	
932.6

	
8106

	
7767.3

	
189.1

	
318.6

	
585_600_0.10_0.75

	
10,393

	
9768

	
9677.8

	
81.9

	
535.9

	
10,300

	
10,161.5

	
72.8

	
98.2

	
10,001

	
9954

	
52.1

	
160.0

	
585_600_0.15_0.85

	
9256

	
8689

	
8623.8

	
28.5

	
461.9

	
9031

	
8944.2

	
61.7

	
616.6

	
9256

	
8921.7

	
122.6

	
246.4

	
685_700_0.10_0.75

	
10,121

	
9796

	
9627.4

	
73.2

	
248.7

	
10,070

	
9953.6

	
49.0

	
430.2

	
9914

	
9633.3

	
144.9

	
210.7

	
685_700_0.15_0.85

	
9176

	
8453

	
8424.9

	
4.8

	
958.7

	
9102

	
8860.8

	
106.4

	
160.0

	
9110

	
8828.6

	
85.9

	
282.2

	
785_800_0.10_0.75

	
9384

	
8765

	
8658.5

	
54.3

	
869.0

	
9123

	
8885.1

	
54.1

	
316.5

	
9039

	
8875.4

	
87.4

	
304.4

	
785_800_0.15_0.85

	
8746

	
8249

	
8021.9

	
117.1

	
577.0

	
8556

	
8482.3

	
51.5

	
604.6

	
8555

	
8280.5

	
108.4

	
310.1

	
885_900_0.10_0.75

	
9318

	
8938

	
8897.6

	
30.2

	
587.2

	
9137

	
9079.1

	
46.7

	
590.4

	
9019

	
8761.6

	
114.9

	
186.5

	
885_900_0.15_0.85

	
8425

	
7610

	
7518.0

	
50.5

	
869.7

	
8217

	
7881.4

	
65.8

	
140.9

	
8001

	
7766.7

	
134.6

	
326.2

	
985_1000_0.10_0.75

	
9193

	
8914

	
8741.3

	
101.8

	
739.9

	
9067

	
8994.5

	
45.0

	
313.1

	
8934

	
8435.7

	
190.5

	
148.1

	
985_1000_0.15_0.85

	
8528

	
8071

	
8066.5

	
15.2

	
486.5

	
8453

	
8425.3

	
48.7

	
504.0

	
8114

	
7600.7

	
287.6

	
190.4

	
Average

	
9352.3

	
8800.4

	
8668.4

	
54.3

	
458.0

	
9196.7

	
9041.4

	
62.5

	
486.8

	
9120.1

	
8836.6

	
136.4

	
255.3

	
p-value

	

	
 3.5 × 10 − 6

	
0.008

	

	

	
0.02

	
 5.7 × 10 − 5

	

	

	

	

	

	

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file4.png
Continuos
Solutions

l

k-means cluster

k-means learning

5.0~

4.5

4.0 1

3.5 1

3.0 1

2.5 1

2.0 1

1.5 4

1.0~

Each cluster is
associated with a
transition probability.

Binary Solutions

L) L) T T T L) T T

vl v2 v3 vi V5 vb w7 vE
li-component solution velocity|

nav.xhtml

 mathematics-09-02611

 		
 mathematics-09-02611

media/file0.png

media/file2.png
Start

—)

Greedy
initialization

Is the exit

condition
met?

Execute CS

|

Execute MLBO

get a new better
value?

Yes

!

Execute local
search operator

media/file5.jpg
150
125

2100
Qs

25 }

i
B L

00

b
«ﬁ :?"X’ s"ﬁ &

« & &

Algorithm

media/file6.png
.
O O O _‘ |_ - %
“

15.0 A
12.5 A

%
7]
%
2,
%
W
<.
ool ["2
=2
%
<o
%
.
%
A
Como . o&,
Oy
%,
o
o0 - &Uw
%,

Algorithm

media/file3.jpg
Continuos.
Solutions

|

kemeans cluster

k-means learning

Binary Solutions

/‘ o .

|i-component solution velocity]

media/file1.jpg
Greedy
initalization

No

Execute CS

Execute MLBO

s

S

Execute local
search operator

